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Abstract
IP Geolocation databases map IP addresses to their corresponding geo-

graphical locations. They are used to find the approximate location of user’s
IP address at city level granularity, when the exact user location is not avail-
able. These databases are crucial to a variety of online services, including
content personalization, credit card fraud prevention, geographic traffic load
balancing, and location-based content licensing. Several companies offer com-
mercial IP geolocation services. However, these commercial databases can be
inaccurate and the methods they employ are proprietary. Furthermore, pre-
vious academic work in this area has typically resulted in low accuracy, it
has focused on small geographic regions, and it has used small ground truth
datasets. Consequently, investigating multiple geolocation approaches and
evaluating their accuracy on a larger scale is worthwhile.

The overarching goal of this dissertation is to compile a geolocation database
from scratch, by combining IP location information derived from multiple data
sources using novel techniques. We develop seven IP geolocation approaches
using a variety of data sources such as application logs, reverse DNS host-
names, traceroute paths, and information extracted from WHOIS databases.
We place particular emphasis on search engine logs, as they have not been
previously used to improve IP geolocation. From these logs we derive location
information from user queries, user clicks, and from opt-in GPS data. Fi-
nally, we combine the output of all seven approaches into a single geolocation
database. Since two or more approaches can provide conflicting location infor-
mation for the same network block, we need to resolve location conflicts. We
cast this conflation task as a machine learning problem. We train a classifier
which for a given IP range can decide which location candidate is most likely
correct.

We evaluate the resulting geolocation database using a ground truth set of
70 million IP addresses with known location, the largest ever reported in litera-
ture. We show that with a median error of only 3.59 kilometers, it significantly
outperforms current state of the art commercial and academic approaches.
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Chapter 1

Introduction

1.1 IP Geolocation and Its Importance

IP Geolocation databases map IP addresses to their corresponding geographi-
cal locations. They are used to find the approximate location of an IP address
at the city level. Records in these databases contain IP ranges along with
their physical location. Table 1.1 lists a few examples of such records. For
instance, the second example in the table maps a block of 256 IP addresses to
Guangdong, a city in China.

Table 1.1: Example of entries from an IP Geolocation database.

StartIP EndIP Country State City

1.0.16.0 1.0.16.255 JP Tokyo Tokyo
124.173.109.0 124.173.109.255 CN Guangdong Guangzhou
187.153.184.0 187.153.184.255 MX Quintana Roo Cancun

These databases are vital to a variety of online services when the exact
location of a user is not available. Web search engines are an example of
services which rely on this type of information. They use the geographical
location of users to personalize the results shown on the page. For instance,
for the query “weather” search engines may display a page block with the local
weather forecast based on the location of the user.

Figure 1.1 shows another example of location-based personalization in the

3



Figure 1.1: Effect of missing location information on search engine local search per-
sonalization. The left image displays the results for the query "restau-
rants" when the location of the user is unknown, while the right image
displays the personalized experience for a user located in New York
City.

context of search engines. The figures demonstrate the striking difference
in results for the query "restaurants" when the user location is unknown,
compared to when it is known. The generic nationwide results require the user
to requery for more specific restaurants in their area, while the personalized
results directly list restaurants tailored to a specific location.

Outside of the realm of search engines, IP geolocation services are used for
applications such as:

•Content Delivery Networks deploy servers in datacenters across the globe
to speed up access to content. IP geolocation databases help direct users to
the closest server. This can result in improvements in latency, throughput,
and bandwidth costs [1, 2].

•Credit card fraud protection: Financial institutions use the location of
users making online transactions as one of the inputs in their credit card
fraud detection algorithms. Knowing the location of the online user allows
them to flag transactions coming from certain countries which originate a
high percentage of credit card fraud [3, 4].

•Click fraud protection: The World Federation of Advertisers estimates
that click fraud will cause at least $50 billion in losses between 2016 and
2025 [5]. Ad networks use geolocation as one of the features in click fraud
detection systems [6].
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•Advertising network targeting: The location of users is an important
factor in personalized advertisements. Determining the location of users
correctly can lead to better ad targeting, which in turn can result in higher
revenue [7].

•Law enforcement: Locating IP addresses can help law enforcement in
cybercrime investigations and can aid in detecting unauthorized logins [8–11].

•Location based content licensing: Streaming services such as Spotify and
Netflix use IP geolocation to enforce geographic content restrictions [12, 13].

•E-commerce: Shopping websites can geolocate customers to estimate taxes
and shipping charges of products, before customers specify a shipping address
[14].

•Organizations with local points of presence: Insurance companies,
large retail chains, fast food restaurants, and other organizations can use IP
geolocation to direct users to their closest facility.

•Automatic language selection: Websites available in multiple languages
can select the correct one based on the location of the user [15].

Accurate IP geolocation can make the difference between satisfied and dis-
satisfied customers. Previous work has shown that personalizing results to a
user’s location leads to increased user satisfaction and conversely that miss-
ing location information leads to user dissatisfaction [16, 17]. In the case of
search engines, incorrect location data can lead to abandoned searches and
engine switches. Bennett et al. have shown that training a web ranker to take
into consideration user location leads to improvements in 10.4% of test queries
[16]. In other cases, such as credit card fraud protection, imprecise location
information can have even more severe repercussions such as loss of revenue.
To combat fraud, previous work by Akhilomen integrated IP location signals
in a credit-card fraud prevention system [4].

Commercial IP geolocation databases are implicitly trusted in

academia as a basis for research in various areas, such as core search
ranking and user modeling. Bennett et al. [16] personalize search results based
on, among other sources, the location of users. However, they derive the actual
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locations from commercial geolocation services. Zhuang et al. also assume
geolocation databases are accurate and use IP location to model click geo-
sensitivity [18]. Similarly, White and Buscher resolve user IP addresses to
locations to draw conclusions on the knowledge difference between locals and
non-locals when choosing restaurants [19]. Finally, White et al. [20] and Yan
et al. [21] model cohorts of users by location for personalized search, but
again they also use proprietary geolocation services. In this work we find that
geolocation databases are unfortunately far from accurate and, therefore, it is
worthwhile to improve their performance.

Commercial geolocation services such as MaxMind [22], Neustar IP Intel-
ligence [23], and IP2Location [24] are considered state of the art, although
the exact methods they use are proprietary. Recent work has questioned

their accuracy. Using a ground truth set of 16,586 router IPs, Gharaibeh et
al. found a city-level disagreement of 29% across four different vendors using
pairwise distances [25]. Shavitt et al. computed the distance between loca-
tions reported by commercial databases on identical IP ranges and reported
that some pairs of databases have disagreements in the hundreds of kilome-
ters [26]. Poese et al. found errors exceeding 10 kilometers in 80% of the
cases, across two commercial databases [27]. Finally, Laki et al. have found
that MaxMind places multiple spread out European GÉANT routers in a sin-
gle location (Cambridge, UK), because that is where the network operator is
headquartered and the IP WHOIS records point to that address [28].
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1.2 Motivation

The overarching goal of this dissertation is to compile a geolocation database
from scratch, by combining IP location information derived from multiple data
sources using novel techniques. The reasons for embarking on this effort are
manifold:

• IP geolocation is not a solved problem, in either academia or industry. In
Chapter 5 we show that the accuracy and IP coverage of previous academic
research approaches is typically insufficient for city-level geolocation. The
problem also persists in the industry. There are half a dozen companies whose
sole focus is IP geolocation. Previous research has shown that currently
available commercial databases are inaccurate [25–27]. We also confirm these
findings in Chapter 4. Therefore, there is a clear need to continue work in
this area and to achieve higher accuracy.

•Data contained in search engine logs has not been previously exploited to
improve IP geolocation. Although user location information is heavily used
for search engine personalization, the search engine assumes the location of
the user is known, often by using commercial IP geolocation databases [16].
It may be possible to use search engine logs to instead derive IP geolocation
information.

•Commercial IP geolocation services are proprietary and the methods they
employ to derive geolocation database are largely unknown. Consequently,
detailing and experimenting with multiple potential methods in an academic
setting might shine more light on which approaches work best and why.

• IP geolocation has not been studied at scale. As described in Chapter 5,
previous research mainly targets IP coverage on the order of thousands of
addresses, as opposed to millions. Furthermore, past work mostly focuses on
individual methods. Only a handful of papers both cover and combine more
than one approach [29–31]. Consequently, combining multiple geolocation
methods on a large scale and evaluating their accuracy is worthwhile.
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1.3 Research Questions

At the onset of our work we set about to answer several research questions
pertaining to IP geolocation.

•How can we obtain a large ground-truth set for IP geolocation?

•What is the impact of inaccurate IP geolocation on user experience?

•How accurate are commercial geolocation databases?

•Can we devise new IP geolocation approaches by exploiting information from
the logs of a search engine?

• Is it possible to improve IP geolocation coverage by interpolating (extrapo-
lating) locations across neighboring IP addresses and neighboring IP ranges?

•Can we use public information such as WHOIS databases and traceroutes to
augment IP geolocation?

•Which IP geolocation methods provide the most IP coverage and accuracy?
What are the advantages and disadvantages of each method?

•How can IP geolocation methods be conflated into a larger geolocation data-
base?

1.4 Outline and Contributions

• InChapter 2 we introduce definitions and concepts that we use through-
out this dissertation.

•Chapter 3 investigates the impact that incorrect IP geolocation can have
in the context of search engines. Our contributions include compiling a large
ground truth set of 8.4 million IP addresses with known location, and mining
the Bing search engine log to compare the metrics of impressions where the
location is correct, to the impressions where the location is incorrect. We
show that user satisfaction metrics are heavily impacted when user location
is unknown.
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• In Chapter 4 we summarize data sources and approaches used by com-

mercial geolocation services, we give an overview of previous academic
attempts at evaluating the accuracy of commercial databases, and we per-
form a large scale evaluation of three commercial databases using our ground
truth set. We show that geolocation accuracy varies considerably both be-
tween databases and within databases, when evaluating accuracy across ten
countries. We find that none of the commercial location services can achieve
an accuracy above 70% at the city level, and in some cases have an accuracy
below 10%.

•Chapter 5 provides a detailed overview of previous research in IP ge-

olocation. We describe prior work across multiple geolocation approaches,
including network delay, network topology, reverse DNS, web mining, and
others. In Section 5.5 we place our work in the context of prior research, by
highlighting the main differences between prior research and the approaches
we propose here.

•Chapter 6 focuses on privacy and security in relation to IP geolocation.
We first present the current privacy climate surrounding location services.
Then, we list the steps we have personally taken to maintain the privacy of
users when compiling our ground truth sets, when training our models, and
when evaluating our approaches. Finally, we summarize adversarial security
work in ways to evade IP geolocation and maintain user privacy.

• In Chapter 7 we mine the query logs of the Bing search engine to improve
geolocation. Our contributions include developing an approach to augment
commercial IP geolocation databases using information extracted from user
queries, and performing a large scale A/B experiment on 1.7 million users
and 3.2 million queries to validate our improvements. At the conclusion of
the experiment, we observed positive changes in several user metrics. To the
best of our knowledge, this is the first time that queries have been used to
increase IP geolocation accuracy.

•Chapter 8 proposes a systematic approach for using reverse DNS host-

names to geolocate IP addresses. In our preliminary investigation we deter-
mine reverse DNS coverage in the entire IPv4 address space. We also find
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an upper bound of exact city and airport code matches in hostnames. We
then present a machine learning approach for extracting location hints from
hostnames. Using a large ground truth set, we evaluate our approach against
three academic baselines and two commercial IP geolocation databases. We
show that our method significantly outperforms academic baselines. We also
show that the academic baselines contain incorrect rules which impact their
performance. We demonstrate that our approach is both competitive and
complementary to commercial geolocation baselines. As a final contribution,
we release our reverse DNS geolocation software as open source to help in
reproducing our results.

• In Chapter 9 we present two approaches to extract IP geolocation infor-
mation from user clicks mined from the logs of the Bing search engine. In
our preliminary investigation we investigate the geographic focus of URLs to
show that clicks on certain links can reveal the location of users. Our first
approach uses a density-based clustering algorithm to propagate locations
from IPs with known GPS location to IPs with unknown location, through
user clicks. Our second approach attempts to eliminate reliance on precise
GPS training data by instead using locations mined from the body of clicked
web pages. We evaluate the accuracy of our two approaches against two
state of the art commercial geolocation databases. Using a large and diverse
ground truth set of 70 million IP addresses with known location, we show
that our approaches significantly outperform two commercial databases on
median error, Root Mean Squared Error (RMSE), and cumulative error dis-
tance. Our method also outperforms prior academic work in both accuracy
and scale. To the best of our knowledge, this is the first time that user clicks
have been used to improve IP geolocation.

• In Chapter 10 we revisit the task of improving geolocation through user

queries. We show that by using location clustering applied on queries
grouped by IP ranges we can obtain better accuracy results than our prelim-
inary results from Chapter 7. Instead of focusing on improving the accuracy
of IP geolocation databases, here we evaluate our revised approach directly
against commercial location services.
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•Chapter 11 investigates whether it is possible to improve the coverage of
geolocation approaches by using IP location interpolation. We study ge-
ographic colocation of IP range addresses and we demonstrate that when two
IPs are in the same range, they are also often located in the same geographic
region. Based on this finding, we propose approaches to extrapolate the lo-
cation of all addresses in an IP range, starting from the known location of
just a few individual IP addresses. Using a large ground truth set, we show
that the accuracy of this approach depends on the size of the IP range.

• In Chapter 12 we propose propagating locations along traceroute paths.
We show that there is a direct relationship between physical distance and
latency differences along the traceroute path. We then combine this prop-
erty with IP location interpolation to improve geolocation. We evaluate our
approach against two state of the art commercial IP geolocation databases,
using a large traceroute dataset and a large ground truth set. We show that
our approach significantly outperforms the commercial location services. To
aid in reproducing our experiments, we also evaluate our approach using a
second public ground truth set extracted from PeeringDB, which is a self-
reported database of worldwide peering points. Along with this dissertation
we are making the traceroute dataset parsing library and the PeeringDB
parsing and generation library available as open source. We are also pub-
lishing a snapshot of the PeeringDB dataset.

In Chapter 13 we extract location information from public WHOIS data-
bases provided by the Regional Internet Registries which allocate IP ad-
dresses. We describe the technical challenges of parsing and geocoding
records that have different schemas. We crawl secondary location informa-
tion for North American IP ranges, using Referral WHOIS. We demonstrate
that geolocation accuracy depends on the granularity of the IP ranges. To
aid in future research, we are making both our WHOIS parsing and our
RWHOIS crawling libraries available as open source.

Chapter 14 focuses on conflating location information obtained through dif-
ferent IP geolocation methods to obtain a single geolocation database with
higher accuracy and IP coverage. We first evaluate each geolocation approach
separately using a single ground truth set of 70 million IP addresses. We then
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propose 30 features and train a classifier which for a given IP range deter-
mines the most likely location candidate, among the ones proposed by our
several geolocation approaches. We evaluate the resulting combined database
and show that it surpasses two state of the art commercial geolocation ser-
vices in accuracy.

We conclude with Chapter 15, where we revisit and attempt to answer the
research questions we posed in the Introduction. We also propose multiple
avenues for Future Work.
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Chapter 2

Definitions, Acronyms, and

Concepts

Table 2.1: Various acronyms used in this dissertation.

Acronym Explanation

AS Autonomous System
ASN Autonomous System Number
BGP Border Gateway Protocol
ICMP Internet Control Message Protocol [32]. See Ping.
RMSE Root Mean Squared Error
TTL Time To Live

Definition 1 (Autonomous System / Autonomous System Number). An au-
tonomous system or AS is a collection of IP ranges under the control of a
single entity that presents a clearly defined routing policy to the Internet [33].
Each such entity is allocated an autonomous system number (ASN) that is
used in BGP routing (see BGP).

Definition 2 (Border Gateway Protocol). BGP is the standardized protocol
designed to exchange routing information among Autonomous Systems on the
Internet [34].

Definition 3 (Error distance). In the context of IP geolocation, we define
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error distance as the distance between the estimated location of a target IP,
and the actual location of the IP, as determined by a ground truth data set.

Definition 4 (Explicit location queries). In the context of search engines, we
define explicit location queries as queries that contain a location meant to filter
results to that geographical area. For instance, the intent of the query "indian
restaurant redmond" is to find indian restaurants which are located in the city
Redmond [35, 36].

Definition 5 (Implicit location queries). In the context of search engines,
we define implicit location queries as queries that do not contain an explicit
location but still imply local search intent. For example, a user querying for
"restaurants" typically expects the results to be limited to their immediate vicin-
ity, even if they did not specifically include a location [35, 36].

Definition 6 (Local parameter search). Local parameter search or simply local
search is a technique to solve optimization problems which moves through the
solution space by applying small incremental changes to model parameters,
until a solution deemed optimal is found [37]. Note that here local search is
an overloaded term and has a different meaning than in the other definitions.
In this context it refers to searching among the possible parameter values of a
model.

Definition 7 (Multilateration). Multilateration is a technique to geograph-
ically locate an object by having multiple stations placed around the target
measure and combine the distance between the stations and the target, to es-
timate its position. Multilateration can also be performed by the target object,
without the assitance of stations, by measuring the signals emitted from time
synchronized landmarks. GPS is an example of such multilateration where
the stations are moving transmitters [38]. In the context of IP geolocation re-
search (see Chapter 5), multilateration is performed by having multiple servers
with known location ping a target IP, measure the reply time, and combine the
results to estimate the location of the target [39].

Definition 8 (Ping). Ping tools are used to determine the reachability and
network delay from a source host to a target host on an IP network [40]. ping
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sends ICMP packets [32] to a target address and waits for a reply. Network de-
lay is determined by the time difference between sending a request and receiving
a reply.

Definition 9 (Primate cities). Primate cities are cities which dominate the
surrounding populated places economically and culturally due to their size [41].

Definition 10 (Reverse Geocoding). Reverse geocoding is the process of con-
verting a latitude and longitude pair to the corresponding readable address
(continent, country, state, county, city, street, etc.). In this paper we reverse
geocode locations down to the city level.

Definition 11 (Root Mean Squared Error). Root Mean Squared Error or
RMSE is an evaluation metric which measures the differences between values
predicted by a model and the actual correct values as defined by a ground truth
set [42]. To obtain its value, we take the square root of the mean of the squares
of the deviations. One difference between RMSE and median is that RMSE
easily gets swayed by large outliers, whereas median does not.

Definition 12 (Time To Live). Time To Live or TTL is a counter that limits
the span of data as it travels a computer network. See Traceroute.

Definition 13 (Traceroute). Traceroute tools reveal the path taken by packets
to travel from one Internet connected device to another. They also measure
the latency to each hop in the path [43]. To determine intermediate routers,
an Internet connected device starts by sending out a packet with a time-to-live
(TTL) value set to one, followed by more packets where the TTL value of each
subsequent packet is always incremented by one. As the packets make their way
through the network, intermediary routers decrement the TTL value by one at
each step until the value reaches zero. Once the value is zero, the current hop
returns a reply to the source. This allows gradually discovering the nodes along
the path.
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Chapter 3

Impact of Inaccurate IP

Geolocation in Search Engines

We investigate the impact that incorrect IP geolocation can have in the context
of search engines. We begin by describing how we compiled a ground truth set
of IPs with known location. Next, we mine logs from the Bing search engine
to compare the metrics of impressions where the location is correct, to the
impressions where the location is incorrect.

3.1 Ground Truth

Limited ground truth information has been a significant limitation in previous
IP geolocation research, as discussed in Related Work (Chapter 5). Previous
work has typically used tens of IP addresses with known geographical location,
mainly located in the U.S. We propose a method to generate a large scale
evaluation set by aggregating real time location information from search engine
logs. Using our method we have generated a ground truth set of more than
8.4 million IP addresses from across the world.

Mobile devices contain sensors for global positioning systems. Mobile appli-
cations can request access to real time location information in order to provide
better results. While not all users are comfortable with sharing their location,
a representative set of users agree to provide this information. We use this
information from search engine logs to generate the ground truth set.
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Mobile devices such as smartphones connect both to cell towers and to local
Wi-Fi networks. Therefore, they sometimes access the Internet from IP ad-
dresses provided by phone operators such as AT&T and T-Mobile, while other
times they access the Internet from home or business broadband providers such
as Comcast or Charter. Although we collect most of the ground truth data
from mobile devices, we perform several filtering steps to ensure that most
IP addresses in the ground truth set are from fixed broadband connections.
The main reason for retaining only fixed IP addresses is that here we aim to
improve existing IP geolocation databases, which assume each IP address has
a single location. Since here we are computing a ground truth set, it is reason-
able to eliminate IP addresses which appear in multiple cities in the dataset.
Second, obtaining the real location of fixed broadband connections is arguably
more difficult than obtaining the location of mobile network connections, as
most most wired devices such as desktop PCs do not contain sensors capable
of determining real time location, while mobile devices do.

First, after aggregating all reported locations per IP address, we restrict
the IP addresses to the ones where the location readings stay within a 1.6
kilometer (1 mile) radius. We then assign each IP address a centroid computed
by combining these location readings in time. While this constraint does filter
out some valid IP addresses, it ensures that the remaining addresses are located
in a relatively fixed position. Consider a user who commutes to work in a close-
by city. Although the heuristic will likely filter out their mobile IP address as
cell phone tower coverage spans large geographical regions, it will retain their
fixed broadband IP address, if the user connects the device to both networks.
When the user reaches their home and switches to a fixed Wi-Fi connection,
their device will still broadcast the real time location to the search engine,
thus linking the fixed broadband connection to a fixed location which stays
within a small radius. Second, we retain only the IP addresses which appear
in the logs on at least three different days, with at least three different location
readings. Location information provided by mobile phone operating systems
can be stale or inaccurate. This step ensures that we filter out the devices
which are only turned on for a short period of time or that broadcast the same
stale location.

We also had to overcome other technical challenges. Not all locations in
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the logs are within the boundaries of cities, and raw locations need to be
mapped to individual cities. To address these problems we have retained only
the IP addresses which have appeared in the logs on at least three days, which
resulted in at least three location readings per IP address, and where at least
two of the location readings were distinct. These heuristics are based on our
observation that some mobile operating systems continuously report the same
last known location information after the user turns off the positioning sensor.
Some users in our logs only turn on global positioning sensors temporarily
while traveling. The rest of the time the operating system reports the last
known (incorrect) location. Finally, we have used the public Bing Reverse
Geocoding API [44] to map each location to a city or populated place. This
process filters out locations which are outside populated locations, such as
lakes, and provides a common naming convention for locations.

We have obtained 8.4 million IP addresses and their corresponding location
by mining logs from the Bing search engine for a period of 180 days ending on
October 10th, 2014. To the best of our knowledge, this is the largest ground
truth set ever used in IP geolocation research. The set spans 220 countries,
with a maximum of 2 million IP addresses in the United States. The top 50
countries by IP density have a mean and median size of 163,000 and 45,000
IP addresses, respectively.

To validate that most of the ground truth IP addresses are of fixed broad-
band networks we have intersected them with information provided by a com-
mercial geolocation database on the types of connections of IP ranges. Results
show that 80% of the addresses in our ground truth data are of fixed networks,
2% are of cell phone networks, and the rest unknown or satellite connections.
We could have used the connection type breakdown information from Vendor
A instead of using our own method, but we have manually found the accuracy
of this classification to still be lacking.
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3.2 Comparing Sessions With and Without

Location Information

We now use the ground truth dataset to analyze the impact of impressions
where the location information is incorrect. These cases are nuanced as we
expect the effect of incorrect information to become more apparent as the
error increases. For instance, for the query “cinemas” a user might still click
the results even if the search returns businesses from a close-by city.

We extract the impressions issued on the Bing search engine in a seven
day period, across all devices. We intersect this set with our ground truth set
and then we compute the distance between the ground truth location and the
location from the IP geolocation database used by Bing. We compare the set
of impressions where the distance between the real location and the assumed
location is more than 15 km, to the impressions where the error distance is
less than 15 km. We further partition the data based on queries with local
intent versus all queries. By a query with local intent we mean queries with
local context, such as “plumbers”.

Table 3.1 shows the change in metrics for the queries issued from the U.S.
market. Both overall and ad click-through rates decrease when the location
is incorrect. Prior research has shown that this metric is positively correlated
with user satisfaction [45]. However, we observe that Algorithmic click-through
rates increases for the “All queries” set. This increase can be attributed to
users who avoid clicking on the answers which contain incorrect local content,
and instead choose to click on algorithmic search results, which might be
more general. For example, if for the query thai food the search engine lists
restaurants from an incorrect nearby city, the users might instead click on a
lower but more generic algo result, such as restaurants.com.

The table also indicates that ads click success is negatively affected. Click
success occurs when the click results in a dwell time greater than or equal to
30 seconds [45]. This metric has also been correlated with user satisfaction.
Therefore, since in our case the metric goes down, user satisfaction might
suffer. However, in the case of algorithmic clicks we observe that there is an
increase in success when the location is incorrect. This change can be caused by
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Table 3.1: Change in metrics between queries where distance error is more than 15
km, versus when the error is less than 15 km. Note that both result
columns show the impact of incorrect locations. The difference
between the columns is that they show two subsets of the data. See text
for an explanation of the two positive metrics.

Metrics Local Intent All Queries

Overall Click-Through rate (any link) -4.3% -12.8%
Algorithmic Click-Through rate (on search results) -1.1% +2.4%
Algorithmic Click Success -6.1% +0.2%
Ads Click-Through Rate -17.9% -6.1%
Ads Click Success -15.2% -7.0%
Ad Revenue -40.3% -6.0%

Results statistically significant using a two-sample t-test at 1%.

users that click on general algorithmic results because the local answer shows
incorrect results. Finally, we can observe ad revenue decreases dramatically in
both cases. Therefore, improving IP geolocation accuracy could lead to higher
revenue.

We conclude that when the IP geolocation data is incorrect there is a sig-
nificant drop in metrics. These results reinforce our hypothesis that incorrect
IP geolocation information can lead to lower user satisfaction.
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Chapter 4

Commercial IP Geolocation

Databases

The most precise way to determine the location of an online service user is to
use global positioning systems such as GPS, Galileo, GLONASS and BeiDou
[38, 46, 47]. Unfortunately, this information is only available on devices that
have location sensors, such as mobile phones. Many other devices such as
laptops, desktop PCs, and smart speakers lack the hardware to determine
their precise location. Furthermore, even if a smartphone has GPS hardware,
users can still opt-out from location sharing. Therefore, we require alternate
ways to locate online devices.

Other location detection methods include Wi-Fi positioning systems, as
well as crowdsourced locations. In the former case, the location of the user
is determined by comparing the list of wireless access points visible from the
device to a list of access points with known locations. These Wi-Fi location
databases suffer from lack of coverage, especially in rural areas [48]. In the
latter case, having users self-report their location might be accurate in the
short term, but such information can become stale in the long run if users
move without updating their location.

IP geolocation databases are an alternative with higher coverage. They
consist of IP ranges mapped to location information at the city level. In
some cases they can also contain further information on IP ranges, such as
details about the ISP which controls the range, or the speed and type of
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Internet connection offered in the range. They typically have high IP coverage
and medium to high accuracy. These databases are provided by commercial
vendors such as:

•Akamai EdgeScape [49] is an IP geolocation database that was introduced
in June 2000. Akamai was founded in 1998 and is located in Cambridge, MA,
USA.

•Neustar IP Intelligence, formerly known as Quova, is a geolocation service
introduced in 2000. Neustar [23], founded in 1999 in Mountain View, CA,
USA bought Quova in 2010.

• IP2Location [24], founded in 2001 and located in Bradenton, FL, USA

• IPligence [50], founded in 2006 and located in Barcelona, Spain

•MaxMind [22], founded in 2002 and located in Waltham, Massachusetts,
USA

•Digital Element’s NetAcuity [51], founded in 1999, in Norcross, GA,
USA

4.1 Data Sources

The data sources and approaches used to compile commercial geolocation da-
tabases are closely guarded secrets. The proprietary nature of these databases
makes them difficult to analyze. In some cases, such as NetAcuity, Neustar,
and EdgeScape, it is difficult to access the databases without signing a con-
tract. In the majority of cases, the terms of usage of the geolocation databases
disallow comparative benchmarking. Yet, they are widely used and trusted by
both industry and academia.

Digital Element was the first company to provide geolocation services and
is the self-professed leader in commercial IP geolocation. Descriptions on their
website state that they combine multiple data sources, including location data
obtained directly from Internet Service Providers and location data derived
from mobile phone traffic, although they do not clearly state the source of this
data [51–53]. Digital Element applied for and was issued multiple patents on
IP geolocation [54–57]. Our analysis of these patents suggests they may be
collecting data through network latency and topology approaches (ping, tracer-
oute), may be extracting locations from the WHOIS databases maintained by
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Regional Internet Registries, may be parsing reverse DNS hostnames for lo-
cation hints, and may be using data collected through crowdsourcing. Rob
Friedman, who is the co-founder of Digital Element, also lists these same data
sources as an answer to an IP geolocation question on Quora, but cautions
that data from WHOIS databases is generally inaccurate [58]. However, it is
unclear if or how they use these resources in production.

MaxMind, IP2Location, and Neustar IP Intelligence may also be using
WHOIS data as part of their databases. Lee et al. find evidence that Max-
Mind is using data derived from the APNICWHOIS Internet registry database
in Korea [59]. They find typos in city names returned by MaxMind that are
identical to typos found in WHOIS database entries. They also find that Max-
Mind sometimes incorrectly parses Korean addresses stored in these entries,
due to a lack of understanding of how Korean mail addresses work. As a re-
sult, MaxMind occasionally mistakenly picks small towns with names similar
to that of larger cities. IP2Location compiles a yearly study of IP allocation
that uses WHOIS data [60]. Neustar states on their website that they use In-
ternet registry data [61]. They also suggest they may be using network delay
and topology information.

Using data from a large European ISP, Poese et al. show that MaxMind
and IP2Location partially rely on the official IP allocations and BGP network
advertisements [27]. The authors find significant overlap between the gran-
ularity of advertised networks and that of the IP ranges in the commercial
databases.

Liu et al. [62] reveal a rare glimpse in the data sources used in a second tier
commercial geolocation database compiled by Tencent. The authors state that
this database is compiled by combining WHOIS data, locations from reverse
DNS hostnames, and crowdsourced IP location information.

Lastly, Chandrasekaran et al. state that commercial databases rely on
a combination of domain registry information, ISP provided data, host name
hints, latency measurements, and other heuristics [31]. Furthermore, they also
found evidence of manually curated information used in major geolocation
databases.

In summary, these databases are compiled by combining data from multiple
sources:
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•WHOIS databases. The primary data sources for these databases seem to
be the databases maintained by the five regional Internet registries, which
manage how IP ranges and network autonomous system numbers are assigned
to organizations around the world [63]. These registries maintain WHOIS
databases with mappings of IP ranges to the geographical location of the
organizations that use these IPs. However, there are cases where large ISPs
or multinational companies are assigned large IP ranges. Since these orga-
nizations deploy infrastructure over large areas, the geographic information
contained in the registry databases is insufficient to obtain accurate locations
from any IP address in the range. In Chapter 5 we summarize related work
that uses WHOIS databases and in Chapter 13 we evaluate using this data
ourselves for IP geolocation.

•Network delay information collected by issuing through ICMP packets with
tools such as ping. We describe past research in this area in Section 5.1.

•Network topology data, including traceroute paths, BGP routing table
snapshot, and Autonomous System network information, as we describe fur-
ther in Section 5.2 and Chapter 12.

•Reverse DNS hostnames that contain location hints. We summarize
related work in Section 5.3 and and we present our own novel approach for
geolocation using these hostnames in Chapter 8.

•Crowdsourcing or manually curated IP location information, as partially
described in Section 5.4. For example, weather websites may ask users to
self-report their location to obtain a forecast for their city. This location
information can then be stored along with the IP address of each user.

•Mobile data traffic which contains IP addresses, along with precise GPS
locations. This data is usually collected through mobile apps. See Section
3.1.

•Partnerships with ISPs. Commercial geolocation databases can partner
with large ISPs, which maintain internal records of how they geographically
subdivide large IP ranges provided by the Internet registries.
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4.2 Accuracy of Geolocation Databases

We summarize self-reported accuracy numbers provided by commercial da-
tabases, followed by an overview of independent evaluations performed in
academia. We then carry out our own large-scale evaluation of three commer-
cial databases, using a ground truth set of 8.4 million worldwide IP addresses.
All the results presented in this section refer to IPv4 addresses.

MaxMind and IP2Location are among the few commercial geolocation da-
tabases that reveal their city-level accuracy. The results vary significantly
on a country by country basis. Maxmind reports an accuracy smaller than
50% for 36 out of 100 countries when using an error distance threshold of
10 kilometers [64]. For some well-known countries such as Italy, Venezuela,
Philippines, and Japan, this accuracy is below 35%. Their mean unweighted
accuracy across 100 countries is 58% at error smaller than 10 kilometers, 70%
at error smaller than 25 kilometers, and 76.5% at error smaller than 50 kilo-
meters. IP2Location also reports a similar accuracy result of 77% for error
smaller than 50 kilometers [65]. In the United States, using a threshold of 50
kilometers, MaxMind reports an accuracy of 86%, while IP2Location states an
accuracy of 99.53%. However, all of these numbers are self-reported and there
is no information on the freshness of these results, or the size of the ground
truth set.

Using the internal naming scheme of routers obtained from a large Euro-
pean ISP, Poese et al. show that MaxMind has an accuracy of less than 20%
within an error distance of 10 kilometers, while IP2Location fares even worse
with errors ranging from 200 to 800 kilometers [27].

To evaluate multiple commercial geolocation databases, Shavitt et al. [26]
employ a ground truth set of 25,000 worldwide IPs provided by CAIDA [66].
They find that NetAcuity, MaxMind, IP2Location, and IPligence have an ac-
curacy of 79.1%, 29.4%, 14.16%, 0.9%, respectively for error distance of 100
kilometers or less.

Kester evaluates commercial databases using 3,206 IPs consisting of CAIDA
Ark [67] and RIPE [68] servers. For the same threshold of 100 kilometers, he
finds that MaxMind and IP2Location have an accuracy of 63% and 67%, re-
spectively.
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Table 4.1: Basic statistics on the the IP geolocation databases used in this work.

Provider IP Coverage Countries Cities

Vendor A 3.48B (˜94.1%) 249 (100%) 87,842
Vendor B 3.48B (˜94.1%) 249 (100%) 66,480
Vendor C 3.6B (˜97.3%) 247 (99.2%) 102,837

These results show that there can be quite a difference in accuracy between
commercial geolocation databases, depending on the database and the ground
truth used to evaluate them.

To get a better idea of accuracy, we use the ground truth dataset of 8.4
million IP addresses described in Section 3.1 to evaluate three well-known
commercial IP geolocation databases. These databases represent the state of
the art in the industry and, as described in Chapter 5, have higher coverage
and better accuracy than most previously published research. Due to legal
reasons we will use the generic names Vendor A, Vendor B, and Vendor C
to denote them. The providers were chosen from among the companies listed
above. Nevertheless, the findings are still valuable even without specifying
their exact names.

Table 4.1 presents basic statistics about these databases, generated on
data available on October 10th, 2014. The IPv4 address space is 4.29 billion
IP addresses, which includes 592 million addresses yet to be distributed to
organizations, or reserved for other uses. Vendor C has the highest IP cover-
age at 3.6 billion, followed by the other two vendors each at 3.48 billion. The
databases report countries using the ISO 3166-1 standard, which yields a max-
imum of 249 possible countries. Vendors A and B cover all possible countries,
while Vendor C covers 247 of them. The last column in the table shows city
level coverage. The difference between the vendors with highest and lowest
city coverage is 36,357 cities. The databases have very high coverage at the
IP and country level, but varying degrees of coverage at city level.

In Chapter 3 we have shown that missing IP geolocation information at
the city level has a negative impact on search engine user metrics. The city
related fields are empty for 6.9%, 6.9% and, 37.4% of the covered IPs in the
three databases, respectively. The largest difference in coverage between the
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Figure 4.1: Distribution of IP range sizes after merging contiguous ranges that
have identical locations.

first two vendors and the last one was in the United States, with 50.8, 50.7, and
518.6 million IP addresses without city information, respectively. Although the
commercial databases cover a large number of distinct cities, computing the
city coverage at the IP granularity shows that there is room for improvement.

The maximum IP range size in all tested databases is 256. In other words,
the size of a group of IP addresses with the same location is at most 256
IPs. However, we have noticed in the raw data that several IP ranges are
both contiguous and have the same location. For illustrative purposes we
have merged contiguous IP ranges which contained identical information. For
instance, if two IP ranges have sizes 16 and 256 respectively, are contiguous,
and have identical location information, we group them in a single range of size
272. Figure 4.1 shows the IP range size distribution after merging contiguous
ranges with identical information. To make the figure easier to plot we group
the sizes of IP ranges in buckets. The X axis shows the buckets, which have
limits given by powers of two. For example, the bucket [1-16) contains all IP
ranges of size 1 to 15. The Y axis shows how many IP ranges are in each
bucket, using a logarithmic scale. We note two findings. First, there are cases
where IP ranges are more than 1 million IPs in size. It is unlikely that all of
these IP addresses have the same location information in reality. Second, the
database from Vendor A contains ranges which are more granular than the
other two vendors. It contains 23.8 million IP ranges where the size is less
than 16 IPs, compared to 2.2 million for Vendor B and 1.9 million for Vendor
C.
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We now turn to the ground truth data to evaluate the accuracy and error
distance of the databases. Since the data is provided by different companies,
it is possible that the names of locations are not consistent. To solve this
problem we have used the public Bing reverse geocoding API [69], which maps
coordinates to street addresses. The reverse geocoder is aware of the bound-
aries of cities. This reverse geocoder is the same one that we have used while
generating the ground truth dataset in Section 3.1. Since we are interested in
geolocation at the city level, we discard the street addresses. We normalize
the locations in each database by assigning a unique identifier to each distinct
city. Using the same reverse geocoding method on the databases and on the
ground truth data ensures a level playing field in terms of location names and
identifiers. One important side effect to note is that all ground truth locations
within the limits of a city are converted to the coordinates of the center of
that city.

We compute the accuracy of exact city matches by counting how often the
location of ground truth IPs matches the location given by the databases. In
Figure 4.2 we show the accuracy for the three databases across the top ten
countries by ground truth IP density. There are two interesting findings. First,
none of the databases achieve an accuracy above 70% at the city level, and
in some cases have an accuracy below 10%. Second, Vendor C outperforms
the other two providers, often significantly, across all ten countries. The same
findings hold for all countries. This finding is particularly interesting as in
37.4% of the database from Vendor C there is no city level information. This
suggests that Vendor C has a high accuracy but low city-level IP coverage,
while the converse is true for the other two vendors. We have also found that
country-level accuracy is significantly better than city level accuracy, with
a median of 95.3%, 96.7%, and 89.2% in the top 50 countries for the three
vendors, respectively.

Exact city level matches might not present a complete picture of the per-
formance of IP geolocation databases. Therefore, we also compute the error
distance between the cities from the ground truth IPs, and the cities returned
by the geolocation databases for these IPs. The error distance is given by
the distance between the centers of the cities. For a given ground truth IP, if
the ground truth and IP geolocation cities are the same, the distance is zero.
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the United States. Data points show percentage of ground truth
IPs where the real location and the IP geolocation assumed location
fall within a certain distance. The distance interval on the X-axis is
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Figure 4.3 shows the cumulative error distance for the three databases, in the
United States. The shape of the curves is similar in the other countries. The
X axis shows the error distance at an interval of five kilometers and the Y axis
shows the percentage of ground truth IPs with that error distance. For exam-
ple, consider the three data points above the X-axis label titled <10km. The
numbers show that the real location of 66.2%, 55.3%, and 41.1% of ground
truth IPs is within 10 kilometers of the location provided by Vendors C, A, and
B, respectively. The closer the curve is to the upper left corner, the smaller
the error distance, and the better the results.

We have also performed a comparison of the accuracy and error distance
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results between our ground truth method, and the self-reported data provided
by Vendor C for the United States. We have found that the exact city ac-
curacy difference is within two percentage points, while the error distance at
10 kilometers is within seven percentage points. For the exact city match
accuracy their results are within 10 percentage points of the results we have
obtained in Figure 4.2.

In conclusion, commercial geolocation databases can have low accuracy at
the city level. Therefore, further research in IP geolocation is worthwhile.
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Chapter 5

Related Work

In this chapter we summarize prior work in IP geolocation, which has been
an active research area for more than two decades. Work in this area encom-
passes a diverse array of IP geolocation approaches. In Section 5.1 we begin by
discussing techniques that use network delay and multilateration to perform
geolocation. Section 5.2 further introduces information derived from network
topology, such as traceroutes, BGP routing information, and Autonomous Sys-
tem network data. In Section 5.3 we summarize work in extracting location
hints from reverse DNS hostnames. Section 5.4 presents an overview of ex-
tracting IP location information through web mining, by crawling web pages,
propagating locations in social graphs, mining social checkins, consulting on-
line WHOIS databases, and crowd-sourcing location information from Internet
users. Lastly, in Section 5.5 we put our work in the context of prior research,
by presenting a comparison of past approaches and their results, by discussing
their trade-offs and limitations, and by highlighting the main differences be-
tween prior research and the approaches we propose here.

5.1 Network Delay

The line of research on network delay relies on the observation that the latency
experienced by network packets as they travel between two Internet hosts
is proportional to their geographic distance. Early work in IP geolocation
by Padmanabhan and Subramanian discusses GeoPing [70, 71], which uses
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delay measurements made from geographically distributed locations to infer
the coordinates of the target IP. GeoPing estimates the location of the target
IP by picking the location of the probe server with lowest latency to that
target IP. This method has a median error of 382 kilometers when locating
265 IPs located at universities across the United States. Ziviani et al. take
a very similar approach and achieve a median error of 314 km using 397 IPs
also mainly located on university campuses [72].

CBG [39, 73] goes further by drawing circles on the surface of the Earth
around each probe server with known location, where the radius of each circle is
given by the network delay value. It then picks the center of the intersection of
these circles as the likely location of the target IP. Figure 5.1 shows an example
of the area created by the intersection, for a specific target IP. This technique
is called multilateration. To estimate the conversion between network delay
and physical distance, CBG builds a simple model for each probe server by
measuring the delay to all the other servers. Since the locations of all probe
servers is known, a bestline that fits below all measurements can then be
determined. Figure 5.2 shows an example of such a bestline, compared to
a baseline, which is the expected theoretical line when using 2/3 the speed
of light as the maximum propagation distance in fiber. Experimental results
on 95 IP addresses in the United States and 42 addresses in Western Europe
produce a median error distance of below 95 kilometers for the first dataset
and 22 kilometers for the second dataset, respectively.

Later work based on CBG focuses on ways to better determine the best-
line. Youn et al. [74] propose a statistical method called Statistical Geolo-
cation, or SG for short, to better estimate the bestline by applying kernel
density estimation to delay measurements. On a dataset of 85 IP addresses,
SG achieves a median error of 53 kilometers. Spotter [28], a technique pro-
posed by Laki et al., further refines the task of fitting a baseline. Instead of
generating a separate bestline for each server, Spotter derives a single bestline
for all of them, by combining readings from all active probes together into a
common delay-distance model. Experiments on ≈100 PlanetLab [75] servers
and 23,000 Cogent [76] servers yield median errors of 75 and 30 kilometers,
respectively. Dong et al. propose SDP, which clusters the readings on the
delay-to-distance graph by using k-means clustering. For a given target IP, it
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Figure 5.1: Location estimation of a target host using multilateration. Figure from
Gueye et al. [73], reused with permission from ACM.
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Figure 5.2: Sample scatter plot of geographic distance and network delay. The
bestline is below all plotted data points, while the baseline is the
theoretical line given by 2/3 the speed of light. Figure from Gueye et
al. [73], reused with permission from ACM.

first picks the closest cluster and then it performs more extensive probes from
the subset of probing nodes local to that cluster [77]. This approach achieves
a median error of 27 kilometers on 81 PlanetLab servers in North American,
and a median error of 42 kilometers on 90 PlanetLab servers in Europe.

Although incremental, more recent work by by Khan et al. extends CBG by
introducing a similar two-step process. In the first step they identify a coarse
region using worldwide probe servers, and then in the second step they further
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refine the location using regional servers. Their technique named AIG [78],
which is short for Adaptive IP Geolocation, achieves a median error of 22
kilometers using 89 IPs in North America, and a median error of ≈7 kilometers
using 30 IPs in Pakistan. Jiang et al. also propose a very similar two tiered
approach we call Neural-RBF [79], since it employs a radial basis function
(RBF) neural network. In both tiers, the training data is ping measurements
issued from 14 RIPE Atlas probes [68] that target US landmarks with known
location. After training, the run-time input consists of latency readings sent
from RIPE Atlas probes to a previously unseen US target IP, and the the
output is estimated location coordinates. The difference between the two tiers
is that the first tier is trained to determine a coarse location (48 lower US
states) using all training data, while the second tier instances are trained on
data specific to a specific region. Using 1,547 IPs, they obtain a median error
of just 4.1 kilometers. However, the entire ground truth set is skewed towards
only IPs that are reachable through ping, and that are mostly on high-speed
business networks such as academic institutions and local governments.

Ciavarrini et al. derive the Cramér–Rao lower bound (CRLB) for IP ge-
olocation [80], a theoretical model that can be applied to pure network delay
approaches such as CBG to determine the best placement of measurement
servers and to measure the impact that the number of servers has on accuracy.
It can also be used to ascertain the effect of varying the distance between the
servers and the targets, and to observe the influence that changing the num-
ber of ICMP packets sent to a target has on determining geographic distance.
CRLB has previously been used for evaluating the optimal theoretical posi-
tioning of probes in other localization scenarios, such geolocation in wireless
networks, or tracking acoustic sources [81–83]. Ciavarrini et al. are the first
ones to use it for building a theoretical model of network latency IP geolo-
cation. They derive the parameters in their model from real data collected
through 39 PingER [84] machines. The model simulates a theoretical area of
3,000 by 3,000 square kilometers, which is about the size of USA and twice the
size of Europe. They arrive at several interesting findings. First, they demon-
strate that using a very large number of active probe servers - on the order
of 500 or above - provides only a marginal gain in terms of accuracy. Dou-
bling the number of servers from 500 to 1,000 causes the Root Mean Squared
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Error (RMSE ) to improve only from ≈22 km to ≈15 km. Even when using
hundreds of servers the error can still be in the order of tens of kilometers.
Second, they show that as the distance between the probes and the targets
increases the RMSE value increases as well, which means the error gets worse.
Third, increasing the number of ICMP samples sent to a target IP to find the
smallest latency value has diminishing returns. In fact, increasing the number
of packets from 10 to 50 only improves RMSE by ≈3%. Fourth, the authors
demonstrate that obtaining an error below 20 kilometers requires so many
probing servers as to be unpractical. We further discuss this last finding in
Section 5.5.

5.2 Network Topology

Network Topology geolocation methods also use knowledge of the network
structure to achieve increased accuracy. GeoCluster [70, 71], also proposed
by Padmanabhan and Subramanian, combines BGP routing information with
sparse IPs of known location to assign geographic locations to whole address
prefixes. In this dissertation we call this process IP location interpolation. On
a set of 265 target IPs located at universities in the United States, GeoCluster
achieves a median error of 28 kilometers. This approach performs well with
hosts located on university campuses, but it performs much worse on a larger
and more realistic dataset of 181,246 IPs, with median error degrading to 685
kilometers.

Jayant and Katz-Bassett extend CBG’s ping-based approach by adding
information from traceroutes [85]. They hypothesize that targets that follow
similar traceroute paths also have similar delay-to-distance conversion char-
acteristics. They propose Path-Based Estimation (PBE) and Router-Based
Estimation (RBE). The former selects a subset of the monitoring servers when
determining the delay-to-distance bestline. To obtain the subset, the server
traceroutes to IPs in the training set, using a TTL set to x, a progressively in-
creasing number of hops. For each x it finds the longest shared prefix between
all the traceroutes with x hops, then builds a delay-to-distance bestline only
for that subset. The latter approach is a simplified version which instead of
measuring for all values of x, it only measures for a given x. Using a ground
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truth of 96 IP addresses, PBE achieves a mean error distance between 1000
and 2,400 kilometers, while RBE achieves a mean error distance between 150
and 2,400 kilometers, depending on the value of x. The median errors for the
two methods are 376 kilometers and 346 kilometers, respectively.

Katz-Bassett et al. later also propose TBG, which stands for Topology-
Based Geolocation [86], again largely based on CBG. The authors treat geolo-
cation as an optimization problem on a graph with n active probing servers
with known location, and m targets with unknown location, where the edges
are given by traceroute paths with network delay. TBG achieves higher accu-
racy than CBG on a dataset consisting of 128 IPs located at universities in the
United States. The authors evaluate three variants of TBG, the best of which
also uses reverse DNS location hints based on the hostname of IP addresses
(see Section 5.3). This variant, named TBG-undns, achieves a median error
of 67 kilometers.

Although mainly inspired by CBG and TBG, the Octant framework [29]
also makes use of locations from WHOIS servers and from reverse DNS host-
names, whenever available. They search for zip codes in the WHOIS records
returned when querying for target IPs. The authors also use manual hostname
parsing rules provided by the Rocketfuel project at University of Washington
to parse reverse DNS hosthames [87]. Octant introduces multiple novel tech-
niques to improve constraint-based multilateration, including using negative
information on where a node cannot be located, and using the location in-
formation of intermediary routers on the traceroute path from the source to
the target IP. Whereas CBG draws disks around landmark servers, Octant
uses rings, which introduces negative constraints. The negative constraints
are given by the hollow part of the ring, which signifies the area that can-
not contain the location of the IP. For a given target IP, the output of the
framework is a surface bounded by Bézier curves.

The disadvantages of the Octant framework are that the ground truth as
well as the WHOIS and reverse DNS extraction rules are US centric. Fur-
thermore, the ground truth is limited to only 104 IP addresses at academic
institutions in the United States, which typically have good Internet connec-
tivity. Nevertheless, the results are promising, with a median error of 35 to
40 kilometers (22 to 25 miles). This framework demonstrates that combining
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multiple data sources can have a positive impact on the results. The authors
mention that the reverse DNS data helped accuracy for half of the ground truth
IPs. While evaluating Spotter [28], Laki et al. try to reproduce Octant results
but achieve much worse results. They find a median error of 125 kilometers
using ≈100 PlanetLab [75] servers, and a median error of 120 kilometers using
23,000 Cogent [76] servers.

Alidade [31] is a successor to both CBG and Octant. Chandrasekaran
et al. state that, like Octant, Alidade is at its core a CBG-based approach.
The authors initially reimplemented Octant, then they added more techniques
to obtain Alidade. This system is perhaps the most comprehensive so far,
as it combines ICMP and TCP latency measurements, traceroutes, reverse
DNS, WHOIS, IP location interpolation, and AS network information. Al-
idade performs multiple (typically three) iterations over the data. In each
iteration, it derives location constraints from observations (similar to CBG
multilateration), solves the constraints, then combines the solution with non-
measurement data such as reverse DNS. Active latency measurements always
take precedence and override non-measurement data such as reverse DNS in-
formation. Whereas CBG expresses constraints as disks around landmark
servers, Alidade uses N-sided polygons, where N is usually set to 32.

Alidade is a combination of multiple components. The extrapolator tries
to infer the location of target IPs by looking at the reverse DNS hostnames on
the traceroute path to the target. It extracts location hints from hostnames
using a proprietary hostname parser called HostParser. The preloader also
uses HostParser to locate individual target IP hostnames at the city-level.
The aggregator uses IP location interpolation to increase IP coverage. They
also combine WHOIS data with Autonomous System information to assign
higher location confidence to IP ranges stemming from lower tier and stub
networks.

An interesting novel feature of Alidade is that instead of returning single
coordinates for a target IP, they attempt to output the polygon shape of the
city. They obtain these shapes from public sources such as TIGER/Line [88]
and GADM [89].

Chandrasekaran et al. evaluate Alidade on six ground truth sets. All but
one of the datasets is very small, on the order of tens or hundreds of IPs.
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The EuroGT dataset is the largest one at 100,000 IPs, but it is sourced from
a single European Tier-1 ISP. Also, the dataset exhibits low geographic di-
versity, by covering only 73 European cities. The evaluation shows mixed
results, with Alidade significantly outperforming commercial databases on the
EuroGT dataset with a median error of ≈10 kilometers, while at the same time
underperforming some these databases on the smaller datasets (PlanetLab [75],
Measurement Lab [90], Ark [67], GPS, NTP). The text suggests Alidade out-
performs the commercial databases on the Measurement Lab dataset, but the
results curve shows otherwise. One commercial baseline has better error dis-
tance when error is less than 2 kilometers, and another one has better error
distance between 14 and 200 kilometers. Chandrasekaran et al. state that
the reason why Alidade outperforms the best commercial baseline is that its
worst error is 370 kilometers, compared to the baseline which can have data
points with higher maximum error. However, this is only true for the out-
liers, and it does not say much about the overall accuracy of the database.
Although Alidade is one of the most comprehensive approaches described in
geolocation literature, its results on the more geographically diverse datasets
are not strong. Furthermore, the system heavily relies on HostParser, which
is a proprietary reverse DNS parsing library with unknown methodology and
accuracy.

The Geo-RhOL [91] approach proposed by Laki et. al builds upon CBG
and TBG by estimating the network delay of traceroute path segments at a
more granular level. They divide network delay into routing delay, which is the
time spent by the packet inside a router; transmission delay, which is the time
needed to place a packet onto a link; and propagation delay, which represents
the time needed for the packet to travel along cables. They also further divide
routing delay into processing delay, queueing delay, and other delays. They
estimate the values of these intermediary delays, in order to determine the
overall delay more accurately. They then perform experiments on a small
number of IP addresses from academic institutions in the United States and
Europe. Their five proposed variants, some using only network delay and some
also adding network topology information, achieve mean errors between 149
and 437 kilometers.
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GeoBuD by Gueye et al. [92] is a simpler attempt to take into considera-
tion routing delays when compared to Geo-RhOL, as its model is more coarse
and only considers delays stemming from buffering. The authors extend CBG
to account for the delays in each segment of the traceroute path. They replace
the linear model used by the original CBG approach with one which decom-
poses the delays on a per-hop basis. Gueye et al. then estimate the delay
for each hop by using a separate dataset of intermediary routers with known
locations. For a pair of routers with known location, the buffering latency
is given by the difference between the actual observed latency and the ideal
theoretical latency. This approach achieves a median error of 100 kilometers
on 57 European IPs and 144 kilometers on 87 US IPs.

To go beyond simple latency measurements, Eriksson et al. use traceroute
hop counts between the probe and the target, and also introduce a population
density estimate. They implement a Naive-Bayes classifier (NB-LHP) which
combines this information to assign the location of each target IP to a county
in the United States [93]. For ground truth they use 16,874 router IPs that
were mapped to a US county by using MaxMind [22], which is a state of
the art commercial geolocation database. They obtain a mean error distance
of 408 kilometers. In addition to the large distance error, the other obvious
disadvantage of this evaluation approach is that it uses proprietary databases
as ground truth.

Later, Eriksson et al. further refine the usage of hop counts for geolocation
in Posit [94, 95]. For each target IP and known landmark IP, they create a
vector with hop counts from their server monitors to these IPs. For a target IP,
they then pick the location of the landmark IP that has the smallest variance
between the hop count vectors for the target and the landmark. Using 283
target IPs in the United States, they achieve a median error of 314 kilometers
(195.16 miles). They also test a version of Posit where the vectors contain
latency results instead of hop counts and they only consider the vector elements
that fall below a latency threshold. Using the same target IPs, they achieve a
significant reduction in median error, down to 42 kilometers (26.15 miles).
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5.3 Reverse DNS

Reverse DNS geolocation research focuses on parsing location hints from the
reverse DNS hostnames assigned to IP addresses. For example, the reverse
DNS hostname of IP address 50.106.32.158 is static-50-106-32-158.both-
.wa.frontiernet.net. Based on the location hints both and wa, we can
conclude that the IP address may be located in Bothell, Washington. Using
locations hints in naming conventions is a widespread practice among Inter-
net Service Providers. A survey sent by Chabarek and Barford to 22 North
American ISPs has revealed that 20 of them use geographic encodings in their
hostnames [96].

GeoTrack, another early attempt by Padmanabhan and Subramanian,
tries to infer the location of IP addresses from the Reverse DNS names of
the routers along the traceroute path [70, 71]. For a target IP, they perform
traceroutes from 14 probe locations. They then search for location hints in
the nodes along each traceroute path. They assign the location of the closest
parsable hostname on the path, to the target IP. They use airport codes from
United States and city/country codes from United States, Canada, and Eu-
rope, as location hints. This approach yields a median error distance of 590
km on a test dataset of 2,830 IPs. There are two main disadvantages with
this approach. First, it requires traceroutes from multiple vantage points to
each target IP. Second, the location hints and the rules on how to locate them
in hostnames were crafted manually through trial and error for each Internet
Service Provider in the test set. Therefore this approach is not sustainable for
a large number of IP addresses and is not scalable to the entire world.

Undns is the most well-known and widely used reverse DNS geolocation
approach [87]. It consists of manually curated regular expressions that are
grouped by ISP domain names. These rules are used to extract location hints
from reverse DNS hostnames. For example, the rule ([A-Z]{3,4})[0-9]?-

.verizon-gn-.net matches subdomains with 3 or 4 uppercase letters, fol-
lowed by an optional numeric digit. This rule matches hostnames such as
PHIL.verizon-gni.net. A domain specific location dictionary is then used
to match the extracted slot PHIL to Philadelphia, PA. This approach is simi-
lar to the one used by GeoTrack. The obvious disadvantage of this approach
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is that each domain requires manually generated and potentially error prone
rules. Also, its accuracy is unknown because the paper does not present a
specific IP geolocation evaluation. Several geolocation and network topology
papers use undns as-is to draw conclusions or perform experiments [27, 97–99].
We demonstrate in Chapter 8 that undns can have low accuracy.

DRoP, another state of the art reverse DNS based approach, aims to
geolocate hostnames using automatically generated rules generated by finding
patterns across all the hostname terms of a domain [100]. For example, it may
find that for the domain cogentco.com, the second term from the right often
contains airport codes. These rules are then validated using network delay
information. DRoP places 99% of IPs in 6 test domains within 10 kilometers
of their actual location. However, it uses network delay measurements which
cannot scale to the entire IP space, and its method of splitting hostnames is
rudimentary. Also, the approach is only evaluated against router hostnames,
when most geolocation applications need to geolocate end user residential IP
addresses. Furthermore, the approach was only tested on ISP domains that
have reverse DNS hostnames with location hints.

DDec [101] combines undns and DRoP rules by giving precedence to undns
and using DRoP as fallback. Unfortunately, we demonstrate in Chapter 8
that DDec and its constituent parts - undns and DRoP - perform poorly on
worldwide ISP domains due to incorrect rules and catch-all rules.

HLOC, which is more recent work by Scheitle et al. [102], is similar to
DRoP in that it extracts location hints from reverse DNS hostnames, and
it validates them using network delay measurements. However, it uses the
location hints directly to construct a candidate location list to be verified,
whereas DRoP also aims to output specific hostname parsing rules. This
work has several problems. First, Scheitle et al. do not properly evaluate
HLOC against a ground truth set. Instead, they determine agreement with
commercial databases and with DRoP. These results in themselves do not tell
us the accuracy of HLOC. Second, they consider any location hint on a radius
of 100 kilometers around city centers to be located in that city, which is not
necessarily true in high density regions with many cities and towns close to
each other. Third, as with DRoP, they specifically target only router IPs and
filter out any residential addresses. Fourth, they ignore any location hints for
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places that have less than 100,000 inhabitants. In the United States, only≈300
cities have a population greater than 100,000, out of more than 35,000 cities
and towns in the country. Fifth, due to several filtering steps, this approach
could only extract locations for 4.7% of IPs in their router dataset.

5.4 Web Mining and Other Approaches

Web mining approaches use diverse information extracted from the web. Al-
though more rare, these approaches often achieve better accuracy and IP cov-
erage results.

Structon [30] is an approach proposed by Guo et al. that mines the con-
tents of Chinese websites for mentions of locations, using regular expressions.
The authors assign these locations to the IP addresses of the web servers host-
ing this content. They then use IP location interpolation to increase both
accuracy and coverage by estimating the location of entire IP ranges from
the location of few individual constituent IP addresses. They assume all IP
addresses in the same /24 segment are in the same city and they combine
multiple types of IP location interpolation. First, if a majority of IPs in a
range are in the same city, they assign that city to the entire range. Second,
they continue iteratively applying this heuristic on increasing IP range sizes
until they reach a netmask of size /18 (16,384 IPs). If smaller IP ranges inside
a larger IP range agree on location, they assign the location to the larger IP
range as well. Third, they use a BGP routing table snapshot combined with
Autonomous system network information to assign locations to all ranges of
small ISPs, if the location of one of the ranges is known. Finally, they perform
traceroutes to IPs in /24 segments that still do not have a location. They
retain only traceroutes where all nodes in the path responded to ICMP pack-
ets. For a target IP, they assign its location to be that of the closest router
with known location on the traceroute path. They also propagate locations
backwards, starting from a range with known location, assigning it to a router
preceding it on a traceroute path, then assigning the interpolated location of
the router to all its neighboring ranges. All these approaches taken together
achieve an accuracy of 87 percent at the city level. Instead of computing error
distance as in other previous work, they map coordinates to cities, and they

44



check if the city of their location candidate matches exactly to that of the
ground truth data point.

While these results are impressive, this work has several problems. The
starting assumption that the web server hosting a website is in the same lo-
cation as the organization that owns the website and its users, may not hold
today. With the advent of cloud computing, many websites are now hosted
in centralized data centers, and not in decentralized local business offices.
Second, the evaluation is performed on a crowd-sourced ground truth set with
unknown freshness and accuracy. Third, the manually created extraction rules
used to mine location information are tailored specifically for China and the
authors admit they may not work in the rest of the world. Fourth, the paper
states the task is made easier by the fact that China only has a few hundred
cities, compared to 35,000 cities and towns in the United States. This differ-
ence can skew the results favorably when evaluating this approach on Chinese
data at city level granularity. Nevertheless, several approaches described in
this work are interesting, especially for IP location interpolation.

Wang et al. combine the CBG approach [39, 73] with location information
extracted from web pages. We name their proposal WebCBG [103]. They
consult online "Yellow Pages" directories to find websites of businesses and
their corresponding postal addresses. After several filtering steps they retain a
subset of the IPs of these web pages, along with their corresponding locations,
and use them as landmarks. Given a target IP, they then home in on its
correct location by first applying CBG to determine a coarse location and
a list of nearby landmarks, then they perform multiple traceroutes to both
the target IP and the business IP landmarks, from multiple vantage points.
Using the traceroutes and the closest common path between the target IP
and a business landmark, they estimate the location between the IP and each
landmark. Finally, they pick the location of the closest landmark and assign
its location to the target IP.

To evaluate WebCBG, the authors use three ground truth datasets consist-
ing of 88 US academic IPs, 72 IPs from US residential ISPs, and an unknown
number of IPs from an online US driving directions website. They obtain
remarkable median error results of 0.69, 2.25, and 2.11 kilometers. Unfor-
tunately, this approach has several downsides. First, it does not work for IP
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addresses where ICMP replies are disabled or filtered out by upstream routers.
The residential IPs ground truth set starts out at 241 IPs, but in the end gets
dwindled down to only 72 IPs, partially due to this problem. Second, it works
poorly in areas of low population density. As population density decreases be-
low 100 people per square mile, the error distance surpasses 10 kilometers and
keeps increasing. Third, as all methods that use network delay, this approach
fundamentally does not scale to a large number of IP addresses. Wei et al.
have subsequently tried to reproduce the results, but on a ground truth of 160
geographically dispersed servers located in the US they could only achieve a
mean error of 14.15 kilometers [98]. Liu et al. have also re-implemented this
approach and could only obtain a median error of 7.7 kilometers using Chinese
IPs [62].

Wei et al. build upon the WebCBG approach by combining it with loca-
tion hints extracted from reverse DNS hostnames [98] to obtain RUEL, which
stands for Recursive Undns Evaluating Landmark Algorithm. They use loca-
tion hints from the routers found earlier in the traceroute path to validate the
location of landmarks further down the path. This additional validation steps
reduces median error from 14.15 kilometers to 9.78 kilometers using a ground
truth of 160 US IPs.

Backstrom et al. [104] propose an approach which we call SocialGraph,
that relies on a user’s social graph to determine their location. This work is
not specifically aimed at improving IP geolocation, and in fact in later steps
they use a commercial IP geolocation as a secondary source of user location.
They derive the location of target users based on the locations of their friends.
They find that at medium to long-range distances, the probability of friendship
is roughly proportional to the inverse of distance. But this finding does not
apply when there is a short distance between friends. Another finding is that
people who live in cities tend to have friends that are more geographically
dispersed.

Using self-reported location as ground truth they show an improvement
over an unnamed IP geolocation database. For an error distance of less than
25 km, the amount of correctly classified IPs increases from 57.2% for the
commercial IP geolocation baseline to 67.5% for the proposed method. Figure
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2 in the paper reveals that the median error is about 14 miles, or 22.5 kilome-
ters. The authors state that this method works so long as an individual has a
sufficient number of friends whose location is known, preferably more than 16.
While this method scales well, there are two obvious disadvantages. First, it
relies on a large proprietary social graph where users self-report their location.
Out of 100 million Facebook users in the US, only 3.5 million self-reported a
location that could be successfully geocoded. Second, to successfully predict
locations of users that have not provided a location, they need to be connected
to a relatively large number of friends with known location.

There is a long line of other similar research that aims to determine user
location, as opposed to IP geolocation, by mining the contents of their social
posts [105–114]. For example, Cheng et al. [105] show that they can geolocate
51% of Twitter users within 161 kilometers of their actual location, using only
the textual contents of their posts. However, their ground truth set contains
only 5,119 users and their average error is 2,853 kilometers.

In Checkin-Geo [62], Liu et al. use checkins logged by a location sharing
social network for IP geolocation. Their approach uses data from an unnamed
Chinese social network where users can publicly check-in to their home or
office addresses. This feature is not customary in other social networks with
checkins, such as Foursquare. The authors first map users to their home and
office locations by clustering all their checkins and looking for patterns such as
hours of the day, and counting instances of checkins from the same location.
They separately map the same users to their home and office IPs, by mining
the server logs of the social network and looking for patterns. They then
combine these two mappings to obtain locations for IP addresses. They also
propagate the locations from mobile phone IPs to locations of Desktop PCs,
through shared user accounts. Finally, they apply IP location interpolation to
expand IP coverage.

The best variant of their approach achieve a median error of only 799 meters
on 243 IPs from Shanghai. A second larger experiment on 5000 Tencent users
in China resulted in a median error of 2.5 kilometers. While the results are
impressive, this technique has a significant limitation. It assumes location
sharing networks allow public checkins to home addresses, which is typically
not the case outside of this very specific case. It also assumes access to a large
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amount of data in the form of checkins and server logs. Finally, it is unclear
why they could not directly correlate the individual checkins with IPs, since
they had access to the backend logs.

Early work by Moore et al. on NetGeo [115] uses WHOIS databases to
obtain IP geolocation information. These databases are maintained by the
five Regional Internet Registries, which allocate IP addresses to organizations.
The authors highlight the difficulty of parsing different types of WHOIS records
and extracting locations. However, they unfortunately provide no evaluation
of this method.

Endo and Sadok [116] also extract location information from these databa-
ses and develop WBG. They query for WHOIS records of target IP addresses
and of their corresponding Autonomous System network numbers. As an ad-
ditional heuristic, they also use traceroute information to find the location of
the closest router to a target IP address. WBG achieves an accuracy of ≈52%
at the city level on a ground truth dataset of unknown size from a Brazilian
ISP.

Li et al. substitute the ping network latency used in GeoPing with HTTP
latency obtained from HTTP get requests to obtain a method called GeoGet

[117]. They direct each target IP to measure latency when performing GET
requests to their servers. They then assign to the target IP the location of
the server with lowest measured latency. They obtain a median error of 120
kilometers, using a ground truth set of 424 Chinese IPs. Unfortunately, this
approach has a couple of disadvantages. First, they assume that the target IPs
themselves can be controlled to perform measurements to the servers. Second,
their ground truth set is heavily biased since they only retain IP addresses
where multiple commercial databases agree on the city. This filtering can cause
the ground truth set to be skewed towards IP addresses for which geolocation
is easier. Also, previous research has shown that commercial databases are
not always accurate [27].

Lee et al. combine self-reported location data from a Korean crowd-sourced
broadband speed test with IP location interpolation to assemble a detailed
geolocation database we named Speed [59]. They use 32 million speed test
records from 9 million unique IP addresses, gathered over a period of 7 years.
These records were collected through Speed [118], a website operated by the

48



National Information Society Agency of Korea. Each speed test collected
the IP address of the user, along with self-reported location. To increase
IP coverage, they perform interpolation using a majority rule vote with a
threshold of 80% to assign individual IP address locations to entire IP ranges.
Unfortunately, this approach does not scale to other countries since the dataset
is specific to Korea. Also, the paper does not evaluate the technique against
ground truth data. Instead, they only determine the level of agreement to
two commercial databases. They obtain a distance difference smaller than
50 kilometers for 55% of cases when compared to MaxMind, and 53% when
compared to IP2Location.

5.5 Limitations of Previous IP Geolocation

Approaches

This section presents the limitations and trade-offs of past work in IP geoloca-
tion. We also put our research in context and highlight the differences between
our approaches and the ones in prior research. To aid in this discussion, please
refer to Table 5.1, which presents the categories of IP geolocation approaches
explored by previous work, and to Table 5.2, which summarizes the eval-
uation results across the papers covered by the previous sections. In these
tables, the traceroute category is separate from the ping category, although
both network tools use ICMP packets. We made this distinction because in
addition to latency, traceroute approaches also use hop counts, or they use the
intermediary nodes on the traceroute paths.

Previous IP geolocation research suffers from a variety of problems that
spans multiple types of approaches, which we summarize below:

• Small ground truth set [29, 39, 70–74, 77–79, 85, 86, 91, 92, 94, 95, 98, 103,
116, 117]. The majority of past IP geolocation approaches have only been
evaluated against a small number of IPs, on the order of tens of hundreds of
addresses. Considering there are 3.7 billion usable IPv4 addresses, and more
IPv6 addresses, geolocation approaches should be evaluated against bigger
ground truth sets.
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• Insufficient geographic diversity [28–30, 59, 62, 70, 71, 74, 79, 85, 86, 91, 93–
95, 98, 103, 104, 116, 117]. IP geolocation approaches need to cover the entire
world. However, many geolocation techniques we discussed in the previous
sections are either designed to work in a specific geographic region, or they
are only evaluated in a single country with high Internet penetration.

•Lack of networking environment diversity [28, 29, 39, 72–74, 77–80, 85, 86,
91, 92, 92–95, 98, 100, 117, 119]. Several techniques are designed and evalu-
ated in specific networking environments: they use IP addresses in academic
institutions or ISP backbones with very good terrestrial Internet connectivity
and low latency, they use IP address datasets filtered to only contain router
addresses, or they only use addresses which respond to ICMP packets. Large
scale IP geolocation methods should ideally be able to handle more diverse
environments, including last-mile scenarios with high latency caused by end-
user cable or DSL connections, or cases where ICMP packets are filtered out
at network borders.

•Poor city-level accuracy [28, 39, 70–74, 85, 86, 91–95, 117]. Much of the
past research in this area features error distance results on the order of 40+
kilometers, or often even hundreds of kilometers. Using these approaches
for city-level accuracy, which is the granularity targeted by commercial IP
geolocation databases, is not possible. Table 5.2 lists previous evaluation
results.

•Non-existent or vague evaluation [87, 96, 102, 115, 120–123]. These ap-
proaches either do not have any kind of evaluation on against a ground truth
set (for example HawkEyes [120] has no evaluation), or have vague or insuf-
ficient evaluation (for example HLOC [102] is compared to DRoP by using
only agreement statistics).

•Usage of commercial IP geolocation databases for training or testing [59, 93,
104, 117, 124]. Multiple papers use commercial geolocation databases for
either training or testing. Since the methods used by these databases are
proprietary, and since their terms of service specifically prohibit publishing
comparative evaluations using their real names, it is not appropriate to use
them as the main data source for either purpose. For example, GeoGet [117]
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uses multiple commercial databases for training, and NB-LHP [93] uses the
MaxMind commercial database for testing.

In our work we purposely rely less on network delay approaches and more
on web mining techniques such as mining query logs and extracting locations
from reverse DNS hostnames. We have seen from prior work that these types
of approaches typically have higher accuracy and coverage, as evidenced by
Table 5.2.
In this dissertation we address several of the limitations in prior IP geolocation
work:

•Large ground truth sets. We use ground truth sets of millions of IP addresses,
spanning all the countries in the world. In Chapters 3, 4, and 7 we use a
ground truth set of 8.4 million IP addresses, while in Chapters 8, 9, 10, 11,
12, 13, and 14 we use a ground truth set of 70 million IP addresses. These
two ground truth sets are by far the biggest ones reported in literature.
Furthermore, in Chapter 12 we use data from PeeringDB to compile a ground
truth spanning 400 IP ranges, which we are making public.

•Diverse Evaluation. We perform our evaluation on IP addresses that span all
types of networking environments and all types of end user clients, including
backbone routers, fiber connections, cable, DSL, and mobile phones.

•High city-level accuracy. We demonstrate median errors below 10 kilome-
ters for multiple of our approaches (see Chapters 9, 10, 11, 12, and 14).
These results have high enough accuracy to be used for most IP geolocation
applications.

•Good IP coverage. We achieve coverage on the order of millions of IP ad-
dresses across each of our proposed techniques, while previous work typically
covers hundreds or thousands of addresses. To further increase IP cover-
age, we use IP location interpolation in Chapter 11, and we conflate our
approaches in Chapter 14.

We now turn our discussion to specific types of geolocation approaches. The
ping and traceroute columns in Table 5.1 show that network delay and net-
work topology approaches are the most prevalent in IP geolocation literature.
However, both of these categories have significant limitations. First, all such

51



methods require access to servers spread throughout the globe to perform
measurements. Second, geolocating a large number of IP addresses using net-
work measurements can run into scalability issues, as each target IP address
or range requires separate measurements. Using typical network delay ap-
proaches to locate the billions of addresses currently in use is not feasible.
Third, not all networks allow ICMP pings or disclose their network topology.
Network delay based approaches fail in these environments. Fourth, routes on
the Internet do not necessarily map to geographic distances. Mobile phone
towers, cable routers, and DSL modems can cause much larger latencies than
the typical speed-of-light assumption used in network delay approaches. Fifth,
the ground truth data for work in this area is usually limited to a few tens
or hundreds of IP addresses, typically located in the United States. Sixth,
previously reported mean and median errors of tens to hundreds of kilometers
show that these methods cannot be used for practical applications at the city
granularity.

Reproducing results of network delay techniques has proven to be difficult.
Multiple papers have tried to reproduce the results for CBG [28, 92, 119],
TBG [119], Octant [28], WebCBG [62, 98], with little success. Table 5.2 lists
these attempts, which invariably obtain higher error rates than the original
implementations.

Recently, Ciavarrini et al. have demonstrated that pure network latency
approaches such as CBG have a best-case error of 20 kilometers and that ob-
taining an error below this threshold requires a number of active measurement
servers so large as to be unpractical [80]. This means delay based approaches
cannot work well in densely populated locations. All of these reasons make
network latency and topology approaches difficult to use for practical applica-
tions.

The only network latency related approach we investigate uses a traceroute
dataset that CAIDA continuously maintains and makes available to researchers
[125]. The reason we use this dataset is that it contains a large amount of
traceroutes, with the potential to yield high IP coverage.

Instead of pursuing network latency, we mainly study other approaches,
including extracting locations from search engine query logs, parsing location
hints from reverse DNS hostnames, propagating user IP locations through
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clicks, IP location interpolation, extracting data from bulk WHOIS databa-
ses, and conflating multiple data sources together to improve accuracy and
coverage.

In the case of search engine query logs, we mine location hints from the
queries issued by users. This approach bypasses the limitations of delay mea-
surements and network topology methods since it does not require active
probes. The technique scales with the amount of input information. To the
best of our knowledge, query logs have never previously been studied as a
source of IP geolocation information.

For parsing reverse DNS hostnames, we use public information including a
freely available geographic database and easily obtainable host names. Since
hundreds of millions of hostnames contain location hints, it is easy to see why
such a large scale method is attractive, over using network delay approaches.
Although multiple papers have used reverse DNS hostnames in the past, most
of them have used manually generated rules that are labor intensive, limited
to only a few popular ISPs, and prone to becoming stale [29, 31, 70, 71, 86,
87, 96, 98, 100, 102, 115, 124]. We demonstrate these problems in Chapter 8.
We cast this task as a machine learning problem, where for the first time we
train a classifier that can automatically learn how to parse hostnames across
a diverse set of domains. Therefore, it does not require manual input and
can be re-trained periodically. It also handles unique situations better, since
it considers the terms of each hostname individually, without relying on only
domain-specific training. In contrast to HostParser, which is a proprietary
reverse DNS hostname parser used in Alidade [31], we completely describe our
features and make the entire classifier available as open source.

We use clicks obtained by search engine logs for IP geolocation, which is
another technique never before studied in geolocation literature. As with query
logs, this approach does not require active probes and can scale indefinitely
with the size of the logs. We detail two variations, one where we obtain user
locations from GPS and propagate them through clicks to users with unknown
location, and another one where we remove the dependency on GPS data and
instead mine locations from the body of web documents.

We also extract location information from WHOIS databases. This data
covers a large part of the IP space and it can be downloaded in bulk from the
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Regional Internet Registries. Some limited work in this areas exists [29, 31,
115, 116, 124], but it does not evaluate the accuracy of WHOIS location data
in detail. We expand upon prior work by characterizing WHOIS data in more
detail, and by evaluating it across four continents.

Finally, here we introduce the novel concept of geolocation conflation,
which allows combining any number of disparate IP geolocation sources with
different confidence ranges, in order to increase both accuracy and IP coverage.
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Table 5.1: Summary of IP geolocation approaches

Year System Ping Trace-
route

Reverse
DNS

Inter-
polation

WHOIS BGP
AS

Crowd
So-
cial

Other

2000 NetGeo [115] X X X
2001 GeoTrack [70, 71] X X
2001 GeoPing [70, 71] X
2001 GeoCluster [70, 71] X X
2002 undns [87] X
2004 Ziviani [72] X
2004 CBG [39, 73] X
2004 PBE [85] X X
2004 RBE [85] X X
2006 TBG [86] X X
2006 GeoBuD [92] X X
2007 Octant [29] X X X X
2009 SG [74] X
2009 Structon [30] X X X X
2010 SocialGraph [104] X
2010 WBG [116] X X
2010 Geo-RhOL [91] X X
2010 NB-LHP [93] X X X
2011 Spotter [28] X
2011 WebCBG [103] X X X
2011 HawkEyes [120] X X
2012 SDP [77] X
2012 Posit [94, 95] X X
2013 GeoGet [117] X
2013 Checkin-Geo [62] X X X
2013 PCFL [98] X X X
2013 RUEL [98] X X X X
2013 PathAudit [96] X
2013 AdvancedGeo [124] X X X X
2014 DRoP [100] X X
2015 Dragoon [121–123] X X
2015 Alidade [31] X X X X X X X
2016 GeoSpeed [59] X X
2016 AIG [78] X
2016 Neural-RBF [79] X
2017 HLOC [102] X X
2018 CRLB [80] X
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Table 5.2: Results summary for network delay and network topology techniques

Method Ground Truth Results

GeoTrack [70, 71]
Traceroute
Reverse DNS

265 IPs - UnivHosts - manually
curated dataset of IPs located on
campuses of US universities.

102 km median error

2,380 IP addresses - FooTV -
users of an online TV program
guide looking up zip codes

590 km median error

GeoPing [70, 71]
Ping

265 IPs - UnivHosts - manually
curated dataset of IPs located on
campuses of US universities.

382 km median error

GeoCluster [70, 71]
IP Interpolation
BGP/ASN

265 IPs - UnivHosts - manually
curated dataset of IPs located on
campuses of US universities.

28 km median error

181,246 IPs - bCentral - User
self-reported zip codes on a busi-
ness web hosting site

685 km median error

Ziviani [72]
Ping

397 IPs - LibWeb university
hots, and hosts part of the
RIPE Test Traffic Measurements
project [68].

314 km median error

CBG [39, 73]
Ping

95 IPs - NLARN AMP [126] -
IPs from USA

95 kmmedian error and 182 km
mean error

42 IPs - RIPE [68] - Mostly lo-
cated in Europe

22 km median error and 78 km
mean error

CBG-Gueye [92]
Ping

87 IPs - NLARN AMP [126] -
USA

228 km median error

57 IPs - RIPE Atlas [68] - West-
ern Europe

137 km median error, 178 km
mean error

CBG-Hussain [119]
Ping

182 IPs - PlanetLab [75],
PingER [84], perfSONAR [127]
- Europe, North America, East
Asia

135 - 238 km mean error, de-
pending on region

CBG-Laki [28]
Ping

≈100 IPs - PlanetLab [75] 175 km median error

23,000 IPs - Cogent [76] - USA 100 km median error

Continued on next page
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Table 5.2 – continued from previous page

Method Ground Truth Results

CBG-CRLB [80]
Ping

95 IPs - NLARN AMP [126] -
IPs from USA

44 km median error and 51 km
mean error (These results are the
only ones in this table that are
purely theoretical. They rep-
resent the best case theoretical
result for CBG. See discussion on
CRLB.)

PBE [85]
Ping
Traceroute

96 IPs - From PlanetLab [75]
and Scriptroute [128] - at univer-
sities

376 km median error, ≈1000km
- ≈2,400 km mean error, depend-
ing on traceroute path length
(Figure 5)

RBE [85]
Ping
Traceroute

96 IPs - From PlanetLab [75]
and Scriptroute [128] - at univer-
sities

346 km median error, ≈150km -
≈2,400 km mean error, depend-
ing on traceroute path length
(Figure 6)

TBG-Pure [86]
Traceroute

10 IPs - PlanetLab [75] - IPs
from USA

209 km mean error, with a max-
imum error of 325 km

22 IPs - Sprint network - USA 194 km mean error

128 IPs - US universities 225 km median error, 253 km
mean error

TBG-Passive [86]
Traceroute

128 IPs - US universities 176 km median error, 178 km
mean error

TBG-undns [86]
Traceroute
Reverse DNS

128 IPs - US universities 67 km median error, 178 km
mean error

TBG-Hussain [119]
Traceroute

182 IPs - PlanetLab [75],
PingER [84], perfSONAR [127]
- Europe, North America, East
Asia

127 - 167 km mean error, de-
pending on region

GeoBuD [92]
Ping
Traceroute

87 IPs - NLARN AMP [126] -
USA

144 km median error

57 IPs - RIPE Atlas [68] - West-
ern Europe

100 km median error

Octant [29]
Ping
Traceroute
Reverse DNS
WHOIS

104 IPs - PlanetLab [75] and
universities - USA

≈35.4 to ≈40.2 km (22 to 25
miles) median error, depending
on subset

Continued on next page
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Table 5.2 – continued from previous page

Method Ground Truth Results

Octant-Laki [28]
Ping
Traceroute
Reverse DNS
WHOIS

≈100 IPs - PlanetLab [75] 125 km median error

23,000 IPs - Cogent [76] - USA 120 km median error

SG [74]
Ping

85 IPs - PlanetLab [75] - USA 53 km median error, 92 km
mean error

Structon [30]
Web Crawling
Traceroute
IP Interpolation
BGP AP information

100 million IPs in China 87.4% city-level accuracy

SocialGraph [104]
Social Graph

2.9 million users in USA 22.5 km median error

WBG [116]
WHOIS
Traceroute

Unknown number of IPs from
a single local Brazilian ISP

≈ 52% accuracy at the city
level

Geo-R [91]
Ping

41 IPs - Ref-1 - GEANT2 uni-
versity IPs from Europe

304 km mean error

20 IPs - Ref-2 - subset of Ref-1 305 km mean error

Geo-Rh [91]
Ping

41 IPs - Ref-1 - GEANT2 uni-
versity IPs from Europe

246 km mean error

20 IPs - Ref-2 - subset of Ref-1 251 km mean error

151 IPs - PlanetLab [75] 437 km mean error

Geo-RhL [91]
Ping
Traceroute

41 IPs - Ref-1 - GEANT2 uni-
versity IPs from Europe

213 km mean error

20 IPs - Ref-2 - subset of Ref-1 281 km mean error

Geo-RhO [91]
Ping
Traceroute

41 IPs - Ref-1 - GEANT2 uni-
versity IPs from Europe

177 km mean error

20 IPs - Ref-2 - subset of Ref-1 156 km mean error

Geo-RhOL [91]
Ping
Traceroute

41 IPs - Ref-1 - GEANT2 uni-
versity IPs from Europe

169 km mean error

20 IPs - Ref-2 - subset of Ref-1 149 km mean error

Continued on next page
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Table 5.2 – continued from previous page

Method Ground Truth Results

NB-L [93]
Ping

114,815 IPs of US routers - Lo-
cations from MaxMind DB [22]

449 km mean error (278.96
miles)

NB-LP [93]
Ping
Population

114,815 IPs of US routers - Lo-
cations from MaxMind DB [22]

446 km (277.29 miles) mean er-
ror

NB-LH [93]
Ping
Traceroute
Population

114,815 IPs of US routers - Lo-
cations from MaxMind DB [22]

421 km (261.89 miles) mean er-
ror

NB-LHP [93]
Ping
Traceroute

114,815 IPs of US routers - Lo-
cations from MaxMind DB [22]

408 km (253.34 miles) mean er-
ror

Spotter [28]
Ping

≈100 IPs - PlanetLab [75] 75 km median error

23,000 IPs - Cogent [76] - USA 30 km median error

WebCBG [103]
Ping
Traceroute
Web Crawling

88 IPs from PlanetLab [75] in
USA

0.69 km median error

72 IPs in US residential net-
works

2.25 km median error

Unknown IPs from an online
US driving directions website

2.11 km median error

WebCBG-Wei [98]
Ping
Traceroute
Web Crawling

160 IPs in US, 130 from Plan-
etLab [75] and 30 from Amazon
EC2

14.15 km median error

WebCBG-Liu [62]
Ping
Traceroute
Web Crawling

17 IPs from PlanetLab [75] in
China

7.7 km median error

SDP [77]
Ping

81 IPs PlanetLab [75] IPs in
North America

27 km median error (17 miles)

90 IPs PlanetLab [75] IPs in Eu-
rope

42 km median error (26 miles)

Posit-Hops [94, 95]
Ping hop counts

283 IPs in USA - geolocated
from DNS LOC records and com-
mercial databases, when they
agreed

314 km (195.16 miles) median
error

Continued on next page
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Table 5.2 – continued from previous page

Method Ground Truth Results

Posit-RTT [94, 95]
Ping latency

283 IPs in USA - geolocated
from DNS LOC records and com-
mercial databases, when they
agreed

42 km (26.15 miles) median er-
ror

GeoGet [117]
HTTP latency

424 IPs Chinese IPs - geolocated
from commercial databases when
full agreement

120 km median error and 200
km mean error

Checkin-MU [62]
Social checkins
User propagation
IP Interpolation

243 IPs from Shanghai, China 2,829 meters median error

Checkin-MC [62]
Social checkins
User propagation
IP Interpolation

243 IPs from Shanghai, China 799 meters median error

5000 IPs Tencent user IPs from
China

2.5 km median error

PCFL [98]
Ping
Traceroute
Web Crawling

160 IPs in US, 130 from Plan-
etLab [75] and 30 from Amazon
EC2

10.27 km median error

RUEL [98]
Ping
Traceroute
Web Crawling
Reverse DNS

160 IPs in US, 130 from Plan-
etLab [75] and 30 from Amazon
EC2

9.78 km median error

DRoP [100]
Reverse DNS
Traceroute

16,270 IPs from routers across
6 ISPs, mostly in USA

99% true positive rate for er-
ror smaller than 10 kilometers

Alidade [31]
Ping
Traceroute
Reverse DNS
WHOIS
ASN
TCP Latency

100,000 IPs from a single Euro-
pean ISP, across 73 cities

≈ 10 km median error

882 IPs from Measurement-
Lab [90]

≈ 16 km median error

66 IPs from CAIDA’s
Archipelago Measurement
Infrastructure (Ark) [67]

≈ 14 km median error

Continued on next page
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Table 5.2 – continued from previous page

Method Ground Truth Results

GeoSpeed [59]
Crowd Sourcing
IP Interpolation

9 million IPs from Korea Unknown error, 55% agreement
with MaxMind and 53% with
IP2Location at 50 km distance

AIG [78]
Ping

89 IPs in North America - 6
at PingER [84], 52 at Planet-
Lab [75], 31 at PerfSONAR [127]

≈ 22 km median error (Figure
6)

30 IPs in Pakistan - PingER [84] ≈ 7 km median error (Figure 7)

Neural-MLP [79]
Ping

1,547 IPs in US from RIPE At-
las [68], university websites, and
local government websites

5.1 km median error

Neural-RBF [79]
Ping

1,547 IPs in US from RIPE At-
las [68], university websites, and
local government websites

4.1 km median error
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Chapter 6

Privacy and Security

Online privacy is becoming increasingly important. Pew Research has found in
2016 that while many Americans are willing to share personal information to
access online services, they are often cautious about disclosing their informa-
tion and are frequently unhappy about what happens to that information once
companies have collected it [129]. In a separate 2013 study, Pew Research has
also found that almost half of teen app users have turned off location tracking
on their phone, because they are worried of other people or companies being
able to access that information [130]. Over a third of adult smartphone users
have done the same.

In 2018, a New York Times exposé revealed the widespread industry prac-
tice of tracking the precise location of people through smartphone apps [131,
132]. They reported that at least 75 companies such as Reveal Mobile [133],
SafeGraph [134], Kiip [135], and Fysical [136] collect location data through
local news and weather forecast apps. More than 1,000 popular apps contain
location-sharing code from such companies. Several of these companies claim
to track up to 200 million mobile devices in the United States, which is half
of all the phones used in 2017. While seemingly anonymous, location infor-
mation distributed by these companies is in fact hyper-local and extremely
granular, which allowed reporters to easily uncover the identities of multiple
people based only on their movements.

Security researchers at AppCensus have similarly found in 2018 close to
2,000 apps that send out location data, or Wi-Fi router MAC addresses that
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can be converted into location data with the help of other databases. More
than 150 of these apps were targeted at children [137].

IP geolocation databases provide only coarse city-level or region level loca-
tion information. Therefore they are more privacy-conscious than the widespread
industry practice of requesting exact GPS coordinates through mobile apps or
the HTML5 Geolocation API. In the rest of this chapter we will cover the
steps we have personally taken to preserve user privacy, and we will summa-
rize research in evading or obfuscating IP geolocation.

6.1 Protecting User Privacy in Our Work

Maintaining user privacy is extremely important. We have designed our geolo-
cation approaches and our evaluation experiments with this sensitive subject
in mind.

We have taken steps to maintain user privacy when compiling our ground
truth data sets. In Chapters 3, 4, and 7 we use a ground truth set of 8.4
million IP addresses, which is based on GPS location data collected from users
that opted in to provide this information. This dataset did not contain any
user account information. Location information was only collected when users
queried for information in a search engine; we did not continuously track the
movements of users. To preserve user privacy, we aggregated and randomized
user locations. We first filtered the IP addresses as described in Section 3.1
to discard those which appeared in multiple cities. This ensured that we
collected IP addresses that were mostly of fixed broadband connections, or
of mobile phones where the users remained within the same city. We then
aggregated all locations reported per IP address and we retained only the IPs
which appeared with different coordinate readings on at least three separate
days in the logs. We implemented this second filter to remove IP addresses
where due to operating system bugs the exact same coordinates were reported
across several days. In contrast, legitimate location readings always varied
slightly, even if by a few centimeters or meters. We then computed the centroid
of these locations. Finally, we adjusted the locations in a random direction
by 200 meters. As a result, we could not track the movements of users, as we
did not distinguish between the users behind the same address and we stored
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a single final randomized location for each IP address. At no point in this
process did we manually access any of the raw location data, and we only used
the ground truth set data in aggregate.

In Chapters 11, 8 and 12 we used a second type of ground truth set, covering
≈8.9 million addresses, also obtained from devices with GPS hardware. In
Chapters 9, 10, 13, and 14 we again used this second type of ground truth
set, but at that later time it contained ≈70 million IP addresses. This second
type of dataset was anonymized by an automated pipeline by aggregating
all locations reported for an IP address, then adjusting the centroid of each
IP address by 584 meters in a random direction1. IP addresses with a large
variance in reported locations were removed as outliers. We never had access
to the raw data. These anonymized coordinates cannot be used to pinpoint
individual addresses, but they can be used to locate an IP at a neighborhood
level.

We have also taken steps to anonymize our training data. In Chapters
7 and 10 we mine the query logs of the Bing search engine. First, the log
is disassociated from specific user accounts. We do not have any access to
demographic information about the people that issued the queries. Second, we
extract locations from queries using an automated process, and we aggregate
all queries by IP range. Therefore, it is impossible to pinpoint details about
any particular individual. In Chapter 8, we extract location hints from reverse
DNS hostnames. These hostnames are created and made public by Internet
Service Providers, and they pose a low risk to privacy. We also aggregate these
hostnames by IP range. In Chapter 9, we again mine search engine logs, but
we focus on user clicks. Similar to the chapters on query logs, we do not have
access to demographic information, and we aggregate locations by IP range. In
Chapter 12, we use the IPv4 Routed /24 Topology Dataset [125] made available
to researchers by the Center for Applied Internet Data Analysis (CAIDA). Like
reverse DNS hostnames, traceroute information is generally considered public.
Finally, in Chapter 13 we access WHOIS databases from Regional Internet
Registries. This information is again made freely available to researchers and
it only contains information that was volunteered by the organizations that

1We used 584 meters on advice of legal counsel, who suggested this number of meters is
sufficient to thoroughly randomize locations to a neighborhood level.
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receive IP allocations.

6.2 Evading IP Geolocation

A privacy conscious person might feel uncomfortable with revealing their lo-
cation, even at the city level of granularity. A natural question then arises if
it is possible to evade IP geolocation, in order to maintain privacy.

There is some previous work that analyzes IP geolocation from an adversar-
ial perspective. Muir and Oorschot debate the problem of maintaining privacy
in their early survey on IP geolocation [138]. They rank different approaches
of IP geolocation by falsifiability, and find that many of them can be mislead
to some extent into choosing the wrong location. For instance, information
stored in WHOIS records for domains, IP addresses, and Autonomous System
networks is to a large degree voluntary. It would be possible to then list in-
correct location information. Crowdsourced IP location data is even easier to
manipulate, by volunteering false information. Muir and Oorschot also the-
orize that network delay timings could be modified by a target IP. However,
they state that there are some techniques that make it difficult to evade IP
geolocation. Analyzing intermediary nodes on a traceroute path can provide
clues as to the real location of an IP address. Also, an attacker could use IP
interpolation to assign a location to a target IP based on the known locations
of other IPs in the same network block. The authors suggest that the best way
to circumvent IP geolocation is to use proxies to hide the original IP address.
However, they caution that some software can still reveal the original IP ad-
dress, even when using proxies. They give an example of creating a malicious
Java applet that gets loaded from a web page visited by the target user, which
then makes an outbound connection and reveals the original IP address.

Gill et al. put into practice the suggestions from Muir and Oorschot by
performing experiments to determine if IP geolocation techniques based on
network delay, network topology, and reverse DNS can actually be circum-
vented [139]. For circumventing network delay approaches, their hypothesis is
that a privacy conscious user could delay ping replies sent back to active probe
servers to make it look like the probed device is further away than in reality.
The authors assume that this person is aware of the identities and locations
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of each of the probe servers, which may not be true in reality. They evaluate
this hypothesis on CBG [39, 73] (See Section 5.1), using a ground truth of 50
North American IP addresses from PlanetLab [75]. The results show that a
target IP can be manipulated to look like it is located thousands of kilometers
away from its actual location. They next tested network topology approaches,
by fabricating traceroute replies once packets reach one of the servers they
control. Due to the way traceroute works, once the packets traverse the ac-
tual network and reach one of their servers, that server can from then on send
back a fake path, for different TTL values. Using an additional 30 PlanetLab
IPs in Europe, they demonstrate faking the location of a target IP by more
than 1,000 kilometers. Finally, they also introduce a component designed to
misled undns [87], which is a reverse DNS hostname parser. By manipulating
both traceroute paths and reverse DNS hostnames, they were able to make it
appear as the target IP was located within 50 kilometers of the desired forged
location.

More recent work by Abdou et al. [140] further investigates manipulating
network delay approaches, but does not address network topology or reverse
DNS techniques. To extend the research by Gill et al., they propose four
strategies for modeling delay. For instance, one of the variations can only
increase ping replies, while another can both increase and decrease the latency
of replies. They evaluate evading multiple network delay approaches, including
GeoPing [70, 71] and CBG [39, 73]. Experiments carried out on 144 PlanetLab
IPs show a reduction of 58% to 83% in median error distance when forging
locations, when compared to the experiments by Gill et al. However, like in
previous research, this work also assumes the user knows the location of all
active probing servers, which is not realistic.
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Chapter 7

Improving IP Geolocation Using

Query Logs

We investigate the feasibility of using location information extracted from
search queries to improve IP geolocation databases at city level granularity.
We first present the problem statement, then go over challenges, discuss the
approach we have taken, and finally evaluate it against a large ground truth
dataset. The aim of the preliminary method presented here is not to optimize
the model but rather to determine the predictive value of user queries in de-
termining the location of IP addresses. We further refine using query logs for
IP geolocation later on in Chapter 10.

7.1 Problem Statement

In Chapter 4 we evaluated three commercial geolocation databases - Vendors
A, B, and C - against a ground truth dataset of 8.4 million IP addresses. These
databases have higher accuracy, higher coverage, and lower error distance than
most previous research. For instance Vendor B, which had the worst results
out of all commercial databases, has a median distance of 18 kilometers in
the US, as measured by our ground truth set, while past research presented in
Chapter 4 often has a median error of 25 kilometers or more. So even the worst
performing commercial database we studied has a much better median distance
than most published work. Furthermore, both total IP coverage and ground
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truth IP coverage are very low in previous research with up to thousands of IP
addresses. Comparatively, Vendor B has a worldwide coverage of 3.48 billion
IP addresses, and in this work we use a ground truth set of 8.4 million IP
addresses.

Nevertheless, the accuracy of these commercial databases is still lacking for
some practical applications and needs improvement. For example, Figure 4.3
showed that the database provided by Vendor A geolocates only 60% of the
ground truth IPs within 15 kilometers of their actual location in the United
States. If we were to use this database in a search engine setting, it might
return incorrect location information for roughly 40% of real user IP addresses.
In other countries the error distance can be even higher. If a search engine
shows businesses, weather, or news for an incorrect location for 40% of the
time, users might switch to a competitor.

To augment existing IP geolocation databases we must introduce new
sources of information. One possible solution is to directly use our GPS-based
ground truth data. While this approach has potential as we later investigate
in Chapters 11 and 14, in this chapter we instead focus on explicit location in-
formation extracted from user queries. The reason why we use locations from
queries instead of directly using the GPS data is the difference in IP cover-
age. Although our GPS data covers 8.4 million IP addresses, the information
extracted from billions of explicit location queries has the potential to cover
many more IP addresses.

Given a search engine query log and a commercial IP geolocation

database, our task is to improve the accuracy of the geolocation

database using the information in the log by correcting some of the
locations in the database at the city level. The implication of starting from
an existing database is that we are relying on the existing IP ranges already
present in the database. The maximum IP range size in the three commercial
databases we use is 256 addresses per range, which is a reasonable granularity.
Furthermore, the coverage of the starting databases is very high, at more than
3.48 billion addresses each.

In this chapter our goal is to improve existing commercial data-

bases using data from query logs, instead of creating a new database
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from scratch. The reason is that while the coverage of the locations we ex-
tract from user queries is high at 360 million distinct IP addresses, it is still not
enough to cover all of the used IP range space. Later in Chapters 10 and 14
we combine query logs with other data sources and evaluate the result directly
against commercial geolocation services.

7.2 Technical Challenges

In order to extract locations from queries and combine them with an existing
geolocation database, we had to overcome several technical challenges:

1.We must extract locations from queries. Given a query log, we must
extract the explicit locations mentioned in the queries.

2.Query logs have a large size and extracting locations from queries

is computationally expensive at scale. Our query logs contain billions
of data points, which makes it difficult or impossible to store and process
the data on a single machine. A secondary problem is that extracting loca-
tions from queries is computationally expensive. Therefore, we must extract
queries which are most likely to contain locations.

3.The locations in the database and the locations extracted from

queries are not normalized. We must normalize locations to bring them
into a common space before we can combine and compare them directly. For
instance the query “plumbers in nyc” contains the location “nyc”, which can-
not be matched directly with the location “40.7141667, -74.0063889” stored
in the geolocation database.

4.For a given IP range there can be multiple candidate locations

extracted from the query log. Users within a certain IP range are likely
to search for a variety of different locations. We must rank these locations
in order to pick the most likely candidate for the IP range.

5.We need to compensate for the effect that primate cities have on

surrounding towns. Primate cities can skew results due to their overall
popularity. Consider the example in Figure 7.1. Here we plot all the loca-
tions mentioned in user queries issued from a single IP range, within one
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month. In this example the radius of the circles depicts the number of times
each location was mentioned by users. We can observe that London and
Reading are both popular, but London is mentioned more often. The actual
number of mentions is 2,159 for London and 1,254 for Reading. In reality,
the correct location of users in this IP range is Reading. Here we observe
that primate cities can skew the number of mentions due to their global
popularity. Therefore, in our approach we must correct for this effect.

6.We must combine the locations extracted from query logs with the

pre-existing IP geolocation database. For a given IP range, whenever
a location extracted from queries does not match the location in the geolo-
cation database, we must find a scoring system to choose whether to keep
the original location or change it to the one extracted from user queries.

7.The resulting combined database needs to be evaluated on a ground

truth dataset and ideally tested on a production application. Here
the challenge is devising the ground truth set and determining which metrics
to use. Note we have already covered the creation of the ground truth set in
Section 3.1. It is also worthwhile to obtain more proof of the improvements
using a real production application. The challenge in this second case is
determining objective measures of user satisfaction.

Since we are focused on the feasibility of using query logs to improve geoloca-
tion, wherever possible we have tried to reuse existing state of the art technolo-
gies, allowing us to focus on the novel contributions instead of re-implementing
solutions to already solved problems. More specifically, our contributions are
focused on challenges 4, 5, 6, 7, and the second part of challenge 2.

7.3 Datasets

Below is a list of the datasets we use in this section:

•Main query log: It contains 180 days of Bing query logs, ending on October
9th, 2014. This dataset spans hundreds of billions of queries.

•Validation query log: For parameter tuning we use 30 days of Bing query
logs collected prior to the main query log. There is no overlap between the
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Reading
London

Figure 7.1: An example of the effect of primate cities. The map shows locations
mentioned in the queries issued from a particular IP range that is
located in Reading, UK. The radius of the points shows how often each
location is mentioned by the users. If we were to choose the location
based solely on number of mentions, we would choose London. In
reality, the correct location is Reading.

main query log and the validation log.

•Baselines: We use the three IP geolocation databases we previously de-
scribed in Section 4.2 as baselines. We consider these databases to be the
state of the art in the industry.

•Ground truth: The ground truth, which we described in Section 3.1, con-
tains 8.4 million IP addresses with known location.

7.4 Approach

We propose improving IP geolocation databases by correcting the location of
certain IP ranges using cities extracted from user queries. We begin from
the assumption that when search engine users use explicit locations in their
queries, in aggregate these queries reveal the users’ location. This assumption
may not be true at an individual user level. For example, a person might live
in New York City, but they might be planning a vacation in Italy. Queries
such as “restaurants in venice” might lead to the incorrect conclusion that the
user lives in Italy. However, our hypothesis is that if we aggregate queries
from users within the same IP range, the locations which are most mentioned
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will be geographically close to the users in the range. Furthermore, even at
the individual level users do not search for the same non-local locations for
extended periods of time. In our example, once the user has completed their
research on Venice, they might resume searching for locations closer to home.

Users include explicit locations in their queries for several reasons. First,
it is possible they do this because of habit or because they do not realize that
search engines know their general location. Second, they might have noticed
that the search engine returns incorrect location for their searches, and they
are correcting it by explicitly specifying the location. For example, if for the
query “weather” the answer shows the weather forecast in an incorrect city,
the user is likely to click on a search result instead, switch engines, or requery
using the explicit location, such as “weather in seattle”. Third, they might be
searching for information in a location other than their own city. The first two
cases yield the true location of the user, while the last case can lead to false
positives.

Figure 7.2 illustrates the intuition behind our approach with two examples.
In each of the examples we plot the locations mentioned in queries issued from
one IP range in a one month interval. The blue dots represent the distinct
locations mentioned in the queries, while the shading around them shows how
often each location was mentioned. The white dot reveals the real location
of users in the IP range, as given by GPS information. The correct cities are
Morelia in Mexico, and Florence in Italy, respectively. In both cases the city
with most query mentions is also the correct one.

Given search engine query logs and an IP geolocation database, our goal
is to improve the accuracy of the database. Below is a summary of the steps
we have taken to solve this problem.

1.Extract queries and corresponding IP addresses from query logs.

2.Filter impressions, keeping the ones likely to contain locations.

3.Extract locations from the queries that remain.

4.Reverse geocode locations extracted from queries and locations extracted
from the target geolocation database.
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Figure 7.2: Examples of locations extracted from user queries. Each map shows
data from a separate IP range. The individual points show the distinct
geographical locations mentioned in user queries issued from the IP
range. The amount of shading around them shows the frequency at
which these locations were mentioned. The larger white dot shows
the actual location of users in the IP range as given by realtime GPS
data. The maps show that in both cases the location most frequently
mentioned in user queries is also the real location of the users. The
figure shows Morelia, Mexico on the left, and Florence, Italy on the
right. The size of the IP ranges is 60 and 11 IP addresses, respectively.

5.Aggregate locations first on IP address, then on the IP ranges in the
target IP geolocation database.

6.Compute the popularity of each distinct location to be used as a
proxy for determining primate cities.

7.Score the location candidates in each IP range.

8.For each IP range where there are candidates, and where the top query loca-
tion is different than the original location in the IP range, decide whether

to keep the original location or modify it based on queries.

9.Test the modified geolocation database against the ground truth.

We will now provide details for each of the steps. We first extract the queries
and IP addresses from the query log. We have performed this step using an
implementation of SCOPE, which is a language for processing massive datasets
in parallel across a distributed cluster of machines [141]. Due to the capabilities
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of SCOPE, this step is trivial to implement. The result is a smaller but still
sizable dataset where we have removed unwanted extra metadata.

Second, we filter the impressions in the log obtained in the first step to
retain only the queries which are most likely to contain explicit locations.
This filtering step is required in order to reduce the number of queries we need
to pass to the location extraction phase. We keep the impressions where the
query has local intent, such as "plumbers in chicago", using the production
Bing query classifier.

Next, we extract explicit locations from queries. To achieve this we use a
method similar to the query dominant location extraction algorithm presented
in Wang et al. [142]. We use the user query as input. The output contains
the detected location, including the country, city, and coordinates. When no
location is detected in the query, the output is empty. This results in several
billion explicit location queries, issued from 360 million distinct IP addresses.
Please refer to Subsection 7.7 for a discussion on reproducing these experiments
using publicly available resources.

We then normalize both the locations extracted from user queries and
the locations contained in the target IP geolocation database through reverse
geocoding using the publicly available Bing reverse geocoding API [69]. Given
a latitude and longitude pair as input, the output is a normalized location at
the city level which contains the country, state and city. Each city is assigned
a unique identifier. Distinct cities with the same name receive different iden-
tifiers. Since the geocoding is performed at the city level the public Bing API
achieves an excellent reverse geocoding accuracy in all 50 countries we test in
this chapter. We perform this step to ensure that the locations extracted from
queries and the locations in the target database can be directly compared.

We aggregate the candidate locations per IP address. For each IP address
where we have extracted at least one location from user queries, we count the
occurrences of each distinct location. We then map these IP addresses on the
IP ranges of the target geolocation database, and further aggregate locations
per IP range. These two related tasks are performed in a distributed fashion.
The result is a list of candidate locations for each IP range, along with their
counts.

We then compute the popularity of each distinct city across all IP addresses.
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We use these counts as a proxy for determining primate cities. We name these
counts GlobalMentions.

Next, we rank the candidate locations in each IP range to determine the
top one for that range. For each location mentioned in an IP range we com-
pute MentionsNorm, which stands for normalized mentions and is shown in
Equation 7.1. For each IP range the candidate cities are ranked in descending
order by MentionsNorm and the top location is retained. In the equation,
LocalMentions is given by the number of times the current location was men-
tioned by users in the current IP range. GlobalMentions is the number of times
the current location was mentioned across all IP addresses. IPInst counts the
number of distinct IP addresses in the current IP range that have mentioned
the location. Exponents x and y can increase or decrease the importance of
LocalMentions over GlobalMentions. Using a local parameter search on the
separate validation dataset we have set x to be 1.5 and y to be 0.5. The pa-
rameter search was performed using a step size of 0.1 and limits of 0.0 to 3.0.
The exponents can account for primate cities by promoting smaller cities and
demoting larges ones. In the previous example from Figure 7.1 London will
now have a lower score than Reading, which is the correct choice.

MentionsNorm =
LocalMentionsx

GlobalMentionsy
· IPInst (7.1)

In the last step, for each IP range where the city in the database does not
match the location extracted from user queries, we have to decide if we have
to modify the location in the database. To achieve this we introduce Equation
7.2. IPInstPercentage in the equation is the percentage of IP addresses in the
IP range which mentioned the current location, where IPInst is defined as in
the previous equation and EndIP and StartIP are the last and first IP address
in the range, respectively.

IPInstPercentage =
IPInst

EndIP − StartIP + 1
(7.2)

To determine if we have to perform the replacement we use both equa-
tions 7.1 and 7.2. Using the same validation dataset we determine the cutoff
thresholds for each equations. That is, we perform the replacement only if the
top location in the IP range has MentionsNorm of at least 0.3 and IPInstPer-
centage of at least 5%. We have experimentally determined these thresholds
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Table 7.1: Summary of evaluation results across three IP geolocation databases
and the top 50 countries by IP density. The results are for city level
accuracy.

Vendor: A B C

Countries Accuracy Improved 49 49 44
Countries Accuracy Decreased 1 1 6
Median Accuracy Change +20.7% +32.2% +1%
Mean Accuracy Change +114.8% +121.1% +3.4%
Worst Accuracy Change -0.2% -0.2% -0.4%

using a local parameter search (see definition in Section 2) with a step size of
0.05 and 0.5%, respectively, a minimum of 0, and a maximum of 1 and 25%,
respectively.

7.5 Ground Truth Evaluation

We compared the accuracy and distance error of the three commercial IP ge-
olocation databases to the equivalent databases modified using our approach
based on user queries. Figure 7.3 shows the improvements in exact city match
accuracy for five high-traffic countries. We observe the best improvement for
Vendor B, where for countries such as Germany, Italy, and Spain, the accu-
racy increases by more than 100%. Table 7.1 shows an evaluation summary
for the top 50 countries by IP density. For Vendors A and B, the accuracy
improves in 49 out of 50 countries, while for Vendor B the accuracy improves
in 44 countries. In the few cases where accuracy decreases, it does so by less
than 0.4%: in Israel for the first two vendors, and Colombia for the last one.
Median and mean accuracy computed across all 50 countries show significant
gains, especially for the first two vendors. For Vendor C the improvement
is more modest, as this baseline had the highest initial accuracy. Neverthe-
less, for several countries such as India, Belgium, Netherlands, and Mexico
the improvements are higher than 5% for Vendor C, with Taiwan seeing the
best improvement at +74.2%. The reason for the large improvement for Tai-
wan is that the original accuracy was low, which allowed query based location
information to significantly improve accuracy.
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Figure 7.3: Improvement in accuracy for five high-traffic countries between the
original IP geolocation databases and the databases modified using
locations extracted from user queries.
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Figure 7.4: Cumulative error distance from ground truth to VendorB ’s IP geoloca-
tion database and the same database modified using locations extracted
from user queries.

The improvements are also apparent when we plot the cumulative error
for the distance between correct and assumed locations. In Figure 7.4 we
show the cumulative error for Vendor B in the United States. We do not
superimpose the results for the other two vendors here to make the figure easy
to understand. The shapes of the curves for the other two vendors are similar,
but the improvements are less pronounced. The results for Vendor B show
a remarkable improvement, as the percentage of ground truth IP addresses
where the error is less than 5 kilometers increases from 36.1% to 58.7%.
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7.6 Privacy Considerations

Our approach protects the privacy of search engine users, as query logs contain
sensitive personal information. First, our method extracts locations from user
queries, discarding other words in the queries. Second, all extracted locations
are normalized using reverse geocoding. We retain location information only at
city level granularity, although some queries initially contain locations which
are precise up to the street level. Third, the location information is further
aggregated at the IP range level, which combines data from individual users
in that IP range into a single set of location counts. Aggregating data across a
range of IP addresses makes the data less granular. These steps provide strong
privacy safeguards as the output data is coarse and contains no personally
identifiable information.

7.7 Reproducing Experiments

Most of the steps in our approach can be reproduced using public techniques
and APIs. The IP geolocation databases can be obtained from the compa-
nies previously listed in Section 4. Locations can be extracted from queries
using publicly available alternatives such as Yahoo! PlaceSpotter [143] and
OpenCalais [144]. Another substitute is a Named Entity Recognizer such as
Stanford NER [145] or GATE ANNIE [146], combined with a geocoder such
as the ones from Bing [44] or Google [147]. The same geocoders also provide
functions for reverse geocoding, which would allow normalizing locations. Fi-
nally, all distributed aggregation steps can be implemented on an open source
implementation of MapReduce, such as Hadoop [148].

7.8 Validating Improvements

In order to validate our IP geolocation improvements, we have carried out an
A/B experiment on the Bing search engine during the seven day period end-
ing on November 1st, 2014. The treatment and control variants each spanned
approximately 850,000 unique users and 1.6 million queries from the Mexico
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market, which represents a sizable percentage of that market. For the control
we have used a proprietary IP geolocation database obtained by combining
the databases from Vendors A, B, and C, and by adding other sources of in-
formation. The resulting database has higher accuracy at the city granularity
than any of the individual databases from the three vendors. The geoloca-
tion database used in the treatment was generated by modifying the location
of some of the IP ranges in the proprietary database, using the data and
methodology as described in this chapter. Comparing the two databases using
the ground truth and methodology explained in Section 4.2 shows that the
treatment database has 10% higher accuracy in the Mexico market than the
control database. We have purposely chosen to conduct the experiment in a
country where our observed improvement is neither the highest nor the lowest.

Table 7.2 contains the statistically significant changes in user metrics com-
puted at the conclusion of the experiment. The first two rows show that both
the overall and the answer success clicks have improved, with 0.8% and 1.67%,
respectively. By answers we mean the special page blocks, such as restaurant
and cinema listings, which are visually different than the algorithmic results.
An improvement in the success metrics indicates that users are more likely to
be satisfied with the results once they click on a link. The table also shows
an improvement in advertising click through rate and click success. These
changes can lead to higher advertising revenue. Finally, the metrics show that
the click through rate on the Entity Pane has increased by 1.58%. By Entity
Pane we mean the right side of the screen, also known as a Knowledge Graph
in the context of the Google search engine, which presents rich contextual
information such as details about businesses and maps with close-by restau-
rants. Since a large percentage of such contextual information is based on the
location of the user, the increase in engagement could have been caused by
displaying more relevant local information.

Finally, we studied the impact of the experiment on the local answer by
focusing on the subset of page views from the IP ranges modified by our
method. Compared to the control we see that the overall local answer coverage
has decreased by 1.65%, but the click through rate on individual items has
increased by 75.5%. These results, which are are statistically significant with
P-value at 0.04 and 0.03 respectively, show that while the local answer is
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Table 7.2: Statistically significant changes in metrics for the A/B experiment car-
ried out on the Mexico market.

Metrics Change P-Value

Overall Click Success +0.8% 0.03
Answer Click Success +1.67% 0.04
Ads CTR +1.57% 0.03
Ads Click Success +1.57% 0.03
Entity Pane CTR +1.58% 0.03

shown slightly less often, the engagement with the answer is much higher.
The improvement in engagement suggests that the local results might be more
accurate in the treatment due to higher geolocation accuracy.

7.9 Discussion and Implications

Our work is the first to propose improving IP geolocation databases using
search engine logs. We claim that mining search engine logs is a natural choice
for this task, as these logs centralize a great deal of location information from
diverse and geographically dispersed users. This approach has several advan-
tages: it does not rely on network delay measurements as previous research, it
can scale to cover any country, and it generally leads to accuracy measurements
which are higher than previous work. Furthermore, real time GPS location
extracted from the logs can be used to generate large scale ground truth data.

Bennett et al. [16] demonstrated that search results can be improved by
incorporating location-based features into the ranking function. Here we have
shown that incorrect location can impact user experience negatively. There-
fore, IP geolocation databases with higher accuracy can result in improve-
ments in location-based personalization. Outside the realm of search engines
our work has implications in fields such as credit card fraud protection. We
have shown that IP geolocation databases have relatively high accuracy and
low error distance in large countries, such as the United States. However, we
have also seen that the accuracy is lower in smaller countries or countries with
lower Internet penetration. Increasing the accuracy of IP geolocation is crucial
to combating credit card fraud in countries such as Ukraine, and Malaysia [3].
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Chapter 8

IP Geolocation Through Reverse

DNS

8.1 Introduction

This chapter focuses on extracting location information from reverse DNS
hostnames assigned to IP addresses. These hostnames can be periodically col-
lected in a short amount of time by performing a reverse DNS lookup for every
address in the IP space. For example, the dataset we use in this chapter covers
IPv4 addresses and it is refreshed every 7 days. Reverse DNS is the opposite
of Forward DNS. Forward DNS starts from a domain or subdomain such as
www.bing.com and resolves to zero, one, or more IP addresses [149]. Note
that multiple subdomains can map to the same IP. Conversely, reverse DNS
lookups start from an IP address and typically return zero or one hostnames
[150]. Figure 8.2 contains examples of both forward and reverse DNS resolu-
tion. The reverse DNS hostname does not need to be the same as the Forward
DNS hostname. While Forward DNS lookups are used by Internet users to get
to websites, reverse DNS hostnames are typically used to name and describe
the underlying physical infrastructure that makes up the Internet. In Section
8.3 we discuss reverse DNS hostnames in more detail.

Figure 8.1 exemplifies the information that can be parsed from reverse DNS
hostnames. Here we can derive both the location and connection character-
istics for the hostname of an IP address. A person reading the name of the
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hostname can reasonably determine that it references Wallingford, a town in
Connecticut, USA.

adsl-42.wallingford.ct.bigisp.us

Exact City 
Name Match

State match 
(admin region)

USA Top-
level domain

Connection 
characteristics

Figure 8.1: Example of information that can be extracted from reverse DNS host-
names, including location information such as city name, state, coun-
try, as well as physical connection characteristics.

www.bing.com 
204.79.197.200www.msn.com 

www.msdn.com 

204.79.197.200 a-0001.a-msedge.net

Figure 8.2: Example of the difference between Forward DNS (top) and Reverse
DNS (bottom) resolving. The former starts from a domain and maps
to one or more IPs. The latter starts from an IP and maps to zero
or one reverse DNS hostnames. Performing a DNS lookup on the
a-0001.a-msedge.net hostname would most likely, but not necessar-
ily, result in the same IP address. There is no requirement for the
reverse DNS hostname to map back to the same IP address.

Given a reverse DNS hostname, our task is to determine its location at
the city level. This task poses multiple challenges. First, the naming schemes
of Internet Service Providers are often ad-hoc and do not always contain the
full names or common abbreviations of cities. For example, the drr01.cral-
.id.frontiernet.net hostname is located in Coeur D’Alene, Idaho. Deter-
mining that the cral substring maps to this location is difficult even for a
human. Second, many cities around the world have ambiguous names. Take
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for instance Vancouver, Canada and Vancouver, USA. A hostname which only
contains the substring vancouver is not specific enough to determine a single
location correctly. Even unambiguous city names can become ambiguous when
abbreviations are used instead of their full names. Does nwmd refer to New
Richmond, WI or to New Maryland, NB, or to neither of them? Third, some-
times hostnames contain multiple or conflicting locations. For example, it is
difficult to determine if sur01.tacoma.wa.seattle.comcast.net is located
in Seattle, WA, Tacoma, WA, or maybe even Sumner, WA.

We propose a systematic approach for using reverse DNS hostnames to geolo-
cate IP addresses. Our contributions are:

1.In our preliminary investigation we determine reverse DNS coverage in the
entire IPv4 address space. We also find an upper bound of exact city and
airport code matches.

2.We present a machine learning approach for extracting locations from host-
names. We cast the task as a machine learning problem where for a given
hostname, we split the hostname into its constituent terms, we generate a
list of potential location candidates, and then we classify each hostname and
candidate pair using a binary classifier to determine which candidates are
plausible. Finally, we rank the remaining candidates by confidence, and we
break the ties by location popularity.

3.We evaluate our approach against state-of-the-art baselines. Using a large
ground truth set, we evaluate our approach against three academic baselines
and two commercial IP geolocation databases. We show that our method sig-
nificantly outperforms academic baselines. We also show that the academic
baselines contain incorrect rules which impact their performance. Finally,
we demonstrate that our approach is both competitive and complementary
to commercial geolocation baselines, which shows that our method can help
improve their accuracy.

4.We release our approach as open source. To help the academic community
reproduce our results, we release our reverse DNS geolocation software as
open source.
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8.2 Datasets

This section contains descriptions of the datasets we use throughout this chap-
ter for experiments, training and testing.

Our ground truth set contains 67 million IP addresses with known ge-
ographic location. To the best of our knowledge, it is the largest and most
diverse set used in geolocation literature. We compiled the ground truth set in
March 2018 by randomly sampling the query logs of a large-scale commercial
search engine. We describe the characteristics of this dataset in more detail in
Section 8.5.1.

GeoNames is a free database with geographical information [151]. The
March 2018 snapshot we used contains information on 11.5 million geographic
features from all countries in the world. From Geonames we used multiple sub-
sets available separately for download. Cities 1000 consists of information on
all cities in the world with a population of at least 1,000, including coordinates,
original names, ASCII names, alternate names, and codes of administrative
divisions. Alternate Names contains more alternate names for some cities such
as abbreviations, colloquial names, and historic names. More importantly, it
also contains airport codes issued by IATA, ICAO, and FAAC, which are travel
organizations. Admin 1 Codes is comprised of the codes and names of first-
level administrative regions. Country Info contains general information about
countries, including their Internet top-level domain (TLD).

CLLI is an abbreviation for Common Language Location Identifier. These
codes are used by the North American telecommunications industry to des-
ignate names of locations and functions of telecommunications equipment.
While historically only used by the Bell Telephone companies, they were more
recently adopted by other companies as well. Multiple codes can map to the
same location. For example, all the following codes map to Chicago, Illinois :
chcgil, chchil, chciil, chcjil, and chclil. Note that the codes cannot
necessarily be derived from the name of the city. This database is available
from multiple sources. We acquired a May 2017 snapshot from TelcoData [152]
for a token amount1. The snapshot contains 24,782 CLLI codes.

1As of April 2019, the cost is $15/month.
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UN/LOCODE, which stands for United Nations Code for Trade and
Transport Locations, is a worldwide geographic coding scheme developed and
maintained by the UN. It assigns codes to locations used in trade and trans-
port, such as rail yards, sea ports, and airports. The code assigned to Paris,
France is FRPAR and the functions listed for this location are: port, rail,
road, and postal. This dataset is updated twice a year and it is available for
free on the United Nations Economic Commission for Europe website [153].
We used the December 2017 release, which was the latest available version.
The dataset contains 108,984 entries.

Public Suffix List, maintained by the Mozilla Foundation, is a free list of
domain suffixes under which Internet users can directly register names [154].
Examples include cloudapp.net and gov.uk. We used a snapshot from Febru-
ary 2018, with 8,066 entries.

Rapid7 Reverse DNS consists of reverse DNS hostnames of the entire
IPv4 address space. The dataset is available for free and it is updated weekly.
The archive contains snapshots going back to 2013 [155]. We discuss this
dataset in detail in the next section.

8.3 Reverse DNS

Forward DNS lookups convert hostnames such as www.bing.com into IP ad-
dresses, while reverse DNS lookups work in the other direction; they start
from an IP address and find a hostname. Since the forward and reverse DNS
lookups are set in different DNS records, they do not need to have the same
hostname. Reverse hostnames are more likely to be used to name the under-
lying networking infrastructure, while forward hostnames are used to name
websites or other online services [149].

Reverse DNS lookups are achieved by querying DNS records for PTR
and CNAME records. To perform a reverse lookup of the IPv4 address
204.79.197.200 we query the PTR record for the hostname 200.197.79.204-
.in-addr.arpa. We obtain this hostname by reversing the four octets of the
IP address, such that 204.79.197.200 becomes 200.197.79.204, then we ap-
pend the in-addr.arpa domain. The DNS tree is walked backwards, so first
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the nameserver for in-addr.arpa is resolved, then the one for 204.in-addr-
.arpa, etc. This structure assumes that IP addresses are allocated by Internet
registries to ISPs in blocks of 256 IP addresses or more, since the lookup even-
tually reaches 197.79.204.in-addr.arpa. While this was historically true,
with the introduction of classless inter-domain routing addresses started being
allocated in smaller blocks. To address the problem of reverse DNS hostnames
for smaller blocks, RFC2317 [150] proposed using CNAME records to further
divide each block if needed.

IPv6 addresses also have reverse DNS hostnames. The only difference is
that the records are under the ip6.arpa domain. While we evaluate our

approach on IPv4, all methods described in this chapter can be

equally applied to IPv6 addresses as well.

To determine the viability of using reverse DNS hostnames for geolocation,
we studied the Rapid7 reverse DNS dataset [155], which covers the entire
IPv4 address space. Rapid7 compiles it by performing IPv4 PTR lookups
over the entire address space as described above, except for ranges that are
blacklisted or private. The archive contains snapshots going back to 2013 [156].
The preliminary investigation in this section is based on a snapshot taken in
January 2017, while starting from Section 8.4 onward we use a more recent
dataset from March 2018.

The IPv4 address space consists of all 32-bit numbers. This limits the
possible address space to 232 (4.3 billion) addresses. The number of usable IPs
is actually only 3.7 billion, since some IP ranges are designated as special-use
or private [157]. Not all of these theoretically usable IPs have been allocated
yet to organizations. Since not all IP addresses have a reverse DNS hostname,
we parsed the Rapid7 dataset to find the actual coverage. We found that
1.25 billion addresses have a reverse DNS hostname. This finding shows that
although they have significant coverage, these hostnames need to be augmented
with other data to obtain a complete database.

We then quantified how many of the hostnames are valid, since the DNS
records are unrestricted strings. We parsed each hostname and rejected the
ones that did not respect Internet host naming rules [158]. We also rejected
hostnames that did not have a valid suffix as defined by the Public Suffix List,
which is a list of valid domain suffixes from the Mozilla Foundation previously
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described in Section 8.2. This left us with 1.24 billion hostnames, of which 1.15
billion were distinct. Our findings are summarized in Table 8.1, which shows
that 33.4% of usable IP addresses have a valid reverse DNS hostname, and
31.1% are distinct. Considering that not all IPv4 addresses are yet allocated,
the actual percentage is likely higher.

Table 8.1: Statistics on the usage of reverse DNS hostnames across the entire IPv4
space. More than 1.24 billion IPv4 addresses resolve to valid hostnames.

Set name Size % of usable % of distinct

Total IPv4 space 4.3 B
Reserved IP addresses 0.6 B
Usable IP addresses 3.7 B

IPs with Reverse DNS hostnames 1.25 B 33.7%
Valid Reverse DNS hostnames 1.24 B 33.4%

Distinct DNS hostnames 1.15 B 31.1%
Exact city match (naive) 0.16 B 4.4% 14.1%
Airport code match (naive) 0.27 B 7.4% 23.5%

Next, we set out to determine if reverse DNS hostnames are a valuable
source of geolocation information. We searched for exact city names and air-
port codes in the hostnames, using the Cities 1000 and the Alternate Names
dataset, respectively. We found that 163.7 million hostnames could contain
exact city names, and 272.9 million hostnames could contain airport codes.
This approach represents an upper-bound of the number of hostnames that
could contain exact city names or airport codes. The results contain true pos-
itives such as sur01.seattle.wa.seattle.comcast.net in Seattle, Washing-
ton and inovea5.gs.par.ivision.fr in Paris, France. However, this naive
approach also matches false positives. One example from the totbb.net do-
main is node-j.pool-1-0.dynamic.totbb.net, which is not in Pool, UK and
mobile.bigredgroup.net.au, which is not in Mobile, Alabama. Nevertheless,
the results summarized in Table 8.1 show that there are potentially hundreds
of millions of hostnames that could contain geographic information, using just
these two features alone. We conclude that while the results are promising, a
more sophisticated approach could achieve higher coverage and accuracy.

To further familiarize ourselves with hostname naming conventions, we ex-
tracted the top hostname components of the largest 10 domains in the Rapid7
dataset. We divided each subdomain on the dotted terms, and then we further
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split the components on dashes and on the transitions between numbers and
letters. For example, we split soc-l.wht2.ocn.ne.jp into soc, l, wht. We
then manually labeled the components that we found to reasonably correspond
to geographic locations. We also cross-checked our findings with commercial
geolocation databases. Table 8.2 shows a sumary of the results. We observe
that only 4 out of the top 10 domains contain indicators of geographic location.
However, those that use geographic encodings do so extensively. We found that
service providers use various naming conventions across different networks and
within a single network. For instance, the hostnames under the sbcglobal.net
domain owned by AT&T make use of abbreviations such as pltn to refer to
Pleasanton, CA. But they also use combinations of city abbreviations with
State names such as chcgil to refer to Chicago, Illinois.
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Table 8.2: Top hostname components of the largest 10 domains that have reverse DNS hostnames. We manually highlighted
locations with underlined blue. The percentages in the valid and usable columns are based on rows 3 and 5 of Table
8.1.

Domain Count % of valid Top hostname components sorted in descending order by how often they appear in all
hostnames of this domain

comcast.net 50.0M 4.0% c, hsd, hsd1, m, ca, pa, fl, il, ma, ga, a, co, mi, d, f, wa, b, e, va, nj, or, md, tx, chlm, chic,
phil, tn, in, npls, dd, atlt, sjos, denv, mn

bbtec.net 37.2M 3.0% softbank, biz
rr.com 31.1M 2.5% res, cpe, mta, socal, biz, rrcs, nyc, neo, nc, wi, kya, columbus, cinci, carolina, tx, central,

twcny, nycap, west, sw, rochester
myvzw.com 29.6M 2.4% sub, qarestr
sbcglobal.net 28.4M 2.3% lightspeed, adsl, dsl, irvnca, hstntx, rcsntx, cicril, sntcca, tukrga, miamfl, pltn, pltn13,

stlsmo, livnmi, bcvloh, frokca, chcgil
t-ipconnect.de 24.5M 2.0% dip, dip0, p, b, e, a, f, d, c, pd, fc, fd, fe, ff, de, dd, dc, df, ee, bb, bd, bc, ae, ac, aa, ab, af, ad, ba,

bf, ea, eb, be, ec, fa, ed, fb, ef, db, da, ca, cf
telecomitalia.it 19.4M 1.6% host, static, business, b, r, retail, dynamic, host156, host15, host94, host61, host127, host232,

host112, host95, host72, host107, host220
ge.com 16.7M 1.4% static, n, n003, n003-000-000-000, n129, n144, n144-220-000-000, n129-201-000-000, n129-202-000-

000, n165-156-000-000m n165, n192
ocn.ne.jp 16.2M 1.3% p, ipngn, tokyo, osaka, ipbf, marunouchi, ipbfp, omed, omed01, kanagawa, hodogaya, aichi,

osakachuo, saitama, hokkaido
spcsdns.net 16.0M 1.3% pools, static
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Our findings are in line with previous work by Chabarek and Barford [96].
They found that all 8 of the providers they studied used multiple naming
schemes. They also found that 20 out of 22 North American providers they
surveyed use geographic encodings in their hostnames.

We also studied the distribution of top-level domains (TLDs) such as .com
and .fr in the Rapid7 dataset to determine if country-specific domains can
be used as location hints. We observed that most hostnames contain a .net

domain at 33.2%, followed by .com with only 17.2%. This is the opposite of
forward DNS, where .com is more popular. The difference is due to Internet
Service Providers preferring to use .net domains for hostnames that describe
the underlying physical architecture of their network. After removing the
.com, .net, .edu, and .mil domains which together make up 51.6% of valid
hostnames, we are left with approximately 600 million hostnames, the vast
majority of which are country-specific. We found very few novelty TLDs used
in reverse DNS hostnames. We conclude that the corresponding country of a
reverse DNS domain could potentially be a useful hint in geolocation.

Finally, we compared snapshots of the dataset, each collected in the month
of January of years 2014 to 2017, inclusive. Our goal was to determine how the
characteristics of the hostnames change in time. For each IP in the snapshot
we compared the hostname values in consecutive years. Table 8.3 shows a
summary of the results. We found that a maximum of 14.7% of hostnames
changed year over year and 63.7% of them remain the same across all four
years. These numbers include the cases where one side of the comparison had
a hostname but the other side was empty due to the DNS query returning
an empty hostname, or due to the request failing because of network failures
during data collection. We then performed a similar comparison, this time
counting only the cases where both sides of the comparison contained non-
empty hostnames. Here we found that a maximum of 2.2% hostnames change
over the years, if both the values are present. To understand why there is such
a large discrepancy between these two findings we also determined the number
of hosts that were gained or lost between the years. By hostnames gained we
mean that in the older year a hostname was missing, while in the subsequent
year it was present, and by hostnames lost we mean the opposite. The results
show that yearly more hostnames are gained than lost. However, the number
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Table 8.3: Changes in reverse DNS hostnames across 4 years of dataset snapshots

Change / Year Pair 2014 →2015 2015 →2016 2016 →2017

Hostnames changed (incl. empty) 179M (14.7%) 159.3M (12.6%) 164.8M (12.8%)
Hostnames changed (non-empty) 26.4M (2.2%) 20.7M (1.6%) 14.2M (1.1%)
Hostnames gained 108.5M (8.9%) 89.3M (7.1%) 81M (6.3%)
Hostnames lost 44M (3.6%) 49.4M (3.9%) 70M (5.4%)

of hostnames gained every year has steadily declined from 108.5 million in the
first pair, to 81 million in the last pair. Conversely, the number of hostnames
lost has increased from 44 million to 70 million, respectively. Although there
are still more hostnames gained than lost yearly, this gap is narrowing.

In summary, we determined that 1.24 billion IP addresses have valid reverse
DNS hostnames with 1.15 billion distinct values, many of which contain exact
city or airport code matches.

8.4 Approach

We cast the problem of extracting locations from reverse DNS hostnames as a
machine learning problem. We train a binary classifier on a dataset where each
training sample is a hostname and location candidate pair, along with a binary
label which signifies if the hostname is likely or unlikely to be in the candidate
location. Given a new hostname, our proposed approach splits the hostname
into components, finds a preliminary list of location candidates, generates pri-
mary and secondary features for each candidate, then classifies each potential
location using the classifier, also assigning each candidate a confidence score.
For instance, for the hostname ce-salmor0w03w.cpe.or.portland.bigisp-

.net our approach considers tens of potential location candidates, including
Portland, UK and Salmoral, Spain. In the end however, it ranks Salem, Ore-
gon and Portland, Oregon as the most likely candidates.

8.4.1 Splitting Hostnames

Drawing from our preliminary analysis in Section 8.3, as well as further manual
analysis, we implemented multiple heuristics for splitting hostnames into their
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constituent components.

First, we apply the ToUnicode algorithm described in RFC3490 [159] to
convert International Domain Names (IDN) to Unicode. The reason we per-
form this translation is that international hostnames are stored as ASCII
strings using Punycode transcription. For example, the international hostname
xn–0rsod70av79j.xn–j6w193g gets converted to 夏威夷舞.香港. This allows
us to perform location lookups using the original language of the hostname.
Second, we separate the subdomain from the domain and the public suffix, us-
ing the list provided by the Mozilla Foundation previously described in Section
8.2. These suffixes are a superset of normal TLDs because they also contain
entire domains under which users can create subdomains. For example, the
list contains the pseudo-TLD azurewebsites.net since users of Azure cloud
services can register their own subdomains under this name. At this point we
also extract the native TLD. For instance, for dps8099.denver.k12.co.us

we extract denver.k12.co.us as the domain because k12.co.us is a public
suffix, we extract dps8099 as the subdomain, and finally we extract .us as the
TLD. Third, we split the extracted subdomain at three levels of aggregation:
on the dotted elements, on hyphens within the dotted elements, and on the
transitions between letters and numbers within the hyphenated elements, sav-
ing the results at each level. Figure 8.3 contains a specific example represented
intuitively as a tree structure. The bottom three levels of the tree correspond
to the three levels of aggregation. As a last step, we trim the leaf nodes. We
remove any leaf node consisting solely of numbers. We also remove common
terms terms related to connection characteristics, such as dsl, fiber, and nas.
We obtained them by counting the top extracted leaf nodes in the training set
and manually selecting the ones which are unrelated to geolocation but clearly
related to the underlying network infrastructure. The list is available in the
source code we are publishing along with this dissertation.

8.4.2 Features

Starting from the results of the hostname splitter, we find the location candi-
dates along with their primary and secondary features, as defined below. The
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pl2313.nas81o-1.p-aichi.nttpc.ne.jp

pl2313 nas81o-1 p-aichi

pl nas81o p aichi

jp

o

2313 1

nas 81

pl2313.nas81o-1.p-aichi.nttpc.ne.jp

Figure 8.3: Hostname Splitter example with pruning. The figure shows how we
progressively split the hostname, first on the domain and subdomain,
then on the dotted components of the subdomain, and finally on the
individual components whenever there is a transition from letters to
numbers or vice versa. The figure also shows how we prune strings
which are made up entirely of numbers, or irrelevant networking related
words. We separately also extract the top level-domain.

list of preliminary location candidates is defined by the union of lo-

cations which match any of the primary features of the hostname.

Figure 8.4 shows a concrete example. Primary features can be derived directly
from a hostname. These features are matched using a single contiguous string
which indicate a location at city level granularity. Primary feature genera-
tion and candidate selection happen at the same time. Secondary features are
generated in the context of a hostname and location candidate pair. These
features require the context of a primary candidate to match. In our example
two location candidates and their primary features are first selected based on
the term roch in the hostname. Then we compute secondary features sepa-
rately for each candidate. In the context of Rochester, Minnesota, we match
the mn term as a secondary feature that captures the administrative region for
this candidate.

Primary features are based on the GeoNames, UN/LOCODE, and CLLI
datasets described in Section 8.2. From GeoNames we use the Cities 1000,
Alternate Names, and Admin 1 Codes subsets. The primary feature categories
are listed in Table 8.4. Each of these categories is represented by three spe-
cific features: IsMatch, Population, and MatchedLettersCount. The IsMatch
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97-88-57-240.dhcp.roch.mn.charter.com

F1 F2 … Fn Fn+1 Fn+2 … Fn+m

F1 F2 … Fn

Primary hostname
features

Secondary hostname
+ candidate features

["97-88-57-240", "dhcp", "roch", "mn"]

Hostname Splitter

Location candidates feature generation

Fn+1 Fn+2 … Fn+m

Location
Candidates

Candidate 2: Rocha, Uruguay

Candidate 1: Rochester, MN, US

Figure 8.4: Feature Matching and Generation. We first split the hostname into its
constituent parts. Then, we evaluate each part against a pre-computed
a mapping from terms such as roch to a list of location candidates
and their primary features. In the context of the hostname and each
primary feature, we also compute supporting secondary features.

Table 8.4: Examples of primary feature categories. These primary features are
used to determine the initial location candidates for every hostname.

Category Example Location

City Name p907072-li-mobac01.osaka.ocn.ne.jp Osaka, JP
Alternate names 178235248188.warszawa.vectranet.pl Warsaw, PL
Abbreviations cpe-68-173-83-248.nyc.res.rr.com New York City
City + Admin1 torontoon-rta-1.inhouse.compuserve.com Toronto, ON
City + Country er1-ge-7-1.londonuk5.savvis.net London, UK
No Vowels Name static-50-47-60-130.sttl.wa.frontiernet.net Seattle, WA
First Letters 97-90-205-107.dhcp.losa.ca.charter.com Los Angeles
Airport Code 62.80.122.50.fra.de.eunx.net Frankfurt, DE
CLLI Code 99-166-111-251.tukrga.sbcglobal.net Tucker, GA
UN/LOCODE 16.151.88.129,krsel19d.kor.hp.com Korea, Seoul
Host Patterns atoulon-651-1-29-109.abo.wanadoo.fr Toulon, FR

feature is a boolean which indicates if the feature matched the current host-
name and current location candidate. The Population feature contains the
population of the current location, if IsMatch is true. We use population as
a proxy for the importance of a city candidate. Finally, MatchedLettersCount
contains the number of characters which matched. As the number of charac-
ters in common between a hostname and a location increases, it could mean
a higher confidence match. For instance, if the hostname contains the letters
seattle and the current location candidate is Seattle, Washington, then the
CityName-MatchedLettersCount Feature would have a value of seven.
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Table 8.5: Secondary feature categories are computed in the context of a hostname
and the primary features of a location candidates. Secondary features
are used to buttress the location candidates found through the primary
features.

Category Candidate Match Example

Admin1 Johnstown, PA 138-207-246-119.jst.pa.atlanticbb.net
First Letters Admin 1 Ft. Huachuca, AZ frth-bw-noc.ariz.aisco.ngb.army.mil
Country Paris, FR ci77.paris12eme.fr.psi.net
Country TLD Barcelona, ES barcelona.fib.upc.es

While most feature categories in Table 8.4 are self-explanatory, we describe
them here briefly. The City Name category matches entire names of cities.
Alternate names matches translations and colloquial names of locations. Ab-
breviations are based on the first letters of cities with longer names, such as sf
for San Francisco. The City + Admin1 category consists of concatenations of
city and administrative regions, such as seattlewa. Similarly, City + Country
matches combinations of city and country names.

The intent of the No Vowel Name feature is to match city names with-
out vowels. It allows partial matches using the first 3 or more letters of the
names. For example, this allows matching gnvl to Greenville, SC and rvrs

to Riverside, CA. Furthermore, we extended this feature with more complex
variations. We select the first and last letters of each word in the name, even
if the letters are vowels. We then generate combinations of letters from this
list, in order. Examples matched by this variation include oxfr for Oxford,
MA, and ftmy for Fort Meyers, FL.

The First Letters features use the first consecutive letters of locations. The
Airport Code category spans airport codes from travel organizations. CLLI
and UN/LOCODE codes match telecommunications and transportation codes
of locations, respectively.

Finally, Host Patterns attempts to capture rules not encompassed by the
other features. For example, wanadoo.fr often prepends the letter a to loca-
tion names, as in aputeaux instead of puteaxu for Puteaux, France. However,
our hostname splitter does not split terms on consecutive alphabet letters,
so it will extract the term as aputeaux, which will not directly match any
location. Using training data we extract frequently co-occurring hostname
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term permutations of one or two terms. We then aggregate the training data
per domain and within a domain on the term permutations. If at least 40%
of the training locations for a permutation are located within a 20 kilometer
radius, we convert the term permutation into a rule. We determined the sup-
port ratio and the distance radius using a small validation set. For example,
this feature determines that whenever a hostname in the frontiernet.net

domain contains the term or in the rightmost position and the term mmvl

in the second rightmost position, then the hostname is most likely located
in McMinnville, Oregon. This feature would then match for the hostname
static-50-126-80-6.mmvl.or.frontiernet.net.

To optimize run-time complexity we propose pre-computing primary fea-
tures and location candidates. We start from all known geographic locations
and go backwards to generate all possible hostname terms that could match
these locations. For example, the CLLI dataset contains seven codes for New
York, including nyccny and nycpny. We know that the CLLI feature can only
match New York if one of these strings is present as a term in the hostname.
Therefore, we can pre-populate a map where the keys are these codes, and the
values are the corresponding location (New York), along with pre-compute fea-
tures such as how many letters would match. As we precompute more types
of features, we merge them into the same existing map. Given any hostname
term, this map will in the end contain all possible locations that match that
term, along with all the features from all the categories that match.

We present a possible implementation in Algorithm 1. For the CLLI fea-
ture category example, we iterate over each location and generate the sub-
strings that could match based on the corresponding CLLI codes. For each
location and substring combination we then generate and store the features
for the this feature category. Finally, we merge the candidate into Features,
which is a multi-dimensional map where the first level contains all the sub-
strings that could match any candidate feature, the second level contains all
the location candidates that could match this substring, and the third level is
the pre-computed features for this particular substring and location candidate
combination. This implementation allows for fast O(1) lookups at run-time,
at the expense of memory usage.

Secondary features are determined in the context of a hostname and
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Algorithm 1 Candidates and Primary Features Pre-Computation
1: for c ∈ PrimaryFeatureCategories do
2: d← Datasets(c)
3: for l ∈ IterateLocations(d) do
4: substrings← FindSubstringsc(d, l)
5: for s ∈ substrings do
6: f ← PrecomputeFeaturesc(d, l, s)
7: candidate← Candidate(l, f)
8: Features[s]←Merge(Features[s], candidate)

location candidate pair. As shown in Figure 8.4, we first determine all candi-
dates before we can compute the secondary features. An example of secondary
features for the Rochester, MN candidate is Admin1 Match, which is true only
if the administrative region of the candidate location can be found in a differ-
ent term of the hostname. Since the hostname contains the term mn, which
is an abbreviation of Minnesota, then this secondary feature is true for the
first candidate. However, it is false for the second candidate, because Rocha
is in an administrative region also called Rocha, and it cannot be found in the
hostname. First Letters Admin 1 is similar, but it matches at least 3 first
consecutive letters of administrative names. Country and Country TLD both
try to match the country of the current candidate by searching for a country
code in the hostname terms or in the domain TLD, respectively.

8.4.3 Classifier

For a given hostname, our reverse DNS geolocation can extract and evaluate
tens of potential location candidates. For example, if one of the terms of
the hostname is york, the initial list of candidates will contain all locations
named York in the world. We run a binary classifier on each of the initial
candidates. The classifier uses the primary and secondary features to evaluate
if it is plausible for the hostname to be located in a candidate location. All
the candidates where the classifier returns false are discarded. The remaining
plausible candidates are sorted by confidence and returned in a list.

Although determining the optimal type of binary classifier is outside of the
scope of this work, we tested four variations of the classifier: logistic regres-
sion, C4.5 decision trees, random forest, and SVM. Logistic regression had the
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best performance on a small validation set. Consequently, we performed all
experiments in Section 8.5 using this classifier.

8.4.4 Sampling Strategy

We propose sampling the training set to account for data bias, to improve
generalization, and to reduce the amount of required training data. First, the
entire set of reverse DNS hostnames is naturally skewed towards the largest
Internet Service Providers, which own the most addresses. Second, some fea-
ture categories such as City Name occur much more often than others such as
Abbreviations. This can lead the classifier to ignore less frequent features cat-
egories. Third, during training multiple location candidates can be generated
for each hostname, out of which at most one can be correct. Since the classi-
fier is trained on hostname and candidate pairs, this also introduces another
type of bias where the number of negative samples significantly outweighs the
number of positive ones. Therefore, we sample data to account for some of
this bias and to improve generalization through increased diversity.

We perform stratified sampling on the domain of the hostname, keeping
at most X samples per domain. This approach ensures that naming schemes
of large organizations do not significantly skew the training data. We further
increase feature diversity by keeping a ratio of Y : 1 between the number of
samples that contain the most commonly occurring feature and the ones that
contain the least occurring feature. Finally, we also enforce a ratio of Z : 1

between the number of negative and positive examples. We evaluate our data
sampling strategy and its three parameters in Section 8.5.2.

8.5 Evaluation

We evaluate our approach against three state of the art academic baselines
and two commercial geolocation databases. We show that our method signifi-
cantly outperforms academic baselines and is complementary and competitive
to commercial location services.
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8.5.1 Ground Truth

Our ground truth dataset contains 67 million IP addresses with known IP
location, of which we used 40 million for training and 27 million for testing.
We compiled the dataset in March 2018 from a subset of the query log of a
major search engine. Each IP address has a corresponding location obtained
from users that opted in to provide their location through devices connected
to cellular networks or home Wi-Fi networks. We discarded any IP address
that was present in multiple cities over the course of a month. The locations
were aggregated at IP and city level by an automated pipeline. We did not
have access to the locations of individual users.

8.5.2 Preliminary Evaluation

We conducted two experiments to evaluate the binary classifier in isolation. In
the first experiment, we randomly selected 100,000 IP addresses from the train-
ing set and performed ten-fold cross validation. We did not further sample the
data in any other way. For each hostname, we extracted location candidates,
then ran the binary classifier on all the pairs between the target hostname and
each of its candidates. Since our approach can return multiple plausible

locations for a given hostname, we choose the candidate with the highest
classifier confidence. We break ties by selecting the location with the highest
population, as a proxy for popularity. We obtained an overall accuracy of 99%,
mostly because the vast majority of results were true negatives. However, the
true positive rate was only 67.6%, precision was 80.9%, and recall was 67.6%.

In the second experiment we introduced training data sampling as de-
scribed in Section 8.4.4. We set the X , Y , and Z parameters to 200, 10, and
3, respectively. We again performed ten-fold cross validation. Although ac-
curacy decreased to 92.9%, we obtained better results for true positive rate,
precision, and recall, at 78.8%, 88.5%, and 78.8%, respectively. We varied the
values of the X , Y , and Z parameters using exhaustive search but this did not
alter the results significantly. In conclusion, our sampling strategy helps the
classifier generalize and it significantly improves results.
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8.5.3 Academic Baselines

We next evaluate against three state of the art academic baselines. Like our
approach, they receive a hostname as input and attempt to extract its loca-
tion. The undns baseline from University of Washington consists of manually
generated rules that map hostname patterns to locations [87]. The DRoP
baseline from CAIDA at University of California-San Diego relies on automat-
ically generated rules derived from hostname patterns and validated by active
measurement data (traceroutes) [100]. Finally, the DDec baseline also from
CAIDA combines the results from undns and DRoP [101].

Since all three baselines are accessed from a public web endpoint [101],
we had to restrict the number of requests we made to a manageable size,
out of politeness. For testing we initially selected multiple service providers
of different sizes, spanning various countries around the world. However, the
baselines were missing any rules for several of these providers, including airtel-
broadband.in from India, bigpond.net.au from Australia, and megared.net.mx
in Mexico. Although the baselines have good rule coverage in North America,
they are at least partially lacking in international coverage. In the interest of
fairness, we selected a list of eight providers, each of which is covered by at
least two of the baselines.

To train the classifier, our sampling strategy only considered approximately
60,000 data points out of the 40 million hostnames in our training set. From
our test set of 27 million IP addresses, we selected all of the ground truth data
points which intersected the eight target providers, which yielded a testing
subset of 1.6 million hostnames. We issued these requests to the CAIDA web
endpoint and parsed the responses from each of the baselines.

Table 8.6 lists the results for each of the eight domains, as well as the overall
results across the entire testing subset. Our approach is labeled RDNS in the
table. We define the error distance in kilometers to be the distance between
where a model places the location of a hostname, and the actual location of
the IP address behind that hostname. The first block of results shows median
error distance in kilometers. We observe that our model significantly out-

performs the baselines and its results are generally more stable across all
domains. We also observe that the median error distance for several domains is
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abnormally high for the DRoP baseline, and sometimes for the other baselines
as well. To further investigate this surprising finding we manually verified a
small sample of results. Table 8.7 lists examples of locations extracted incor-
rectly by the DRoP baseline. In the last column of the table we list the rule
that caused the incorrect extraction. For example, DRoP incorrectly deter-
mines that the hostname d49-194-53-51.meb1.vic.optusnet.com.au is in
Vicenza, Italy, using the rule %«iata».optusnet.com.au. Although the IATA
airport code vic is indeed located in Vicenza, the correct location is Melbourne,
Victoria. We could not find any optusnet.com.au hostname where the rule
was correct. In conclusion, the DRoP baseline contains incorrect rules for some
domains. The results for the undns baseline also indicate high error distance
for multiple test domains. After investigating the results, we found that undns
sometimes maps entire TLDs to a single city. For example, the locations for
all 163.data.com.cn hostnames are extracted as Beijing, China. Lastly, since
DDec is a combination of undns and DRoP, it is also affected by incorrect
rules.

The advantage of using median as a metric is that it is impervious to
outliers, which can favor our model that can place false positives far from the
actual location, generating larger outliers. To fairly characterize the results,
we also computed RMSE, a metric at the other extreme of the spectrum.
RMSE, which stands for root mean squared error, easily gets swayed by large
outliers. This poses a disadvantage for our model. We compute it using the
error distance in kilometers for each hostname. The RMSE results in Table
8.6 show that generally our approach still outperforms the baselines in 6 out
of 8 domains. In the two cases where our model has higher RMSE than the
models, the coverage of our model is higher.
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Table 8.6: Evaluation against three state of the art academic baselines. undns from University of Washington consists of manual
rules, DRoP from University of California’s CAIDA uses automatically generated rules, and DDec also from CAIDA
uses a combination of the first two. Results for our approach, which is fully automated, are under the RDNS heading.

Metric → Median Error in km (lower is better) RMSE based on km (lower is better) Coverage (higher is better) Combined score (higher is better)

Domain ↓ # undns DRoP DDec RDNS undns DRoP DDec RDNS undns DRoP DDec RDNS undns DRoP DDec RDNS
163data.com.cn 166K 1,517.5 N/A 1,517.5 10.6 1,495 N/A 1,495 404 100% N/A 100% 94.5% 0.67 N/A 0.67 2.34
bell.ca 200K N/A 5,875.2 5,875.2 6.0 N/A 5,807 5,807 1,262 N/A 2.3% 2.3% 95.7% N/A 0.00 0.00 0.76
brasiltelecom.net.br 32K 808.7 5,628.7 808.7 15.2 889 5,620 889 427 100% 69.7% 100% 73.9% 1.12 0.12 1.12 1.73
charter.com 580K 60.8 N/A 60.8 59.9 478 N/A 478 484 78.0% N/A 78.0% 89.0% 1.63 N/A 1.63 1.84
frontiernet.net 67K 36.5 6,247.6 36.5 16.7 785 6,101 785 689 3.6% 0.8% 3.6% 99.4% 0.05 0.00 0.05 1.44
nttpc.ne.jp 0.9K 9.5 9,259.9 16.2 9.1 2,081 9,161 4,976 3,694 12.0% 16.2% 16.2% 57.6% 0.06 0.02 0.03 0.16
optusnet.com.au 100K 704.4 16,134.6 704.4 12.7 1,175 16,374 1,175 583 100% 49.8% 100% 98.9% 0.85 0.03 0.85 1.70
qwest.net 408K 3,426.6 8,038.7 8,038.7 17.6 6,856 7,361 7,361 427 0.0% 4.1% 4.1% 94.0% 0.00 0.01 0.01 2.20

Overall 1.6M 163.9 13,974.2 177.9 17.5 924.0 12,640.4 1,497.5 677.8 48.3% 6.1% 49.7% 92.3% 0.52 0.00 0.33 1.36

Table 8.7: Examples of locations extracted incorrectly by the DRoP baseline, along with the correct location, and the DRoP rule
that caused the incorrect extraction

Hostname Location extracted incorrectly by DRoP Correct location DRoP Rule

malton2259w-lp140-03-50-100-186-228.dsl.bell.ca malton → Malton, North Yorkshire, England malton, .ca → Malton, Canada %«pop»([^L]+L+D*){3}.bell.ca
200-96-182-198.cbace700.dsl.brasiltelecom.net.br dsl → Daru, Sierra Leone cbace, .br → Cuiabá, Brazil %«iata».brasiltelecom.net.br
70-100-143-28.dsl2-pixley.roch.ny.frontiernet.net pixley → Pixley, California, USA roch, ny → Rochester, New York, USA %«pop»([^L]+L+D*){2}.frontiernet.net
st0120.nas931.m-hiroshima.nttpc.ne.jp nas → Nassau, Bahamas hiroshima, .jp → Hiroshima, Japan %«iata»([^L]+L+D*){2}.nttpc.ne.jp
d49-194-53-51.meb1.vic.optusnet.com.au vic → Vicenza, Italy meb, vic, .au → Melbourne, Victoria %«iata».optusnet.com.au
71-209-14-48.bois.qwest.net bois → ’s-Hertogenbosch, The Netherlands bois → Boise, Idaho, USA %«pop».qwest.net
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Figure 8.5: Academic Evaluation Error Distance

In 3 out of 8 cases the undns baseline has 100% coverage. We define
coverage as the total number of hostnames where a model made a decision,
over the total number of hostnames in the test set. undns having high coverage
is a side effect of it using catch-all rules that map entire TLDs to a single city.
In all three cases this leads to poor results for both median error and RMSE.

We define the combined score as the inverse of RMSE multiplied by cover-
age. As error distance improves (gets smaller), the combined score increases,
and vice versa. Similarly, higher coverage also improves the combined score,
and vice versa. Our approach significantly outperforms all academic

baselines when considering the combination of error distance and coverage.

Finally, Figure 8.5 displays the cumulative error distance in kilometers.
The X axis represents the maximum distance between the real location and
the predicted location. The Y axis shows how many hostnames and their IP
addresses fall within the error distance. For instance, the <20 km column
shows that our method, labeled RDNS, places approximately 54% of host-
names in the ground truth set within 20 kilometers of their actual location.
Our method outperforms the baselines by a large margin. The DRoP baseline
yields the worst results, significantly underperforming the other methods.

8.5.4 Commercial Baselines

In this work we focus on improving reverse DNS geolocation, which is only one
source of geolocation information. Table 8.1 reveals that about a third of IP
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addresses have reverse DNS hostnames. A further subset of these hostnames
contain location hints. While this can result in hundreds of millions of host-
names with location information, this is insufficient to completely cover the
IPv4 space.

Commercial geolocation databases combine and conflate multiple geoloca-
tion data sources. Information from reverse DNS hostnames is required but
not sufficient to compile a full geolocation database. Our approach, which can
output multiple potentially valid location candidates for a given hostname,
lends itself to being combined with other data source to form a more complete
database.

Although reverse DNS geolocation on its own cannot match commercial
databases, we evaluate our approach to show that our approach can comple-
ment and potentially improve existing databases. We trained our classifier as
described in Section 8.5.3. We then obtained two state of the art commercial
IP geolocation databases. We tested our approach against the two commercial
database providers A and B using our entire test dataset of 27 million host-
names. The first four graphs in Figure 8.6 show that on certain domains our
approach outperforms, and thus can be used to improve, commercial databa-
ses. However, as expected, the fifth graph shows that overall the commercial
databases still outperform our method. Results show that median error is 43.7,
16.7, 11.1 kilometers, and RMSE is 4649, 545.3, 545.9 for RDNS, Provider A,
and Provider B, respectively.
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Figure 8.6: Commercial Evaluation Error Distance
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8.6 Reproducing Results

To aid in reproducing and extending our results, we are open sourcing all
the major components of our approach, including the hostname splitter and
the terms blacklist, our sampling strategy, the primary and secondary feature
generators, as well as the classifier itself. For feature generation we have
purposely used mainly freely available datasets as described in Section 8.2.
While we cannot include our ground truth set because it is proprietary, we will
make available a binary version of our model. We will also publish instructions
on creating a ground truth set using public datasets by using our sampling
strategy to minimize any manual labeling.

8.7 Conclusions

We presented a machine learning approach to geolocating reverse DNS host-
names. Our method significantly outperforms several state of the art academic
baselines and it is competitive and complementary with commercial baselines.
Our method outputs multiple plausible locations in case of ambiguity. It thus
lends itself to being combined with other data sources to form a more complete
geolocation database.
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Chapter 9

IP Geolocation Through

Geographic Clicks

9.1 Introduction

In this chapter we focus on using click logs, in conjunction with a

location ground truth set and information mined from web docu-

ments, to improve IP geolocation at the city level. We propose first
assigning locations to URLs by mining user clicks using two alternative meth-
ods. We then propagate these locations to IP ranges with unknown location.
Figure 9.1 presents the intuition behind our two proposals. In the first ap-
proach, summarized in Figure 9.1(a), we use IPs with known GPS location
as the source of geographic information. In the second approach, described
in Figure 9.1(b), we mine the web documents themselves and their URLs for
location clues. Finally, the second step in both approaches further aggregates
locations per IP range, by clustering the coordinates of all clicks from users
in each particular IP range. The example in the figures shows that users in a
particular IP range often click on URLs that have local affinity to the Seattle
area. We posit that the IP range is then also likely to be in the same area.
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Clicks from a specific IP range with unknown location

Clicks from any IPs with known location around Seattle

Location
Propagation

through clicks

(a) GeoClicks-GPS : 1) Assign locations to URLs by clustering clicks from IPs
with known GPS location to each distinct URL. 2) Assign URL locations to IP
ranges by clustering all clicks to URLs coming from each distinct IP range. This
approach is described in Sections 9.4.1, 9.5.1, and 9.6.1.

Clicks from IP range with unknown location
to web pages with known location

Location Propagation through clicks

(b) GeoClicks-WebIndex approach: 1) Assign locations to URLs by mining the
body and URL of the clicked documents themselves for location clues. 2) Same
step as first method. This approach is described in Sections 9.4.2, 9.5.2, and
9.6.2.

Figure 9.1: Intuitive summary of our two proposed approaches. The difference
between the two approaches is that in the first one we derive URL
locations from IPs with known GPS coordinates, while in the second we
derive URL locations from the body or URL fragments of the clicked
web documents themselves. The second step of further aggregating
URL locations per IP range is shared by both approaches.
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Using click logs to improve geolocation poses several challenges. First, click
data is noisy and sometimes contradictory. Users do not always click on URLs
related to their immediate vicinity. For example, they may be researching
vacation spots, or they may be searching for events in nearby cities. Second,
determining the geographical focus of URLs is difficult. Some links can have
city-level affinity, while others are more dispersed geographically. Take for
instance a regional bank that has branches in three different cities. Further-
more, some websites such as Yahoo Finance have no particular geographical
focus, or have only country-level affinity. Our work addresses these challenges
by clustering locations at the URL and IP range levels, which reduces noise
and outliers. More specifically, our contributions are:

1.In our preliminary investigation we investigate the geographic focus of URLs.
We intersect clicks extracted from a search engine query log with a dataset
of IPs with known location, to obtain geographic clicks. Since the location
of these IPs was derived from GPS sensors at the moment of each query,
this dataset is not biased by commercial geolocation databases. We then
aggregate the clicks by distinct URL and study the characteristics of links
with geographic focus, compared to links which are geographically dispersed.

2.We propose a first method to find URLs with local affinity that uses IPs
with known GPS location. We use a density-based clustering algorithm to
find the location distribution of URLs. We re-rank the clusters for a URL
by adjusting their confidence by the prior click density in each area.

3.We also propose an alternate method to find the geographic focus of URLs
by extracting location cues from the web documents themselves. While this
approach is more noisy and prone to bias, it yields higher IP coverage than
the first method.

4.In the second shared step of both approaches we propagate locations from
URLs with local affinity to IP ranges with unknown location that have users
which also click on such URLs. We intersect a larger click log with the local
affinity URLs. We then cluster these URLs per IP range. Finally, for each
IP range we weigh the largest centroid by the confidence of the underlying
affinity URLs.
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5.We evaluate the accuracy of our two approaches against two state of the
art commercial geolocation databases. Using a large and diverse ground
truth set of 70 million IP addresses with known location, we show that our
approaches significantly outperform two commercial databases on

median error, RMSE, and cumulative error distance. Our method
also outperforms prior academic work in both accuracy and scale.

6.Finally, we study the agreement between the two proposed approaches. We
first demonstrate that they are complementary and therefore can be used
in conjunction. We then show show that there is a high level of agreement
between the two methods, and their intersection is highly accurate.

9.2 Datasets

Our ground truth set contains 70 million IP addresses with known location,
compiled during the 28-day period ending on October 26th, 2018. To the best
of our knowledge, it is the largest and most diverse set used in geolocation liter-
ature. It was derived from the query logs of a major commercial search engine
from devices with global positioning sensors, where users opted-in to provide
location information. The dataset contains both mobile and fixed broadband
IP addresses, since users often connect their mobile phones to their home
Wi-Fi. It covers the entire world. We never had access to the raw location
data. The dataset was anonymized by an automated pipeline by aggregating
all locations reported for an IP address, then adjusting the centroid of each
IP address by 584 meters in a random direction. IP addresses with a large
variance in reported locations were removed as outliers. These anonymized
coordinates cannot be used to pinpoint individual addresses, but can locate
an IP at a neighborhood level. While throughout this chapter we refer to
this location data as derived from GPS for succinctness, the dataset actu-
ally covers all global positioning systems, including GPS, GLONASS, Galileo,
BeiDou, etc. [160]. Throughout this chapter we used this ground truth set
for both training and testing by performing ten-fold cross validation. We
randomly split the ground truth set into 10 subsets (folds) of equal size. We
then successively trained on nine of the folds, and set aside the last one for

112



testing. We performed this training and testing step 10 times, where each time
we used a separate fold for testing. This technique allowed us to test on the
entire ground truth set, since we tested each of the ten folds once.

The GPS clicks dataset contains 1.1 billion clicks issued from IPs with
known location. To obtain it, we first extracted a sample of clicks on any
search result page element on the same 28-day period ending on October 26th,
2018. Then, we intersected this data with the ground truth set and only re-
tained the clicks that were issued from IP addresses with known location. The
search engine was also aware of the location of users at the time each query was
issued initially, therefore this subset of the data is not skewed by IP locations
from commercial databases. To also reduce user click frequency bias, we only
retained one click per IP per URL in the entire period. For example, the IP
of a user clicking on https://www.miamiherald.com/ thirty times on five dif-
ferent days would only contribute a single click in the dataset. We normalized
all URLs by removing the scheme (http://, https:// ), the www. prefix from
hostnames, and the # fragments. For instance, we would normalize the URL
https://www.company.com/About_Us#Board to company.com/About_Us. Be-
cause this dataset relies on the IPs in the ground truth set, we also segmented
this data by the same ten folds.

The web index locations dataset contains 4.1 billion distinct web pages
with city-level locations extracted from the textual contents of the web pages,
or from their URL fragments. We obtained this dataset by randomly sampling
from the Bing web index on October 27th, 2018. Each URL in the dataset
is mapped to a single primary location. Section 9.4.2 discusses the extraction
process in more detail. Locations obtained from the text of web pages pose a
low privacy concern since the web pages in the index are public.

The index location clicks dataset consists of 2.96 billion clicks issued
on URLs with extracted location. To obtain it, we first extracted a sample of
search result clicks on the 28-day period ending on October 26th, 2018. Then,
we intersected this data with the web index locations dataset to retain clicks
on URLs with locations extracted from the body of the documents.

The bulk clicks dataset contains 14 billion clicks from IPs with unknown
location. These clicks were collected from the opt-in logs of a popular browser,
and a popular browser add-on, over a three month period ending on October
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25th, 2018. To obtain the dataset, we randomly sampled from the impressions
which contained an HTTP referer header, which means they were most likely
clicks.

All click logs were anonymized. We did not have access to the identity of
users. During our experiments we aggregated clicks at distinct URL level, and
then further at IP range level. We never used clicks at an individual user level.

9.3 Geographic Focus

At the onset of our study we set out to determine the viability of assigning
locations to URLs using clicks. We also wanted to investigate if it would
be enough to assign locations directly to domains, as opposed to individual
subpages. As a preliminary analysis we aggregated the 1.1 billion clicks from
the GPS clicks dataset by distinct URL. We considered the number of click
coordinates for each URL as a proxy for their popularity. We then randomly
sampled and visualized the coordinates of 100 URLs with varying popularity.
Based on our observation, we classify the links into two main categories: URLs
which are geographically dispersed and URLs which have local affinity. We
further divide the links with local affinity into regional, local, and hyper-local.
The remainder of this section provides details and examples on these types of
links.

Figure 9.2 (a) displays a heatmap of the click coordinates on wunder-
ground.com, which is a weather forecast website. We consider this URL to
be geographically dispersed, because its click probability roughly follows the
population density of the United States. There is no apparent geographical
sensitivity to the coordinates. On the other hand, Figure 9.2 (b) plots a similar
coordinates heatmap for wunderground.com/weather/us/ny/new-york , which
is a specific subpage on the same website. We can immediately recognize that
the clicks are concentrated towards the New York City metro area. Based on
this example we can draw two conclusions. First, some URLs do indeed show
strong local affinity. Second, aggregating clicks only by domain is insufficient.
In the case of wunderground.com, the domain is geographically dispersed, while
city-specific subpages exhibit local affinity.

To determine which URLs have geographic focus, we first implemented a
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(a) Locations of users clicking on wunderground.com

New York

(b) Clicks to wunderground.com/weather/us/ny/new-york

Figure 9.2: Comparison of a URL which has clicks that are geographically dis-
persed, with a URL that has clear local affinity.

naïve approach which used a reverse geocoding service to determine the city,
state, and country of all coordinates in the sampled URLs. We aggregated the
coordinates in each URL by city and sorted by number of occurrences. We then
manually visited all the URLs where the top city was present in at least 30% of
the clicks. First, we observed that the majority of these links had local affinity.
Examples include websites for local government and utilities, local businesses
such as shopping centers, theaters and concert venues, medical practices, local
newspapers and radio, as well as schools and universities. Some of the links
are local to a city. Figure 9.3 shows that clicks on the website arlington.co.zw
were reported within the confines of Harare, the capital of Zimbawe. This
website advertises houses for sale in a local gated community. Others are
more regional. Figure 9.4 displays clicks to bloomsburgfair.com, which is the
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website of a yearly fair held in Bloomsburg, Pennsylvania. Since the fair
draws attention from multiple neighboring counties, it is not possible to assign
it a single geographic location. Another similar example of regional focus is
bosch.in/careers, which is the careers website for the Bosch company in India.
Clicks are concentrated in multiple cities where Bosch has factories or training
centers.

Harare

Zimbabwe

Figure 9.3: Location of clicks to arlington.co.zw, a real estate website selling houses
in Harare, Zimbabwe.

Pennsylvania Atlantic
Ocean

Bloomsburg

Figure 9.4: Location of clicks to Bloomsburg Fair, a yearly event held in Blooms-
burg, Pennsylvania.

URLs can also have hyper-local focus. A common example that we observed
is student login pages for internal university websites, which are centered on
campus locations. But perhaps the most unexpected finding is that there are
links that do not have any obvious geographical focus, yet click information
shows that they have in fact local affinity. We found more than 1,500 dis-
tinct URLs from the answers.yahoo.com domain where most of the clicks were
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Figure 9.5: Locations of clicks to Yahoo Answers. Each point represents the mean
location of an individual URL.

within a small radius of a couple of kilometers. Many of these locations were
located on campuses of English-speaking universities and schools. Upon study-
ing the content of the pages we determined that the questions on these pages
were not related to any particular location but were specific math, physics,
and literature homework problems. For instance, one popular question which
asks "Enter the net ionic equation for the reaction of aqueous sodium chloride
with aqueous silver nitrate?" was accessed by 14 different IPs from the campus
of a well-known university in Upstate New York. This finding also suggests
that some URL locations might also have a temporal aspect. For instance,
it is likely the number of these clicks is reduced during the summer holiday.
Figure 9.5 shows one mean point for each Yahoo Answers! URL that received
clicks from at least 5 IP addresses. We note that these types of links are still
just a fraction of the 426 million distinct URLs in the GPS clicks dataset.

9.4 Assigning Locations to URLs

We propose two methods of assigning geographic focus to URLs. The first
method requires access to a seed list of IPs with known GPS location. We
aggregate and cluster clicks from these IPs per distinct URL. The advantage
of this approach is that, as we will see in Section 9.6, it is very accurate in
assigning locations to URLs. The disadvantages are that it requires having
access to the coordinates of a subset of IP ranges, and it has low coverage.
The second method instead derives locations from the contents of the clicked
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documents themselves. The advantages of this approach are that it has much
higher coverage, and it only requires access to the web index instead of IP
location information. However, these advantages are at the expense of lower
accuracy. Although both approaches have relatively low median error, in Sec-
tion 9.6 we will also show that this latter approach has a median error that
can be more than double that of the former one.

9.4.1 Locations Extracted from IPs with GPS data

The approach of reverse geocoding coordinates and aggregating by city names
in Section 9.3 is not sufficient to find URLs with local affinity. We have found
that clicks outside the boundary of a city can also contribute directionally to
finding the location of links. For example, a blood bank that serves three
neighboring cities arranged in a line receives clicks from all three, but the me-
dian location correctly indicates the city in the middle where the organization
is located. Furthermore, using reverse geocoding services has its own share of
problems and might incorrectly place coordinates in the wrong cities.

Instead of reverse geocoding IP coordinates, we propose using spatial clus-
tering. To better represent geographic focus we use a modified version of
DBSCAN [161], which is a density-based clustering algorithm, Intuitively, it
groups together coordinates in high-density areas. One feature of this algo-
rithm is that it does not require specifying the number of clusters a priori.
Clusters can reach any size as long as they satisfy the density requirements.
Another feature is that it can find arbitrarily shaped clusters, which is not pos-
sible with other clustering approaches such as the expectation-maximization
(EM) algorithm for Gaussian Mixtures. The algorithm has a complexity of
O(n log n) if the implementation uses an indexing structure for finding neigh-
bors.

DBSCAN requires two parameters, ε (epsilon) and minPoints. The ε pa-
rameter represents the radius of the search density range around the current
point. If the current point has minPoints neighbors which are at most ε dis-
tance away, then the density bar is met and a cluster is formed. The cluster
can grow in any direction and to any size as long as the added points are also
in a dense area with at least minPoints neighbors. Points in low density areas
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are considered noise (outliers) and are ignored.

However, using DBSCAN directly yields poor results because of the under-
lying prior click probability of each geographical area. Cluster sizes are skewed
by the presence of primate cities. To account for this natural bias, we propose
re-ranking clusters. For a URL, given a set of coordinates G = { g1, g2, . . . gn },
DBSCAN partitions G into m clusters, C = { c1, c2, . . . , cm } clusters, each
with one or more points. We define the adjusted confidence of a cluster as its
size, divided by the prior probability of clicks on its surface:

Confidence(ci) =
|ci|

P (click|Surface(ci))
(9.1)

where we define the surface of a cluster by the polygon which contains all of
its points. Note that prior click probability is computed based on the clicks in
the entire dataset.

Figure 9.6 shows the click coordinates for the rosalindfranklin.edu domain,
which is a medical school in North Chicago. DBSCAN extracts two clusters,
a larger one with more clicks located in Chicago, and a smaller one with less
clicks located in North Chicago, where the school is actually located. Using
just the size of each cluster directly would incorrectly lead us to choose the
larger cluster. However, re-ranking the clusters by prior probability gives a
higher score to the smaller (correct) cluster, since North Chicago has a smaller
overall click probability.

After ranking the clusters, we pick the top cluster by score and compute
its bounding radius, which is the radius of the circle which encompasses all
of its points. We then assign the center (mean) location of the cluster to the
URL, if the bounding radius is within a certain threshold as discussed in the
Evaluation section. This ensures we retain only URLs which have local affinity.

9.4.2 Locations Extracted from Web Documents

Obtaining a seed list of IPs with known GPS location can be difficult as
location from global positioning sensors may only be available to medium and
large online services. Since the size of resulting dataset is directly proportional
to the size of the seed IP list, a large set of IPs is needed to obtain high
URL coverage, which may not always be possible. We describe an alternate
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Chicago

Lake Michigan

North Chicago
Rosalind Franklin

University

Figure 9.6: Reranking clusters based on region click density. The coordinates
shown are clicks on a specific page in the rosalindfranklin.edu domain,
which is a medical school in North Chicago. Initially, the bottom clus-
ter in Chicago was ranked first. After adjusting the confidence based
on prior click density, our approach promoted the cluster in North
Chicago to be highest ranked.

approach of assigning geographic focus to URLs that only uses the content of
clicked documents themselves, instead of using IPs with GPS location. Our
hypothesis is that some web documents contain physical addresses, and these
addresses can be later used in aggregate for IP geolocation.

There has been ample prior work on extracting addresses from the body
of text documents. Amitay at al. [162] parse web documents to extract a
taxonomy of locations using a gazetteer. They report an accuracy of up to
82% on multiple document collections, that together covered 600 pages and
7,000 geotags. Silva et al. similarly use an ontology of geographical concepts
to recognize and disambiguate location references, but they also introduce a
graph-ranking algorithm similar to PageRank as a second step to further dis-
ambiguate locations. They obtain an F-score of up to 0.81 on document col-
lections in 4 languages [163]. Martins et al. take a machine learning approach
to this problem by using a Hidden Markov Model learner to find location refer-
ences, then using an SVM classifier to disambiguate references. They outper-
forms two state of the art commercial systems [164]. Locations extracted from
web documents are typically used to personalize web search [16, 165, 166].
However, these approaches assume user location is already known and correct.
The ranking function then finds documents which are close geographically to
the user. If user IP geolocation is incorrect, this assumption may lead to
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irrelevant search results.

To the best of our knowledge, coordinates derived from web documents
have never been used to improve IP geolocation. Although the focus of this
chapter is not on parsing locations from text but on using them for geolo-
cation, we briefly describe the extraction approach used during web index
generation. Locations are found either in the body of the document, or from
URL fragments. The parser attempts to locate full postal addresses, zip codes,
or mentions of popular cities in the text of documents. For example, the page
nibbanarestaurant.com is mapped to the coordinates of Bellevue, WA, since it
is the web page of a local restaurant and the body of the document contains
its geographical address. Sometimes URLs also contain location information.
For example, weather websites often contain the forecast location in the link.
Another example is redfin.com/zipcode/98033 , a real estate search web page
whose URL contains the zip code of Kirkland, WA. Each document is mapped
to at most a single location. If multiple locations are present in the text, only
the first one is used. While this data can be noisy at an individual URL level,
we posit that aggregating these locations over millions of clicks can lead to
reasonable results.

We first sampled 4.1 billion pages with city-level locations from the index
of a large commercial search engine on October 27th, 2018 to obtain the web
index locations dataset. We then intersected these pages with a sample of
search result clicks on the 28-day period ending on October 26th 2018. We
obtained 2.96 billion clicks with locations extracted from web pages.

This alternate approach has a much higher coverage at the URL level of 261
million distinct URLs, as compared to the IP GPS location seed list approach
which only yields 3.4 million distinct URLs. However, this second method
may introduce higher noise because the locations listed in text documents
may not be representative of the locations of users clicking those documents.
We further explore this difference in coverage and accuracy in the Evaluation
section.

121

https://nibbanarestaurant.com/
https://www.redfin.com/zipcode/98033


9.5 IP Range Geolocation

In the previous section we presented two approaches to assign locations to
distinct URLs. Here we further propagate these locations to IP ranges with
unknown location using the separate bulk clicks dataset. Our goal is to

determine a single location per IP range at the city level, which is
the same granularity used by commercial geolocation services. To match the
typical layout of these services, we segment the IPv4 space into contiguous
ranges of 256 IP addresses (/24 netmask). For example, the 131.107.174.0/24
range starts with address 131.107.174.0 and ends with address 131.107.174.255.
Although we evaluate our approach on IPv4, all methods described in this
chapter can be equally applied to IPv6 IPs.

We begin by describing this step using the URL locations data derived
from IP GPS data discussed in Section 9.4.1, then later we detail the same
step for the alternate approach using the web index discussed in Section 9.4.2.

9.5.1 Using URL Locations from GPS Coordinates

We first intersect the clicks from the bulk clicks dataset with the URLs with
assigned location we found in Section Section 9.4.1. The resulting subset
contains only clicks to URLs that we previously determined have a certain
local affinity. Similar to the previous section, to reduce bias in the data we
count clicks from an IP to a URL a single time in the 3 month period. Then,
we aggregate the locations of these clicked URLs per IP range. So for each
separate range of 256 IP addresses we now have a list of coordinates, where
each coordinate is derived from the location of the underlying URLs that have
local affinity. Finally, we run DBSCAN on the coordinates in each IP range
to determine their predominant locations.

We propose a second method to improve the output from DBSCAN, this
time at the IP range level. Given an IP range and its top location cluster, the
coordinates that make up the cluster are each derived from the location of a
single URL. For each of these URLs we have previously computed a confidence
score in Section 9.4.1. As the score increases we are more confident that the
URL has affinity to that location. Using these scores, we propose adjusting
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the centroid of the DBSCAN cluster using a weighted average. Since all of
the clusters we extract have a small radius of a few kilometers, we can ignore
the curvature of the Earth. In the next section, we will demonstrate that this
proposal results in a noticeable improvement in distance error.

9.5.2 Using URL Locations from Web Documents

We also perform the same IP range clustering step on locations extracted
from the body of web documents. The implementation is very similar to the
approach we just took on locations from IPs with GPS coordinates. The main
difference is that for the web index data we extracted at most a single location
per URL. Therefore, the location for each URL has a confidence of 1. In
this case, it is unnecessary to use the DBSCAN weighing scheme and we can
directly use the standard DBSCAN output. This alternate method has 13
times higher coverage than the IP GPS method, which leads to more IP range
clusters and therefore higher IP coverage.

9.6 Evaluation

To evaluate our two approaches, we first discuss tuning model parameters
for each proposal separately. We then compare the proposals against three
baselines: two state of the art commercial geolocation databases and a strong
academic baseline.

9.6.1 Model Parameters for GPS Locations Approach

We begin by discussing the three parameters we use for the model based on
IP GPS locations: ε (epsilon), minPoints, and the maximum cluster bounding
radius. We show that by filtering on the bounding radius of the output clusters
in the first step we can obtain a desired balance of accuracy and IP coverage
in the second step.

Our geolocation approach consists of two DBSCAN clustering steps. In
the first step we cluster locations at the URL level, and in the second step
we further cluster URL locations at the IP range level. We run the clustering
algorithm separately for each URL and then separately for each IP range.
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Figure 9.7: Distribution of bounding radius for clusters extracted from URL click
locations for ε = 16, minPts = 5%. The figure shows a normal distri-
bution centered around the [8, 9) data point, which shows that there
were about 355,405 clusters with radius between 8 and 9 kilometers.
The long tail demonstrates that DBSCAN can generate clusters of dra-
matically different sizes, as long as the underlying coordinates abide
by the density criteria.

DBSCAN requires two parameters, ε and minPoints. To find the optimal
values for our task, we experimented using a separate validation set of 3 million
IP addresses. We set ε to 16 kilometers (10 miles) for both clustering steps.
This parameter does not represent our desired cluster radius, but it represents
the neighboring density threshold. DBSCAN can find clusters of any size,
as long as the density requirements are met. Figure 9.7 helps demonstrate
this property of DBSCAN. The long tail of the figure shows that the output
clusters can sometimes cover a large surface, as long as the points are dense.
We initially set the second parameter minPoints to a fixed size, but we soon
discovered that we obtained better results if we assigned it dynamically to be
5% of the number of input points. So, for instance, if a URL contained 100
click coordinates, we set minPoints to 5.

To compute the confidence score for each URL (Equation 9.1), we approx-
imate the prior click density in an area by using Geohash [167, 168], which
is a well-known geocoding system for latitude and longitude. We aggregate
all coordinates in the GPS clicks dataset by Geohash ID. We set the Geohash
precision to 5 characters, which divides the entire world in 4.9km by 4.9km
tiles. In each tile we count how often we observe location clicks across the
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entire dataset. This allows us to determine a rough prior click probability for
any location in the world, by consulting the density in its equivalent geohash
tile. After re-ranking the clusters by confidence, we pick the cluster with the
highest score.

In addition to the ε and minPoints parameters, we also set a maximum
bounding radius for the clusters generated in the first step. The bounding
radius of the cluster is determined by the circle which encompasses all points
in the cluster. By filtering on the bounding radius at the end of the

first step, we can tune the amount of accuracy and IP coverage

we eventually achieve in the second step. Figure 9.8 demonstrates the
effect that varying this parameter has on both median distance error and IP
coverage. We define distance error as the distance between where a model
places the coordinates of an IP, and the actual location of the IP as given by
our ground truth. We define IP coverage as the percentage of IPs from the
ground truth set for which a model makes a decision.

To further show the effect of tuning parameters for accuracy or coverage,
we will evaluate two instances of our model based on IP GPS data, GeoClicks-
GPS-HigherAcc and GeoClicks-GPS-HigherCov. For the former we set the
maximum bounding radius to 6, while for the latter we set it to 20. One
version is tuned for higher accuracy, while the other one tuned for higher
coverage. HigherAcc has an IP coverage of 2.24%, while HigherCov has a
coverage of 52.21%.

9.6.2 Model Parameters for Web Index Locations

Approach

The alternate method to assign geographic to focus to URLs makes use of
locations extracted from the text of web documents. Since in this approach
we do not have to cluster IP coordinates, in the first step we directly assign at
most one location to each URL. In the second step we aggregate and cluster
URL locations based on clicks issued by users in each IP range. This second
step allows us to tune the DBSCAN clustering parameters for higher accuracy
or coverage.
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Figure 9.8: Effect of varying cluster max radius on median error and on IP cover-
age. As we increase the maximum radius parameter, both the median
error and the IP coverage increase. This setting allows selecting a
balance of accuracy and coverage.

9.6.3 Commercial Baselines

We compare the two instances of our model to two state of the art commercial
databases, one labeled ProviderA and the other labeled ProviderB. We cannot
reveal the names of the proprietary databases since their terms of use forbid
comparative benchmarking. They are among the most popular and accurate
databases and they are both available to the public.

Figure 9.9 compares error distance across the four models. The X-axis
represents the cumulative error distance, while the Y-axis shows how many
points fall within that particular error distance band. For instance, the second
column shows that HigherAcc places 80.5% of the predicted locations within 20
km of their actual location in the ground truth set. The figure shows that both
of our instances significantly outperform the commercial databases. Table 9.1
also compares the values for median error, percentage of points with error of
less than 10 km, and RMSE. Lastly, our results also surpass prior academic
work, which had error in the order of hundreds of km. The disadvantage of our
approach is that our HigherCov model still only has an IP coverage of 52.21%,
while commercial databases cover more than 90% of IP space. However, our
coverage still far surpasses prior academic work in the area. We discuss one
approach to further improve coverage in the next section.
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Figure 9.9: Error distance in kilometers with ten-fold cross-validation for our ap-
proaches and two state of the art commercial geolocation services.

Table 9.1: Comparison between three instances of our two approaches and two state
of the art commercial geolocation databases, across multiple metrics.

Median % distance RMSE
error <10km in km

GeoClicks-GPS-HigherAcc 4.5 72.2% 893.4
GeoClicks-GPS-HigherCov 9.5 52.1% 711.1
GeoClicks-Index-HigherAcc 9.2 54.0% 1327.4
GeoClicks-Index-HigherCov 10.7 47.3% 1498.6
Commercial Provider A 11.1 47.2% 545.9
Commercial Provider B 16.7 36.7% 545.3

Finally, Table 9.2 demonstrates the effect of our proposal to weigh the
centroid locations in the second step by the URL confidence scores computed
in the first step. We obtain an improvement of 4.2% in the most important
error band of error smaller than 10 km.

9.6.4 Academic Baseline

We now evaluate the two click based approaches against our previously pub-
lished query logs approach [169], which we also described in Chapter 7 of this
dissertation. To the best of our knowledge, this is the only other academic IP
geolocation approach which uses search engines logs for IP geolocation.
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Table 9.2: Improvement in accuracy when using weighted centroids for IP range
locations in GeoClicks-HigherCov.

Cumulative Unweighted Weighted Improvement
Error in km Centroids Centroids for weighted

< 10 km 49.9% 52.1% 4.2%
< 20 km 74.7% 75.4% 0.9%
< 30 km 81.1% 81.3% 0.2%

To re-implement the query based approach we mined Bing logs over a
period of 28 days, ending on October 26th, 2018. We reduced bias caused by
single addresses by selecting one query instance per IP per day. Using the
same methodology as described in Chapter 7, we then retained queries with
local intent such as business searches, directions, local cinema showtimes, and
local weather. Finally, we filtered the remaining impressions to keep only the
ones that contained explicit locations. This resulted in 374 million queries that
were issued from 3.4 million distinct /24 (256 IPs) buckets. After grouping
and filtering locations by IP range, we evaluated the approach using the same
ground truth of 70 million IP addresses.

Figure 9.10 shows that the query logs approach generally has lower accu-
racy than the click based approaches, with the exception of accuracy at <10
km, where the baseline surpasses our web index based variant that is tuned for
higher coverage, but still comes up short when compared to our three other
instances.

Table 9.3 contains a comparison across several metrics. Our four click based
instances significantly outperform the query logs approach in RMSE and three
of four variants outperform the baseline in median error and accuracy at the
10 kilometers threshold. In the last column we also introduce a fourth metric
which combines accuracy and IP coverage. Studying this last metric yields an
interesting conclusion. Whereas our high coverage web index based variant
has lower accuracy than the query logs approach, it comes out on top if we
also consider IP coverage. In fast, this variant surpasses both the baseline,
and all the other variants, by a large margin.

In conclusion, our click based approaches outperform a baseline based on
mining query logs, but the choice of using one click based variant over another
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Figure 9.10: Error distance in km with ten-fold cross-validation between our ap-
proaches and a state of the art academic baseline based on mining
query logs.

Table 9.3: Comparison between three instances of our two approaches and an aca-
demic baseline that uses search engine logs [169]. This academic baseline
is also based on our work, as described in Chapter 7.

Median % distance RMSE % IP coverage
error <10km in km w/ err <10km

GeoClicks-GPS-HigherAcc 4.5 72.2% 893.4 2.2%
GeoClicks-GPS-HigherCov 9.5 52.1% 711.1 28.7%
GeoClicks-Index-HigherAcc 9.2 54.0% 1327.4 10.9%
GeoClicks-Index-HigherCov 10.7 47.3% 1498.6 35.7%
Query Logs Geolocation [169] 9.6 51.0% 2126.4 53.5%

depends on the application. For applications in need of higher coverage, the
index based approach is the best option. However, if instead the goal is to
achieve the highest accuracy, then a GPS based approach is the best option.

9.7 Agreement and Overlap Between

Approaches

Our two approaches are based on location information extracted from GPS
sensors and the body of web pages, respectively. In this section we aim to
quantify the degree to which there is overlap and agreement between these
techniques. We compare the higher coverage variants. The variant based on
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Table 9.4: Overlap between the GPS and web index techniques at the /24 IP range
level.

Common in both approaches Only in GPS Only in index

Covered /24 IP ranges 821,571 504,109 870,971
(62.0% of GPS, 48.6% of index) (38.0% of GPS) (51.4% of index)

GPS data has a ground truth IP coverage of 55.2%, while the ones using data
from the body of web pages has a higher coverage at 75.4%.

Table 9.4 contains a breakdown of the overlap and differences between
methods, at the IP range level. The method based on GPS locations has a
total coverage of 1.32 million IP ranges, while the one based on mining web
content has a coverage of 1.69 million IP ranges. Their intersection results in
821,571 ranges. This result shows that while the techniques output many IP
ranges in common, they are also quite complementary, with 504,109 IP ranges
only covered by the GPS method, and 870,971 IP ranges only covered by the
web index approach.

We now turn our attention to analyzing the IP ranges which the methods
share in common. Figure 9.11 displays the distribution of distances between
the locations found by the two approaches. We generated this graph by inter-
secting the IP ranges, and then calculating the distance between the locations
found by the two approaches in each of the shared IP ranges. The result
show that even though the approaches derive locations from very different
data sources, they have good agreement as 74.5% of the distances are within
10 kilometers of each other.

Finally, an obvious question one may ask is if the intersection of the two
approaches yields better ground truth results than the individual methods.
First, we retain the common IP ranges where the two locations are within
20 kilometers of each other. Second, for each IP Range we take the mean
point between the two locations. Third, we evaluate the resulting dataset
against the ground truth. Figure 9.12 shows that taking the intersection of
the approaches results in better accuracy across the entire distance spectrum.
The median error is 8.7 kilometers, which makes it second in accuracy only to
the higher accuracy variant of the GPS approach. The RMSE is only 375.5,
which is the lowest across all variants and baselines. The combined approach
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Figure 9.11: The agreement in distance for the IP ranges shared by both ap-
proaches. The first bar in the graph shows that whenever the two
approaches find locations for the same IP range, 74.5% of the time
the locations emitted by the two approaches are within 10 kilome-
ters of each other. Please note that the agreement results do not use
any ground truth information, they simply show how often the two
approaches agree on the location of shared IP ranges.

has a ground truth IP coverage of only 40.5%, which as expected is lower than
either of the two approaches.

9.8 Conclusions

In this chapter we studied propagating locations from IPs with known location
to IPs with unknown location, using user clicks. Our research has practical
applications in improving search engine personalization, as well as other online
services. It can also augment academic research in geographic user cohort
modeling. Results show that our two proposals significantly outperform two
widely used commercial geolocation databases. The results also show that
our two proposed approaches are complementary with roughly half of the IP
ranges overlapping, and their intersection is highly accurate with a median
error of only 8.7 kilometers.
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Figure 9.12: Evaluation against ground truth of the blended results obtained by
intersecting the output of the GPS and index approaches at the IP
range level, and retaining the instances where the two approaches
agree on a location (within 20 kilometers). The intersected output
yields better accuracy than any of the individual approaches.
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Chapter 10

Revisiting Query Logs

In Chapter 7 we improved the accuracy of commercial IP geolocation databa-
ses using user queries which contain explicit locations. Here we propose two
improvements to that preliminary approach by incorporating techniques from
Chapter 9. First, we remove the dependency on reverse geocoding and we
instead use density clustering to output pairs of coordinates instead of city
names. Second, for each IP range we use the weighted centroid based on the
underlying confidence of each data point.

10.1 Approach

We will now describe the processing steps in the revised approach in more
detail:
1.Extract queries and corresponding IP addresses from query logs.

2.Reduce bias by retaining one query instance per IP per day.

3.Filter impressions, keeping the ones likely to contain locations.

4.Extract locations from the queries that remain.

5.Perform clustering on the raw extracted coordinates at the /24 IP range
level.

6.Adjust the resulting centroid for each IP range by using the confidence
of each underlying location extracted from queries.

7.Test the modified geolocation database against the ground truth.
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We extracted impressions from 28 days of Bing logs, ending on October 26th,
2018. To reduce potential bias introduced by single IP addresses with many
duplicate queries, we retained one query instance per IP per day, across each
of the 28 sampled days. Next, to increase the chance that the queries contain
explicit locations, we performed a filtering step where we selected the im-
pressions with local intent, such as business searches, directions, local cinema
showtimes, and local weather. This resulted in 374 million queries that were
issued from ≈300 million IP addresses and 3.4 million distinct /24 ranges (256
IPs in size). Finally, we extracted locations from user queries as previously
described in Chapter 7. Each extracted location consists of coordinates and a
confidence value.

We will now describe the modifications we have made to the preliminary
approach, and explain the motivations for making these changes. We again use
a /24 (256 IPs) granularity for IP ranges. However, we do not perform reverse
geocoding to convert the extracted coordinates to city boundaries and we do
not count city ID occurrences in each IP range. Instead, we now directly use
the raw coordinates and their confidence without a normalization step and
we group the locations using density clustering. For the clustering step we
followed the method and parameters we used to cluster locations from clicks
in Chapter 9. The reason for this change is that reverse geocoding is costly,
time consuming, and often imprecise. Forgoing reverse geocoding and using
clustering instead also helps because nearby points can directionally help in
locating a cluster, even if the points close to the outer edges are possibly in a
different city. Removing this step also simplifies the approach, since instead
of converting from queries, to coordinates, then to cities, we directly use the
coordinates. We use the largest cluster from the output of the DBSCAN
clustering algorithm. Finally, we adjusted the location of the centroid by using
the confidence of the underlying coordinates as weights. The motivation for
this change is that, as we demonstrated in Section 9.6.3 and Table 9.2, using
a weighted centroid can alone increase accuracy by a few percentage points.
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10.2 Evaluation

For evaluation we use a ground truth set which contains 70 million IP addresses
with known location, compiled during the 28-day period ending on October
26th, 2018. The data was collected from Bing users who opted in to provide
GPS location information along with their queries. We compare our approach
against two state of the art commercial IP geolocation databases. We also
evaluate it against the preliminary version from Chapter 7, and against the
high coverage variants of the click based approaches from Chapter 9.

10.2.1 Commercial Baselines

Figure 10.1 compares cumulative error distance between our approach named
QueryLogs-v2, and two commercial geolocation services named ProviderA and
Provider B. Our improved query based method significantly outperforms the
two commercial services. This large difference is maintained across the entire
error distance range.
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Figure 10.1: Error distance comparison between the improved query logs approach
and two state of the art commercial IP geolocation databases

Table 10.1 evaluates our approach against the commercial baselines, across
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multiple metrics. Here our method again significantly outperforms the com-
mercial databases. Our median error is lower at 7.6 kilometers than the base-
lines, which yield a higher error of 11.1 and 16.7 kilometers, respectively. The
percentage of points that fall within 10 kilometers of their actual location is
much higher at 63.3% when compared to the commercial services which attain
only 47.2% and 36.7%, respectively. Finally, our RMSE value is lower and
therefore better than both of the commercial alternatives.

Table 10.1: Comparison between our improved query based approach and two state
of the art commercial geolocation services, across multiple metrics.

Median % distance RMSE
error <10km in km

QueryLogs-v2 7.6 63.3% 467.7
Commercial Provider A 11.1 47.2% 545.9
Commercial Provider B 16.7 36.7% 545.3

10.2.2 Academic Baselines

To get an idea of the performance of the enhanced query based approach in
the context of other techniques presented in this dissertation, we compare it
to the older preliminary version, and to the user click methods from Chapter
7.

Figure 10.2 displays the cumulative error distance curves for QueryLogs-
v1, which is the previous version, QueryLogs-v2, which is the new enhanced
version, and the two high coverage click based approaches. The graph shows
that the updated query based version manages to outperform both the older
approach, and all the click based approaches, by a large margin.

The metrics comparison in Table 10.2 similarly shows that the new ap-
proach is outperforming the baselines in median error, percentage of points
within 10 kilometers of their actual location, and root-mean-square error.
However, when we combine accuracy and coverage to show the percentage
of ground truth IP coverage with error smaller than 10 kilometers, we can see
that the click based web mining approach achieves a better result. The reason
for this result is that even if the click based approach has lower accuracy, it
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Figure 10.2: Comparison of error distance in kilometers between the old approach
based on query logs, the new one, and the high coverage variants of
the click based approaches from Chapter 9

Table 10.2: Comparison between the high coverage click based approaches, the pre-
liminary query based approach, and the updated query based approach
we presented in this chapter, across several metrics.

Median % distance RMSE % IP
coverage

error <10km in km w/ err
<10km

GeoClicks-GPS-HigherCov 9.5 52.1% 711.1 28.7%
GeoClicks-Index-HigherCov 10.7 47.3% 1498.6 35.7%
QueryLogs-v1 9.6 51.0% 2126.4 27.3%
QueryLogs-v2 7.6 63.3% 467.7 28.6%

has higher ground truth IP coverage. The technique proposed in this chap-
ter covers 31.4 million IPs from the ground truth set, while the winning click
based approach covers 52.5 million.

In conclusion, the improved geolocation approach achieves significantly bet-
ter results across all metrics when compared to the preliminary version from
Chapter 7, and it also outperforms the click based approaches across most
metrics.
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Chapter 11

IP Location Interpolation

In this chapter we study the concept of IP location interpolation, which is a
process to extrapolate the location of an entire IP range by using the locations
of a few underlying IP addresses with known location. We first study the
colocation of IP ranges, by computing the distance between pairs of addresses
that are in the same IP range. Based on the preliminary findings, we then
introduce an approach to perform IP interpolation at the entire IP range level.
Finally, we evaluate our approach at multiple levels of granularity, using a large
and geographically diverse ground truth set of 8.9 million IP addresses.

Previous research has used multiple terms for extrapolating the location of
an entire IP range from a few individual addresses, including clustering [70, 71],
geographic locality [97], block-based geolocation [59, 170], segment inference
[30], IP segmenting [62], and aggregation [31]. Here we call this concept IP
location interpolation.

Early work by Padmanabhan and Subramanian proposed a technique called
GeoCluster, which consists of obtaining IP network prefixes from BGP router
table dumps, and then propagating IP addresses with known location through-
out these prefixes [70, 71]. They also proposed breaking up larger network
blocks into smaller segments, if the contained ground truth IPs did not agree
on a location. There are three issues with using network prefixes from BGP
blocks. First, as the authors mention, BGP dumps only cover a fraction of
all IP address space. Second, a BGP table is a summarized snapshot of the
Internet, as viewed from the perspective of a single router, so it contains large

139



IP ranges. In order to get a more granular breakdown of IP ranges, one would
need to extract tables from many different geographically dispersed routers,
which is generally not feasible. Third, individual network blocks in BGP ta-
bles do not necessarily correspond to geographically co-located IP addresses.
In fact, Padmanabhan and Subramanian show that their GeoCluster approach
only achieves a median error of 685 kilometers on a ground truth set of 181,246
IPs in the United States. Alidade [31] makes an even stronger assumption that
all of the IPs in a prefix must be located in the same location. However, Freed-
man et al. have studied the geographic locality of BGP network blocks and
they have found that about half of the prefixes of size /8 to /15 contain IP ad-
dresses in multiple geographic locations, which further shows that using block
sizes as defined by the BGP table may not always be the best option [97]. In
this chapter we remove the dependency on incomplete BGP routing informa-
tion and we evaluate interpolation across the entire IP address space covered
by our large ground truth set.

Structon [30], proposed by Guo et al., uses interpolation as a technique to
increase the IP coverage of a web mining based geolocation approach. They
assume all IP addresses in the same /24 segment are in the same city. They
iteratively apply majority voting to increase IP range sizes until they reach a
netmask of size /18. They also combine interpolation with information from
BGP routes and traceroutes. However, they do not present any interpolation
specific experiments and they do not provide a motivation for performing in-
terpolation in this specific way and at this specific granularity. Their approach
is also focused exclusively on a few hundred cities in China. Here we instead
systematically test different range and we also perform experiments worldwide.

Liu et al. also apply IP location interpolation as part of a location sharing
social network based geolocation method called Checkin-Geo [62]. However,
they directly use /24 segments without much explanation, they do not de-
scribe their interpolation approach, and like Guo et al. they only focus on IP
addresses in China. Since our ground truth set covers most countries in the
world, our experiments are more representative of conducting interpolation
worldwide.

Finally, Lee et al. use a majority rule vote with a threshold of 80% to assign
individual IP address locations to entire IP ranges of sizes /24, /25, and /26,
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respectively. Unfortunately, the paper does not evaluate the technique against
ground truth data. Comparatively, we do evaluate interpolation against a
large ground truth set of 8.9 million IP addresses.

In summary, our approach differs in significant ways from previ-

ous work. First, we separate the concept of IP interpolation from the usage
of BGP prefixes by considering the entire address space, instead of using the
subset of prefixes covered by the routing table. Second, we systematically
evaluate multiple IP range sizes, to determine the impact that netmask size
has on accuracy. Third, we use the largest ground truth set ever reported in
IP local interpolation literature. Fourth, instead of focusing on a single region
we test interpolation across the entire world.

11.1 Colocation of IP Range Addresses

We will now test the assumption that IP addresses that are in the same con-
tiguous IP range are likely to also be located in the same geographic area.
We evaluate this hypothesis using a large ground truth set of 8.9 million IP
addresses. Our ground truth set contains IP addresses with known location,
and was compiled during the 28-day period ending on December 1st, 2017. It
is one of the largest and most diverse ground truth sets used in geolocation
literature. It was derived from the query logs of the Bing search engine from
devices with global positioning sensors, where users opted-in to provide loca-
tion information. The dataset contains both mobile and fixed broadband IP
addresses, since users often connect their mobile phones to their home Wi-
Fi. It covers the entire world. Throughout this chapter we used this ground
truth set for both training and testing by performing ten-fold cross vali-

dation, by randomly splitting the data into ten folds and repeatedly using 9
folds for training and the last fold for testing. We report the results as the
average of all the runs. We never had access to the raw location data. In-
stead, the dataset was anonymized by an automated pipeline by aggregating
all locations reported for an IP address, then adjusting the centroid of each
IP address by 584 meters in a random direction. IP addresses with a large
variance in reported locations were removed as outliers. These anonymized
coordinates cannot be used to pinpoint individual addresses, but can locate
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an IP at a neighborhood level. While throughout this paper we refer to this
location data as derived from GPS for succinctness, the dataset actually covers
all global positioning systems, including GPS, GLONASS, Galileo, etc. [160].

We segmented the IPv4 address space into IP ranges of varying lengths
for netmasks between /28 (16 IPs) and /20 (4,096 IPs). We then extracted
all pairs of IP addresses which are part of the same IP range, and are also in
the ground truth set. So, for example, IPs 50.121.73.3 and 50.121.73.47 would
form a pair in IP ranges with netmask /26 (64 IPs) to /20 (4,096 IPs), but
not for IP range 50.121.73.0/28, which is only 16 IPs in size. Since we know
the location of each IP in the ground truth set, we were then able to compute
the geographic distance in each pair.

Figure 11.1 presents the results as cumulative distance curves. The X axis
represents the distance between pair items and the Y axis shows how many
pairs are within that distance. For instance, if we look at the first column
(<10 km) for the IP range size of 1,024 IPs, we can observe that roughly 60%
of pairs in this type of IP range are within 10 kilometers of each other. We
can draw two conclusions from the graph. First, the size of the IP range is
directly proportional to pair distance. As the range size increases, the distance
between pairs in the range also increases. For ranges that are 256 IPs in size,
88% of pairs are within 30 kilometers of each other, but that percentage drops
to 77.9% for IP ranges with 1,024 IPs. Second, even if these preliminary
results are promising, the graph shows that there is room for improvement.
We cannot assign the locations of the pairs to the entire IP range, since in
some cases the locations are contradictory. We must therefore find a way to
further filter these IP ranges to retain the ones where the location signal is
consistent.

11.2 IP Range Interpolation

We now apply our finding that addresses in the same IP range are often colo-
cated geographically to the problem of increasing ground truth IP coverage.
We propose performing IP range location interpolation by finding blocks where
all ground truth IPs contained in that range are in the same geographic region,
and then assigning the center of all IP coordinates to the entire range. Figure
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Figure 11.1: Cumulative distance between pairs of IPs in the same range, for dif-
ferent range sizes. For example, in the <20 km column, the value of
the distance for IP ranges of 256 IPs is 83.8%. This means that if
we segment the IP space in contiguous ranges of size 256, a pair of
IP addresses from the ground truth set that are in the same IP range
are at a distance smaller than 20 kilometers from each other in 83.8%
of cases.

11.2 shows an example where an IP range contains two ground truth IPs, both
located in New York City. Since all the ground truth IPs contained in this IP
range are located in the same region, we propose assigning the location New
York City to the entire IP range.

To perform interpolation, for a given IP range size we first grouped all
ground truth IPs by the given netmask. In each of these contiguous IP ranges
we computed the pairwise distance between the ground truth IPs. We retained
the IP ranges that contained at least n ground truth IPs in total, and all these
IPs in the range are within m kilometers of each other. We then assigned the
center of all these coordinates to be the location of the entire IP range.

We evaluated our proposal on multiple IP range sizes and multiple values of
n and m using local parameter search on our ground truth set. We found that
using a size of 256 IPs yields the best combination of accuracy and coverage.
This IP range size is also often used by commercial IP geolocation databases.

We obtained good accuracy by setting the n parameter to 2. Setting it
to 1 yields lower accuracy by 0.6 percentage points and higher coverage by
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152.153.128.51
(New York City)

152.153.128.0/24
Location: Unknown

152.153.128.0/24
Location: NYC

152.153.128.197
(New York City)

Same Entire 
IP Range

(New York City)
Interpolation

Figure 11.2: Example of IP range interpolation. Since IP range 152.153.128.0/24
contains two IP addresses with the same known location (coordinates
in New York City), we propagate that location to the entire IP range.
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Figure 11.3: Comparison of IP range interpolation error distance to IP range colo-
cation distance. Note that interpolation error distance represents the
distance between the predicted location and the actual location as
given by the ground truth set, while the colocation distance repre-
sents the pair-wise distance between IPs with known location.

0.8%, while setting it to 3 yields higher accuracy by 0.2 percentage points
and a decrease in coverage by 0.8%. Finally, we set the m parameter to 25
kilometers. Setting it to 20 kilometers yields a 1 percentage point improvement
in accuracy at 10 kilometers, at the cost of reduced coverage by 25%, while
setting it at 30 kilometers results in an accuracy decrease of 1.5 percentage
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points but with an increase of 11% in coverage. Using these parameters (n=2,
m=25 ), we filtered the 3.5 million distinct IP ranges of size 256 in the ground
truth set down to 1.5 million ranges used for interpolation.

Figure 11.3 presents the evaluation result using ten-fold cross validation on
the ground truth set. The interpolation curve shows the error distance between
where our interpolation places the IP, and its actual location. Results show
that 96.7% of IPs have a predicted location that is within 10 kilometers of their
actual location, and 99.4% of them are within 20 kilometers. For comparison,
we have also displayed the equivalent 256 IPs colocation curve from Figure
11.1, where IP range pairs were located within 10 kilometers for 72.3% of data
points, and 20 kilometers for 83.8% of data points. In conclusion, if two or
more IP addresses in the same IP range are located in the same geographic
area, it is very likely that the rest of the IP range is also in the same area.
Using IP range interpolation we increased our ground truth coverage from 8.9
million IP addresses to 382 million IP addresses. In Chapter 12 we will

further evaluate using interpolation to extend the IP coverage of a

geolocation method based on traceroute paths.
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Chapter 12

Traceroute Location Propagation

In this chapter we use latency differences along the traceroute path,

combined with interpolation at the IP range level, to improve IP

geolocation. We base our approach on two assumptions. Our first assump-
tion, which we have already evaluated in Chapter 11, is that addresses in a
consecutive IP range are often located in the same geographic region. Our sec-
ond assumption, which we study here, is that nodes which are close together
in terms of latency on a traceroute path are also near in terms of geographic
distance. We evaluate to what degree these assumptions are true using a large
ground truth set of 8.9 million IP addresses.

In our preliminary investigation we define the concept of latency neigh-

bors. We show that there is a direct relationship between latency differences
along the traceroute path and physical distance in kilometers. We propose to
exploit this property to improve IP geolocation. We then propose combining
the concepts of traceroute latency neighbors and IP range location interpola-
tion to improve IP geolocation. We interpolate locations from the training set
to increase its coverage. Then, we use latency neighbors to further propagate
locations from IP ranges with known locations to IP ranges with unknown
locations, using traceroute latency neighbors in aggregate. We evaluate our
approach against two state of the art commercial IP geolocation databases,
using a large traceroute dataset and a large ground truth set. We show that
our approach significantly outperforms two commercial geolocation databases.
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12.1 Datasets

The public traceroute dataset contains 9 billion traceroutes collected be-
tween January and November 2017. We derived it from the IPv4 Routed
/24 Topology Dataset [125] provided by the Center for Applied Internet Data
Analysis (CAIDA). They collect this data through the Archipelago (Ark) Mea-
surement Infrastructure, which spans approximately 208 servers located in 63
countries. Every 48 hours a random IP address is chosen in each /24 prefix,
then the chosen IP addresses are individually probed by random Ark servers.
Therefore, both the IP chosen per range and the Ark machine probing that IP
change in time. While this allows for more data variety, it also prevents using
the dataset for typical latency multilateration [39]. We further parse and ap-
ply post-processing on this dataset to extract latency neighbors, as described
in Section 12.2.

Our proprietary ground truth set contains 8.9 million IP addresses with
known location, compiled during the 28-day period ending on December 1st,
2017. We use the same dataset as described in Section 11.1. Please refer to
that section for a detailed description of the dataset. Although we evaluate
our approach on IPv4, methods described here can be equally applied to IPv6
IPs.

To aid in reproducing our experiments, we also perform our final evalu-
ation with a second public training set extracted from PeeringDB, which
is a self-reported database of worldwide peering points [171]. The dataset
contains approximately 400 IP ranges spanning 128,000 IP addresses, along
with geographic coordinates. Whereas the first ground truth set is proprietary
and it mainly contains end user client IPs, this second dataset contains IP
ranges that are part of the Internet peering infrastructure. To obtain it, we
enumerate the Internet Exchanges in the database, then for each exchange
we enumerate the facilities. We retain only the facilities which contain exact
location coordinates. Since IP ranges are published at the Internet Exchange
level, we determine a location consensus among the coordinates of all the fa-
cilities belonging to an exchange. If all facilities are located in the same city,
then we output the IP range and the consensus coordinates. Along with this
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5 ms

6 ms

1 ms
Source Destination

Figure 12.1: Example of latency neighbors for X <= 1 ms. Since the latency differ-
ence between nodes 4 and 5 on the traceroute path is 1 milliseconds,
we consider them latency neighbors.

dissertation we are making the traceroute dataset parsing library and the Peer-
ingDB parsing and generation library available as open source. We are also
publishing a snapshot of the PeeringDB dataset.

We carried out our experiments through January 2019. The reason our
traceroute and IP location ground truth data sets are from 2017 is that the
Department of Homeland Security, which now hosts the dataset, restricts ac-
cess to data newer than 12 months [172].

12.2 Latency Neighbors

We define latency neighbors as pairs of nodes along a traceroute path that are
within X milliseconds from each other. We obtain the latency difference by
subtracting the round-trip times between the source IP and the two neighbor
candidates. Figure 12.1 shows an example of two nodes along a traceroute
path which are at 5 and 6 milliseconds distance respectively from the source IP,
which results in a latency difference of 1 millisecond. Since a pair can appear
in multiple traceroutes, we aggregate all such instances and make a decision on
the median round trip time. This aggregation has an added benefit of removing
outlier pairs where the latency across multiple readings is too variable and the
median becomes too high. To be considered latency neighbors, the nodes do
not have to be located consecutively on the traceroute path, as long as they
are within X milliseconds of each other.

Our assumption is that traceroute neighbors that are close together in
terms of latency are also close geographically. As a preliminary test of this
assumption, we extracted all latency neighbors from the traceroute dataset
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that were at most 10 milliseconds apart. Note that all latencies are from
round-trip measurements, so the actual latency between them was at most 5
milliseconds. Previous research has found that packets travel in real networks
at about 4/9 the speed of light, or about 133 kilometers per millisecond [86].
More recent research has suggested the speed in practice is even lower at 62.7
kilometers per millisecond on average [80]. We then further filtered these
neighbor pairs to retain only the ones where both IPs were also present in
our ground truth set with known IP locations. Since we required both exact
neighbor IPs to be present in the ground truth set, this resulted in only 2,000
pairs, which is an extremely small coverage that makes it difficult to draw
overall conclusions. The results show 65% of the neighbors are within 10
kilometers of each other. Although the results are promising, there is still
a need to explore ways to increase ground truth coverage and to develop a
systematic way to propagate locations over traceroute paths.

12.3 Location Propagation Evaluation

We perform location propagation by combining the concepts of latency neigh-
bors and IP interpolation. First, we interpolate the ground truth set to increase
its coverage. Then, we propagate these locations from IPs with known location
to IPs with unknown location, through latency neighbors. We use the ground
truth set both for training and testing by using ten-fold cross validation, where
we propagate locations using 9 folds and we test using the last one. We report
the results as the average of all the runs. The balance of accuracy and coverage
of the model can be adjusted by varying two parameters used in determining
latency neighbors: X, the maximum latency difference between two nodes and
Y, a new parameter which restricts the maximum RTT between the source IP,
and any of the two neighbors. In Figure 12.1 the maximum latency difference
between the source IP and any of the two candidate latency neighbors is 6
milliseconds. If we set Y to be 6 or larger, then the two highlighted neighbors
would be extracted as valid.

To find the optimal values we performed a local parameter search. We
found that as we increased the maximum latency difference X from 1 to 4
the accuracy at <10 km decreased and the coverage increased. The same
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Traceroute-GPS-HighAcc Traceroute-GPS-HighCov
Traceroute-PeeringDB Commercial ProviderA
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Figure 12.2: Cumulative error distance results that compare three instances of our
approach to two state-of-the-art commercial IP geolocation baselines.

was true for varying the maximum RTT parameter from 1 to 10. The curves
Traceroute-GPS-HighAcc and Traceroute-GPS-HighCov in Figure 12.2 present
two instances of these parameters that graphically demonstrate the effect on
accuracy. The former variation plots the results for parameters X=2, Y=2
and the latter variation uses X=3, Y=9. The higher accuracy version has a
coverage of 1.4 million IP addresses across 7,400 IP ranges with propagated
location, while the higher coverage version has a coverage of 15 million IPs
across 83,000 IP ranges. These IPs had a previously unknown location that
we now determined using location propagation. This evaluation uses the in-
terpolated GPS-based ground truth as both training and test set. We also ran
the same experiments on the non-interpolated ground truth set and obtained
very similar results, but at lower IP coverage. Figure 12.2 also shows the re-
sults for a third variation of our approach that uses the PeeringDB dataset
with X=3, Y=9 for location propagation. Here the overall results roughly fall
between the first two instances.

We compare these three variations against two state of the art commercial
databases, one labeled ProviderA and the other labeled ProviderB. We cannot
reveal the names of the proprietary databases since their terms of use forbid
comparative benchmarking. The results show that all three variants of our
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Table 12.1: Comparison between three instances of our two approaches and two
state of the art commercial geolocation databases, across several met-
rics.

Median
error

% Err
<10km

RMSE in
km

Traceroute-GPS-HighAcc 4.3 km 67.7% 329.3
Traceroute-GPS-HighCov 10.1 km 50.5% 423.6
Traceroute-PeeringDB 8.4 km 61.1% 2124.9
Commercial Provider A 11.1 km 47.2% 545.9
Commercial Provider B 16.7 km 36.7% 545.3

approach consistently outperform the commercial databases in error distance.
Table 12.1 also compares our variants to these two baselines across multiple
metrics. Our three instances outperform the commercial databases both in
terms of median error (lower is better) and percentage of data points with error
<10 km (higher is better). The last column of the table displays root-mean-
square error, which is a metric more heavily influenced by outliers. It shows
that the two instances trained on the proprietary dataset have a better (lower)
RMSE than the commercial providers. However, it shows that the instance
derived from PeeringDB data contains some outliers with high error distance.
One potential explanation for these outliers is that sometimes PeeringDB IP
ranges contain IPs that interconnect datacenters that are far from each other,
so errors caused by these IP ranges result in large error distances.

12.4 Conclusions

We investigated and combined two IP geolocation approaches, one based on
IP range interpolation, and the other one based on location propagation over
traceroute paths. Our combined technique significantly outperforms state of
the art commercial databases by up to 31 percentage points at error distance
smaller than 10 kilometers. To aid in reproducing our results, we are making
the traceroute dataset parsing library, and the PeeringDB parsing and gener-
ation library available as open source. We are also publishing a snapshot of
the PeeringDB dataset.
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Chapter 13

Extracting Location Information

from Bulk WHOIS Databases

To avoid conflicts, public Internet IP addresses are unique. Early on, the al-
location of IP addresses to organizations was carried out by Jon Postel, who
maintained the list of ranges and organization details by hand in a paper note-
book [173]. Once the list grew too big, this role was formalized and taken over
in 1988 by an organization named the Internet Assigned Numbers Authority
(IANA). As the Internet kept on growing, in 1992 the Internet Engineering
Task Force (IETF) recommended creating subsidiary organizations to man-
age allocations at a more regional level [174, 175]. Today, there are five of
these Regional Internet Registries (RIRs), each responsible for managing the
allocation of IPs at a roughly continent level [176]:
• ARIN stands for the American Registry for Internet Numbers and serves
Antarctica, Canada, parts of the Caribbean, and the United States.

• AFRINIC, the African Network Information Center, serves Africa.

• APNIC, which stands for the Asia-Pacific Network Information Centre,
serves East Asia, Oceania, South Asia, and Southeast Asia.

• LACNIC, which is short for Latin America and Caribbean Network In-
formation Centre, serves most of the Caribbean and all of Latin America.

• RIPE NCC, which stands for Réseaux IP Européens Network Coordination
Centre, serves Europe, Central Asia, Russia, and West Asia.
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IANA assigns large IP blocks to the five RIRs, which in turn allocate smaller
blocks to large organizations such as Internet backbone providers or Internet
Service Providers. These smaller organizations can then further suballocate
progressively smaller chunks of the IP address space to businesses or even
individuals.

When a business suballocates a block to a customer, they are generally
required to report the information of the customer to the corresponding Re-
gional Registry. There is however one exception. ARIN, which is the Regional
Internet Registry responsible for North America, gives businesses two options
to report block assignments. The first option is to report the allocation back
to ARIN. The second option is to maintain a separate decentralized RWhois
server [177]. This server needs to be accessible on the public Internet and must
return up-to-date reassignment information [178].

Each IP block record in WHOIS databases contains information about
the organization which received the block, often including postal addresses.
Figure 13.1 contains an example of WHOIS output for IP 128.180.1.16, which
is allocated to Lehigh University. The requested IP address matches IP range
128.180.0.0/16, so the WHOIS command returns information about that
entire block.

Since WHOIS databases can be downloaded in their entirety, they can po-
tentially be a source of IP geolocation with relatively high coverage. As shown
in Chapter 5, there are a handful of papers that have previously used WHOIS
information for IP geolocation [29, 31, 115, 116, 124]. However, they have var-
ious limitations. Some of them are missing an evaluation section [115], some
use basic parsing that only supports US zip codes or single countries [29, 116],
and others lack descriptions of the approaches taken to extract information
[31, 116, 124]. To the best of our knowledge, no previous work has used multi-
ple complete WHOIS databases. Instead, researchers have typically performed
live WHOIS queries for a limited of IPs that were part of their ground truth.
In contrast, we target the entire IPv4 space by parsing complete WHOIS data-
bases. Also, there is no previous work which exclusively focuses and evaluates
using WHOIS databases for geolocation in isolation from other approaches.

In this chapter we systematically study using WHOIS data for IP geoloca-
tion. To use this information, we had to overcome several technical challenges:
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whois 128.180.1.16

NetRange: 128.180.0.0 - 128.180.255.255
CIDR: 128.180.0.0/16
NetName: LEHIGH
NetHandle: NET-128-180-0-0-1
Parent: NET128 (NET-128-0-0-0-0)
NetType: Direct Allocation
OriginAS:
Organization: Lehigh University (LEHIGH)
RegDate: 1987-06-17
Updated: 2017-08-04
Ref: https://rdap.arin.net/registry/ip/128.180.0.0

OrgName: Lehigh University
OrgId: LEHIGH
Address: 183 Computing Center, Building 8B
City: Bethlehem
StateProv: PA
PostalCode: 18015
Country: US
RegDate: 1987-06-17
Updated: 2017-08-07
Ref: https://rdap.arin.net/registry/entity/LEHIGH

Figure 13.1: Example of WHOIS record for IP 128.180.1.16, which is allocated to
Lehigh University and corresponds to the larger block 128.180.0.0/16.

1.Access to WHOIS databases is not standardized. Each RIR has a
different application process, and some only receive applications through
physical mail. Once we were granted permission to access the databases
we also also noticed that they require different connection methods (HTTP,
FTP) and that the files are compressed in various archive formats.

2.Data schemas are heterogeneous. Field names and values are also not
standardized across the databases. A manual verification reveals that while
ARIN records for North America contain separate fields for city, state, and
country, other RIRs such as APNIC in Asia and AFRINIC in Africa com-
bine postal addresses in a single address field. Even worse, RIPE NCC in
Europe entirely strips any location information from their records due to
privacy concerns. In fact, IETF used to have a working group tasked exclu-
sively with standardizing WHOIS information. In their 2013 meeting they
held a presentation on the differences between RIR data schemas, where
they specifically highlighted location information as not being standardized
[179]. Also, accessing secondary RWhois servers further introduces schema
variability, with potentially hundreds of variations.

3.Data quality is variable. The quality of data varies from database to
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database and even from record to record. Some records are missing fields,
and others contain placeholder values.

4.Collecting RWhois data requires active crawling. While WHOIS da-
tabases are mantained in centralized locations and therefore can be down-
loaded in bulk, the Referral Whois system allowed by ARIN in North Amer-
ica is decentralized. Therefore, we need to crawl this information from dis-
parate servers that run a variety of WHOIS software.

5.Location normalization. Depending on the database, postal addresses are
either stored at the IP block level, or they are stored in the separate records of
the asignee organization. Furthermore, since locations are inserted manually
into WHOIS records, we need to standardize and obtain coordinates for each
address.

6.Overlapping and duplicate IP ranges. Entire network blocks can get re-
allocated from one organization to another. Or they can be split into smaller
ranges as they get assigned to smaller organizations. Each such operation
results in a record in WHOIS databases. This means we can often encounter
duplicate IP ranges, or smaller IP ranges which have a corresponding larger
"parent" range. We need to perform merging and deduplication in order to
not use IP ranges multiple times.

In the remainder of this chapter we first describe our approach to crawling,
downloading, and parsing WHOIS records. We separately focus on collecting
RWhois records, which to our knowledge has not been attempted before in
related work. Then, we perform a preliminary investigation of the location
data stored in these records. After we split, combine, and deduplicate network
blocks, we complete a final evaluation.

13.1 Collecting, Parsing, and Normalizing

Records

At the onset of our study we obtained and manually examined the bulk WHOIS
databases from the five Regional Internet Registries. To overcome the afore-
mentioned differences between databases, we implemented a library that fa-
cilitates downloading, unpacking, and parsing WHOIS records across the five
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Organization name: Org-Name, Organization-Name, Customer Organization, Org-Name;I,
OrgName
IP Range: CIDR, IP-Network, IP-Network-Block, Netblock, IP-Range, Network-Block,
NetRange, inetnum, inet6num
Address: Address, Org-Address, Customer Address, customer-address, Address-1
City: City, Org-City, Organization-City, Customer City
State: Org-State, State, State-Province, StateProv, Organization-State, Customer
State/Province, State/Prov
Postal Code: Postal-Code, Org-Zip, Customer Postal Code, Organization-Zip, PostalCode
Country: Country, Country-Code, Org-Country, Organization-Country, Customer Country
Code

Figure 13.2: Examples of normalizing field names across the five RIR WHOIS
databases

0, 00000, 99999, private, private residence, P.R., Private Address, Private Addr,
Private Addr., Private Resident, Private Res., PRIVATE CUSTOMER, private-address,
Unavailable Street, 1 Unavailable Street, Unavailable St, Unavailable Str,
Unavailable St., Unavailable Str., Unavailable Address, Unavailable, Street Not
Available, Address Not Available, Street N/A, Address N/A, N/A Street, N/A Addr,
N/A Addr., N/A Address, N/A St, N/A St., N/A Str, N/A Str., N/A, n.a., n.a, 1
na, Unknown, Postal Address, No info, Not Defined, Undefined, null, _None, None,
Address, Country, City, Postal Code, Street, PostalCode, Private Data, SERVER, fake
st, fake st., FakePostalCode, Fake, FakeTown, Fakeville, FakeSuburb, Fake_State,
Fake City, Fakeplace

Figure 13.3: Examples of invalid yet commonly occurring values in WHOIS records

registries. We have already made this WhoisParsers1 library open source.
Given authentication information, the library downloads each of the databa-
ses, unpacks them, and then parses them. The output of the library contains
IP ranges, along with normalized addresses.

To normalize field names between the registries, we first parsed and counted
the occurrence of each type of field. We then manually mapped the names to
each other, as can be seen in the examples of Figure 13.2. To remove invalid
placeholder values, we counted the occurrences of all values across all location
related fields, and then we manually inspected the top results to compile a list
of invalid values. Figure 13.3 shows a sample of these values.

We standardized locations in two steps. First, we located the postal ad-
dresses for each network block by joining IP range records with organization
records. Depending on the database, the locations were either stored at the
organization level, or at the IP block level. Second, to normalize the addresses
we used the same approach as in Chapter 7, where we parsed locations using
the Bing reverse geocoding API [69].

1https://github.com/Microsoft/WhoisParsers
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Table 13.1: Statistics of information extracted from bulk WHOIS databases from
the five Regional Internet Registries. The extra RWhois column is
obtained by querying RWhois servers listed in the ARIN database.

ARIN RWhois AFRINIC APNIC LACNIC RIPE

Total WHOIS Records 8.1M 397K 230K 2.1M 435K 6.6M
Organizations 3.6M 138K 2.4K 9.3K 9.1K 125K
IPv6 Network Ranges 144K N/A 30.9K 70.2K 17.3K 1M
IPv4 Network Ranges 3.27M 259K 115.2K 1.0M 399K 4.1M

With raw location candidate 3.26M 212K 6.7K 1.0M 399K
With extracted location 3.25M 212K 6.7K 622K 390K

After range dedupe 3.25M 210K 6.7K 622K 330K

RWhois, which stands for Referral Whois, requires crawling information
from many different disparate WHOIS servers. To crawl these servers, we first
parsed the ARIN database to find networks that contain IP ranges with the
field ReferralServer. Starting from the given IP range, we then crawled the
entire range by repeatedly incrementing the starting IP address by 16 IPs.

13.2 Preliminary Investigation

We downloaded and parsed the five RIR databases in December 2018. Start-
ing from the ARIN database, we also crawled Referral Whois servers for 336
networks, of which 249 returned valid WHOIS records. Table 13.1 displays
statistics on the collected data. ARIN has the most number of organizations
in the database at 3.6 million, with the rest of the RIRs each having 137,588 or
less. In terms of addresses, RIPE has the highest raw number of IPv4 ranges
(regardless of size) at 4.1 million, followed by ARIN with 3.27 million. We use
locations extracted either at the organization level, or directly at the IP range
level, depending on the record fields.

After extracting and normalizing raw locations, and after deduplicating
ranges by picking the oldest record for an IP range, ARIN is left with 3.25
million locations, followed by APNIC at 621,966. From the table we can notice
the location coverage varies among the databases. AFRINIC has only 6,735
raw locations after parsing 115,200 IPv4 network ranges. The reason for this
significant difference is that most AFRINIC records do not contain location
fields. Also, after normalization the number of APNIC locations drops from
1 million to 621,966. The reason is that in the APNIC database the locations
are sometimes recorded in the record field, which is noisy and can contain
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other unrelated information. While we show a column for RIPE, as we previ-
ously discussed this database does not contain location fields due to privacy
concerns. In conclusion, the amount and quality of location information varies
considerably across the databases.

We now turn to studying the granularity of networks blocks stored in these
databases. Figure 13.4 displays the popularity of each network block size in
WHOIS network records. To allow relative comparison between databases,
the results are shown as percentages. Note that here we count the number of
records with a certain size, we do not count the total number of IPs in those
records. We display IP range popularity for multiples of two, from 20 to 210.
The Other column mostly contains network blocks of larger size, but there are
a few exceptions of IP ranges that have a number of IPs that falls in between
multiples of two but are also smaller than 210. The figure shows, for example,
that 23.2% of network records in the AFRINIC database have a size of 256
IPs.
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Figure 13.4: The granularity of IP Range sizes, across 4 of the bulk databases, as
well as the crawled RWhois database.

The results in the figure lead us to several observations. First, 67.7% of
the network records in the crawled Referral Whois database contain a single
IP address. The reason for this large number of single IPs is that Referral
Whois information is the most granular dataset since it is obtained directly
from Internet providers which allocate IPs to small businesses. Second, the
AFRINIC database has the largest percentage of records that fall in the Other
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category, at 36.5%. A manual inspection of the data behind the Other category
reveals that 28.2 percentage points contain IP ranges between (1,024-65,536],
with the rest of 8.3 percentage points contain network blocks that are larger
in size. Third, blocks of 8 IPs are overwhelmingly popular in the ARIN and
LACNIC databases, at 68.4% and 53.0%, respectively. The popular records
are more spread out in the APNIC database, with record sizes of 4, 8, and 1 IPs
being the most popular, in this order. In conclusion, the figure demonstrates
that there are significant differences in IP range size popularity among the
databases.

To get a sense of the IP coverage per network block size, in Figure 13.5 we
display the total number of IPs in each IP range size, across all the databases.
To obtain these numbers we simply multiplied the IP range sizes by the number
of records that have that size. In contrast with the previous figure that only
showed raw record counts, when we also take into consideration IP coverage it
is apparent that IP ranges of size 1 and 2 have very small coverage, at 363,777
and 74,492 IPs, respectively. Furthermore, blocks of 256 IPs have the highest
coverage among the sizes shown in the figure, followed by size 1,024 and size
8. If we were to continue the figure and display larger block sizes, those would
overshadow these smaller IP range sizes in coverage. However, their location
accuracy might be poor due to their large size.
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Figure 13.5: Total IP counts for each IP range size. We computed these numbers
by multiplying the block size by how many blocks have this size.

As a preliminary evaluation, we determined the location accuracy of each
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database, for several IP range sizes. We first normalized locations and con-
verted them to coordinates, as previously described. As shown in Table 13.1,
some records did not contain valid locations and therefore this process changed
the distribution of IP ranges. The AFRINIC data was the most impacted, since
most AFRINIC records do not contain locations. Then, we performed dedu-
plication on the records by finding exact duplicate ranges and retaining the
record that was updated more recently. While this results in unique network
blocks, they can and often still are overlapping. For instance, when a RIR
allocates a large block to an ISP and then the ISP further re-allocates smaller
subsets of the range, all of these records will overlap and show up separately
in the databases. Using a ground truth set of ≈70 million IP addresses, we
then determined the error distance for each database and block size.

Figure 13.6 displays accuracy for each database at 10 kilometers, across
multiple range sizes. The bars show what percentage of ground truth IPs that
fall in that database and range size combination are within 10 kilometers of
the locations extracted from the database. The data reveals that accuracy
varies between databases and within databases, depending on IP range size.
Smaller IP ranges generally yield higher accuracy, across all databases. As
the network block size increases, the accuracy drops. In some cases, such as
ARIN, RWhois and LACNIC, this drop is significant, while in other cases such
as AFRINIC and APNIC, it is more modest as these databases start out with a
lower accuracy. This result suggests that larger network blocks generally cover
a wider geographical region than smaller ones. The graph also shows that for
smaller IP range sizes up to 64 IPs in size, ARIN and RWhois are much more
accurate than the other databases. This suggests location data is higher quality
in some databases when compared to others. The reason for the difference in
accuracy is that the location data in ARIN and RWhois is stored in separate
structured fields for City, State, etc., while the data in the other databases
such as APNIC and AFRINIC is either stored in a single address record, or
it is combined with other textual information which increases the amount of
noise. Finally, it is interesting to note that the graph shows spikes of higher
accuracy for certain network block sizes where their immediate neighbors have
lower accuracy.
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Figure 13.6: Accuracy per database and IP range at 10 kilometers. The X axis
displays IP range sizes per database. The Y axis represents the ac-
curacy at 10 kilometers, that is the percentage of data points where
the real location in the ground truth set is within 10 kilometers of the
location extracted from WHOIS records.

13.3 Segmenting and Combining Records

We performed the preliminary evaluation on the raw network block records,
which often overlap either entirely or partially. These raw blocks are also
variable in size, with the smallest ones containing a single address, and the
larger ones containing more than a million addresses. To obtain a final dataset
with non-overlapping blocks, we need to combine and merge these records. We
also need to resolve any location disagreements that might occur. We propose
the following approach:

1.Parse the raw WHOIS records, mapping similar fields between databa-
ses to each other. For example, the Created field in LACNIC is equivalent
to the RegDate field in RWhois.

2.Normalize locations using the Bing reverse geocoding API [69]. Discard
records which either do not have a location, or the location is not at city
level granularity. For instance, if the granularity of the extracted location is
at the county, state, or country level, we discard that record. We made this
choice because locations that cover a large geographic area are not precise
enough for IP geolocation.
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3.Remove exact duplicates of IP ranges by grouping by IP range and re-
taining the record which was last updated. This step is necessary for cases
when a WHOIS database contains the entire history allocations and reallo-
cations for an IP range.

4.Split ranges by given block size. To allow combining network blocks of
different sizes, we first pick a target block size. Then, we segment the raw
WHOIS records by the target size. If a record has a size that is smaller than
or equal to the block size, we do not modify it. If a record has a size that is
larger than the target block size, we split it into multiple blocks, to match
the target size. For example, if a raw record contains an IP range of 1,024
IPs, and the target block size is 256, we would split that raw record into 4
ranges of 256 each, that together cover the entire size of 1,024 addresses.

5.Apply deduplication again on the target block size. As before, apply
deduplication for each distinct IP range by retaining the record with the
latest update time. The difference compared to the first deduplication step
is that in the first case we acted upon raw network blocks, while here we use
the ranges that were split into a target block size.

6.Determine consensus locations for each distinct IP range. If a network
block has a single location candidate, then we preserve that location. If
the range has more than one location, we apply a technique inspired by
Chapter 11, where we compute the pairwise distance between each data
point in the range. If all pairs are within 25 kilometers of each other, we
assign the centroid of the locations to the network block. If any pair is
outside this distance, we discard the entire block. The reason for discarding
blocks with conflicting locations is that it is possible that it actually contains
smaller IP ranges not recorded in the database, which are actually in different
locations. To avoid this problem, we decided to remove the entire block from
the output.

Figure 13.7 shows an example of our approach. Both the left and right sides
start from the same IP blocks in the first illustration, where the locations A
and B have already been normalized. To segment the ranges, in the second
illustration we choose a target block size. For the left side we picked a target
block size of 64, while for the right size we picked a size of 128. If a raw network
block, such as the leftmost one in the figure, is larger than the target block, we
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segment it into smaller ranges. After grouping the location data points by the
target block size, in the third illustration we determine a location consensus,
by retaining the IP ranges which have a consistent location, regardless of the
number of underlying data points. An interesting observation is that, as can
be seen in the example, picking a larger target range size does not necessarily
result in higher total IP coverage.
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Figure 13.7: Example of the effect that block size has on the result when segment-
ing and combining records. In both the left and right side we start
from the same raw records, each located in either location A which
is represented with a blue horizontal solid line, or location B which
is represented by a violet horizontal dashed line. In the left example
we segment and combine records using a block size of 64 IPs, while
in the right example we use a size of 128 IPs. If there are location
disagreements, we drop that block from the output. Perhaps counter-
intuitively, the example shows that a larger block size can yield lower
IP coverage.

13.4 Evaluation

To evaluate the geolocation data extracted from WHOIS datasets, we used
a ground truth set of 70 million IP addresses with known location, compiled
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during the 28-day period ending on October 26th, 2018. Since in this disser-
tation we focus on worldwide IP geolocation, we evaluated a dataset which
combines the data from five WHOIS databases: ARIN, RWhois, AFRINIC,
APNIC, LACNIC. As previously discussed, we did not include data from the
RIPE NCC database, which does not contain location information.

We experimented with three different parameters. First, we tested different
maximum values for source IP range sizes. In Figure 13.6 we have observed
that as the network range size increases in raw source records, the overall
location accuracy decreases. This was expected, as larger ranges cover bigger
geographic regions. Therefore, we define the source range size as the maximum
size of raw network blocks used as input. If a record has a larger block size, we
skip it. Second, we performed experiments using different target block sizes
used for segmenting IP ranges. Third and finally, we also experimented with
the minimum number of location data points required inside a target block in
order to obtain a location consensus.

To better understand these three parameters, let us discuss an example
where we choose a maximum source IP range of 1,024, a target IP range
size of 256 addresses, and a minimum of two data points required for location
consensus. These parameters mean that among all of the raw WHOIS records,
we only use those that have a raw IP range of 1,024 IPs or smaller. We then
segment all of these raw IP ranges to fit in smaller IP ranges with a target
size of 256 addresses. Finally, we retain only the target IP ranges of 256 IPs
which match at least two WHOIS records, and the locations in those records
are at most 25 kilometers apart.

Figure 13.8 displays cumulative error distance for a varying number of
maximum sizes for the source IP range, a target segmentation block size of 128
IPs, and a minimum of one data points per block used for location consensus.
Note that using a minimum of one data point for consensus still implies that
if the target block matches more than one data point, all of the matching data
points need to be within 25 kilometers of each other. Figure 13.9 similarly
shows cumulative error distance, but for a target size of 256 IPs. From both
figures we can clearly see that as the maximum source size increases, the overall
accuracy goes down. For example, in Figure 13.8, using a source size of 65,536
IPs yields an accuracy of only 13.98% at 10 kilometers, while using a source

165



of 1,048 IPs results in a much improved accuracy of 37.68% at 10 kilometers.
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Figure 13.8: Error distance when setting the maximum source IP range size be-
tween 65,536 and 256 IPs, setting the target size to 128 IPs, and using
a single location as the minimum for location consensus.
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Figure 13.9: Error distance when setting the maximum source IP range size be-
tween 65,536 and 256 IPs, setting the target size to 256 IPs, and using
a single location as the minimum for location consensus.

However, although reducing the source size results in increased accuracy,
it also decreases IP coverage. Using the same example, we obtain a total IP
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coverage of 881.5 million IP addresses for a source size of 65,536 IPs, and only
109.5 million IP addresses for a source size of 1,024 IPs. Therefore, changing
the maximum source size allows tuning the tradeoff between accuracy and
coverage.

We will now add a second dimension and discuss the impact that using
different values for both the source and target parameters has on accuracy and
coverage. Table 13.2 lists the percentage of ground truth data points where
the error is smaller than 10 kilometers. The results in the table lead to several
observations. First, while varying the maximum source size has a significant
impact on accuracy at 10 km, varying the target range size has a smaller
impact on the results. For instance, for a maximum source size of 65,536 IPs,
varying the target size from 512 to 32 IPs results in little change in accuracy,
with a minimum of 13.64% and a maximum of 14.01% error distance at 10 km,
respectively. Second, increasing the maximum source size does not always lead
to a decrease in accuracy. If we compare the results of maximum source 512
with maximum source 1,024, we can see that the accuracy actually increases.
The likely reason for this apparent anomaly is that in Figure 13.6 we have
shown that ARIN has comparatively good accuracy for record sizes of 1,024,
when compared to record sizes of 512. Since ARIN has the highest coverage
among databases, this result is therefore expected. Third, we observe that
setting the maximum source to 1,024 always yields the best results, regardless
of the value at which we set the target.

Table 13.3 shows the median error for the same combinations of parameters.
Here we again observe that we obtain the best results when using a maximum
source of 1,024 IPs. Furthermore, using a maximum source of 65,536 IPs leads
to high median errors on the order of hundreds of kilometers.

Table 13.4 contains Root Mean Squared Error results, which is a metric
that also denotes accuracy. However, as we described in more detail in Chapter
8, RMSE is much more heavily swayed by outliers with high error. The results
in the table suggest that WHOIS geolocation data sometimes results in data
points with large error in the order of hundreds or thousands of kilometers,
which significantly influences RMSE scores. Interestingly, we obtained the
best (lowest) RMSE scores when setting the maximum source to 512 IPs. This
result shows that using a maximum source of 1,024 IPs might not universally
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Table 13.2: Percentage of matching ground truth IPs with an error smaller than
10 kilometers. These numbers are equivalent to the <10 km column
in Figures 13.8 and 13.9. Max Source represents the maximum size of
IP ranges in raw WHOIS records that we use. If a record contains a
larger network block, we ignore it. Target is the fixed size IP range into
which we split the source records. For example, if a record contains a
network block of size 1,024, we split it into two records for target 512.
The table shows that using a max source of 1,024 yields the highest
(best) results.

Max Source ↓ Target → 512 256 128 64 32

65,536 (216) 13.64% 13.93% 13.98% 13.96% 14.01%
4,096 (212) 24.26% 25.55% 25.98% 25.87% 25.61%
2,048 (211) 29.77% 32.04% 32.89% 32.72% 32.15%
1,024 (210) 32.97% 36.41% 37.68% 37.28% 36.44%
512 (29) 18.85% 22.08% 23.75% 23.16% 22.42%

Table 13.3: The median error distance in kilometers for various combinations of
maximum source block size and target block size. The table shows that
using a max source size of 1,024 results in the lowest (best) median
errors.

Max Source ↓ Target → 512 256 128 64 32

65,536 (216) 762.2 757.4 754.9 753.6 749.6
4,096 (212) 51.4 51.2 50.0 50.0 51.7
2,048 (211) 33.6 32.0 30.9 31.2 31.9
1,024 (210) 28.8 24.8 23.0 23.4 24.6
512 (29) 42.0 38.3 35.8 35.9 38.0

be the best choice.

In Table 13.5 we list total IP coverage. Depending on the combination
of maximum source and target sizes, we can obtain a coverage between 79.4
million IP addresses on the low end, and 894.7 million IP addresses on the
high end. While the results in the previous tables used ground truth data
for evaluation, this table lists total IP coverage before the intersection with
ground truth. When analyzing the results from all tables, we conclude that
obtaining a higher coverage comes at the cost of lower accuracy. On the higher
end, using WHOIS data for geolocation yields the highest IP coverage across
all the geolocation methods discussed in this dissertation.

Finally, we have also experimented with varying the minimum number of
data points needed to make a location consensus decision. For all the previous
experiments in this section we set this number to one. When we instead set
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Table 13.4: RMSE, which stands for Root Mean Squared Error, across multiple
combinations of maximum source block size and target block size. In-
terestingly, here we see that a maximum source block of 512 yields the
best RMSE scores.

Max Source ↓ Target → 512 256 128 64 32

65,536 (216) 2,636.3 2,643.8 2,652.2 2,641.5 2,639.7
4,096 (212) 1,661.9 1,671.8 1,696.8 1,675.1 1,666.6
2,048 (211) 1,699.6 1,715.9 1,750.2 1,721.1 1,711.0
1,024 (210) 1,780.3 1,794.2 1,842.5 1,800.7 1,792.6
512 (29) 1,454.0 1,449.7 1,409.7 1,412.4 1,381.1

Table 13.5: Total IP coverage for different combinations of maximum source block
size and target size. To obtain IP coverage, we multiply the target IP
range size by the number of ranges in the output. Note that unlike
the other tables, this table does not depend on ground truth data, as
it shows the total coverage.

Max Source ↓ Target → 512 256 128 64 32

65,536 (216) 845.3M 875.0M 881.5M 888.0M 894.7M
4,096 (212) 173.0M 178.4M 180.5M 184.0M 188.1M
2,048 (211) 126.4M 129.0M 130.5M 133.6M 137.3M
1,024 (210) 107.2M 108.1M 109.5M 112.4M 115.6M
512 (29) 79.4M 78.9M 80.0M 82.7M 85.5M

the minimum to two data points, we observed that while the accuracy at 10
kilometers improved between 1 and 21 percentage points depending on the
maximum source size, the IP coverage was severely impacted. For example,
for a maximum source size of 65,536 IPs and a target of 256 IPs, changing the
minimum number of location consensus data points from one to two resulted
in an increase of 20.7 percentage points for accuracy at 10 kilometers, while
at the same time the total IP coverage dropped by 99.2%.

13.5 Conclusions

In this chapter we used location information extracted from WHOIS databases
for IP geolocation. To the best of our knowledge, using entire WHOIS data-
bases has never been attempted before in academic work. Also, no related
work has systematically evaluated the accuracy and IP coverage of WHOIS
data using a ground truth dataset of 70 million IP addresses. We presented an
approach to extract, normalize, combine, and segment data from raw network
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WHOIS records of different sizes. We experimented with different parameter
values for the maximum source sizes and target sizes. The results show that
depending on the application, we can tune the results for high coverage or
high accuracy. We obtained median error results between 23 kilometers and
762.2 kilometers, depending on the parameters; we also obtained a total IP
coverage between 79.4 million IP addresses and 894.7 million IP addresses.
Compared to other approached described in this dissertation, using WHOIS
data has moderate accuracy results, and much higher total IP coverage. In

Chapter 14, we will further compare the accuracy of this approach

with other geolocation methods and with commercial IP geolocation

databases. We will also combine all approaches from this dissertation into a
single larger database.
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Chapter 14

Conflating IP Geolocation

Information

As a final step in our journey of assembling an IP geolocation database from
scratch, in this chapter we aim to conflate data from multiple geolocation
approaches. Our challenge is to combine the output of several geolocation
methods by resolving any location conflicts. For instance, if for a given IP
range we have contradictory location information from three approaches, we
have to determine which of the three location candidates is likely to be the
correct one.

To compile a combined geolocation database, we first train and test each
individual geolocation approach using a common ground truth set of 70 mil-
lion IP addresses. Second, we determine the overlap and location agreement
between all pairs of geolocation methods. Third, we combine the output of
these approaches by casting the task as a machine learning problem, where for
a given IP range, a multiclass classifier decides the best location candidate by
choosing among geolocation approaches. Fourth, we determine the contribu-
tion that each data source and each feature class has on the accuracy of the
classifier. Fifth, we perform an extensive evaluation on the combined database
by presenting multiple quality metrics and by comparing it against two state of
the art commercial geolocation services. We show that our combined dataset
significantly outperforms commercial geolocation services in accuracy. Also,
its IP coverage is much higher than previous academic work in IP geolocation.
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Throughout this section we will use the metrics described in Table

14.1 to quantify accuracy and coverage.

Table 14.1: Description of metrics used to measure conflation accuracy and cover-
age, in the order in which they appear in this chapter.

Metric Explanation

Median error We define error distance for an IP address as the distance be-
tween the location estimated by a geolocation approach, and its
actual location as given by the ground truth dataset. Median
error is the 50th percentile of these measurements, which means
50% of the error distances are smaller than this value.

% error <10km Percentage of test set data points where this approach made
a decision, and the error is smaller than 10 kilometers. We
first intersect the ground truth test set with the output of a
geolocation method. Then we compute the error distance for
each of the IP addresses in the intersection. This metric then is
the percentage of these IP addresses where the error is smaller
than 10 kilometers.

RMSE in km Root Mean Squared Error or RMSE is an evaluation metric
which measures the differences between values predicted by a
model and the actual correct values as defined by a ground truth
set [42]. To obtain its value, we take the square root of the mean
of the squares of the deviations. One difference between RMSE
and median is that RMSE easily gets swayed by large outliers,
whereas median does not.

% GT err <10km Percentage of data points from the entire ground truth set - as
opposed to the intersection - where the location estimated by
this approach has an error smaller than 10 kilometers. Whereas
the % error <10km metric focuses on accuracy, % GT err
<10km combines both accuracy and coverage.

Total IP Coverage The total number of IP addresses for which a particular geolo-
cation approach can output location estimates. This number is
independent of the ground truth set.

Weighted TP Rate TheWeighted TP Rate metric represents the weighted True Pos-
itive rate. This metric is computed by taking the weighted av-
erage of the True Positive Rate of each of the classifier classes.
The True Positive Rate measures the proportion of actual pos-
itives that are correctly identified as such. The weight is given
by the number of data points in each class.

Correctly Classified The percentage of testing data points that were correctly clas-
sified. This value is obtained by dividing the number of data
points where the overall classifier makes a correct decision, over
the total number of data points where the classifier makes any
decision, across all classes.

GT Coverage Ground Truth Coverage Percentage. The percentage of the
ground truth dataset for which this particular approach was
able to output a location.
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14.1 Overlap and Agreement of Approaches

To combine and evaluate the seven geolocation approaches presented in this
dissertation, we used a ground truth set of 70 million IP addresses with known
location, compiled from Bing logs during the 28-day period ending on October
26th, 2018.

Table 14.2 lists the geolocation methods, along with the Section that de-
scribes each approach, as well as accuracy metrics and total IP coverage.
In previous chapters we evaluated four of our seven geolocation methods
using this more recent ground truth set (GeoClicks-GPS, GeoClicks-Index,
QueryLogs-V2, and WHOIS ). However, we originally evaluated the three re-
maining methods using older truth sets from 2017 and 2018. To bring all
approaches on the same level playing field, we trained and re-evaluated the re-
maining three geolocation approaches (ReverseDNS, IPInterpolation, Tracer-
oute) with the updated ground truth set, also using ten-fold cross-validation.
We used a netmask of /24, which was the IP range size used in most ap-
proaches. Wherever applicable, for all geolocation methods we picked the con-
servative variant that aimed for higher accuracy at the expense of coverage.
Nevertheless, the last line in the table shows that the union of all approaches
achieves a total IP coverage of close to 600 million addresses, which is higher
than most previous work in this area.

The table shows that the accuracy of the approaches varies considerably.
The IPInterpolation approach has the best median error at only 2.4 kilometers,
while the WHOIS method has the worst median error at 24.8 kilometers. In
terms of IP coverage, the Traceroute data source has the lowest coverage at
1.4 million IPs, while IPInterpolation has the best coverage at 357 million IPs.

The values in the % error <10km column represent the percentage of IP
addresses where error distance is smaller than 10 kilometers. This percentage
varies from 23.1% for ReverseDNS, up to 96.2% for IPInterpolation. Whereas
the % error <10km metric focuses on accuracy, the values in the % GT err
<10km column combine both accuracy and coverage. The results for this met-
ric are even more disparate, with the Traceroute approach yielding less than
1%, and the QueryLogs-V2 method achieving 45.2%. In this combined metric
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Table 14.2: Summary of the geolocation approaches presented in this dissertation.
We obtained the accuracy metrics for all methods using ten-fold cross-
validation over the same ground truth set of 70 million IP addresses.

Chapter Median % error RMSE % GT err Total IP
Section error km <10km in km <10km Coverage

ReverseDNS 8.4 21.9 23.1% 842.7 12.9% 37,156,096
GeoClicks-GPS 9.5.1 4.5 72.2% 893.4 2.2% 19,582,720
GeoClicks-Index 9.5.2 9.2 54.0% 1327.4 10.9% 118,515,200
QueryLogs-V2 10.1 7.6 63.3% 467.7 45.2% 210,220,544
IPInterpolation 11.2 2.4 96.2% 306.1 44.7% 357,289,728
Traceroute 12.3 8.9 55.6% 706.8 1.0% 1,409,792
WHOIS 13.3 24.8 36.4% 1794.2 1.2% 108,136,448

IP Ranges Union 597,726,720

the query-based approach interestingly surpasses the one based on IP inter-
polation, although the former has a much worse median error. The difference
in accuracy between the methods is also apparent in Figure 14.1, which shows
their cumulative error distance.
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Figure 14.1: Cumulative error distance for each individual IP geolocation ap-
proach.

We next investigated the location agreement between all pairs of geoloca-
tion approaches. For a given IP range, if location information was available
from two or more data sources, we computed the pairwise distance between
the location candidates. If a pair of data points was within 25 kilometers of
each other, we considered that there is location agreement between them. We
decided to use this threshold since we previously used it as a training threshold
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in several previous chapters. While two locations that are 25 km of each other
can be in two different cities, they are still relatively close by and can help
determine coarse location agreement in aggregate.

Examining Table 14.3, which contains the agreement between each pair
of data sources, leads us to several interesting findings. First, the agreement
between the IPInterpolation and GeoClicks-GPS is 87.2%, while the agree-
ment between IPInterpolation and GeoClicks-Index is higher at 94.4%. These
results are surprising because both the IPInterpolation and GeoClicks-GPS
approaches derive their training data from the GPS ground truth set, while
the GeoClicks-Index dataset uses information from the body of clicked docu-
ments. One would expect that there would be higher agreement between these
two GPS-based methods than between the interpolation approach and index-
based method. At the same time, the GeoClicks-Index approach has lower
accuracy than GeoClicks-GPS, while IPInterpolation has the best accuracy
of all seven approaches. This confirms our finding from Table 9.4 in Chap-
ter 9 that the click-based approaches are complementary, since their overlap
is only about 50%. Second, the location agreement between IPInterpolation
and QueryLogs-V2 is 98.6%. Having these two methods agree to this extent
is unexpected because the query-based approach uses information mined ex-
clusively from user queries which include explicit locations. Therefore, the
query-based approach does not use GPS location data, even indirectly. Third,
the Traceroute approach has no overlap with the IPInterpolation method, most
likely because it has such low overall coverage at only 1.4 million IP addresses.

14.2 Baseline Conflation

In order to determine if using a more complex classifier yields any improve-
ments over a simpler approach, we first created a manual conflation baseline.
To assemble the baseline, we followed a simple priority order, by sorting the
approaches in ascending order by the median error shown in Table 14.2. For
example, if an IP range contained location candidates from both the IPInter-
polation and GeoClicks-GPS approaches, we would pick the IPInterpolation
candidate since it has a lower overall median error. The implication of using
this simple heuristic is that we always make a decision, if an IP range has at
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Table 14.3: Location agreement between pairs of geolocation approaches. For an
IP range where locations from both items in a pair are available, we
compute the distance between the candidates. For the purposes of
this table, a pair of data sources are in agreement if their location
candidates for an IP range are within 25 km of each other. The table
displays the percentage of shared candidates where there is agreement.
We specifically discuss the agreement results shown in bold in the text
of this section.

Reverse GeoClicks GeoClicks QueryLogs IP Trace WHOIS
DNS GPS Index V2 Interp. route

ReverseDNS — 41.8% 81.2% 65.8% 62.9% 66.7% 59.8%
GeoClicks-GPS 41.8% — 76.7% 73.9% 87.2% 70.7% 67.6%
GeoClicks-Index 81.2% 76.7% — 95.8% 94.4% 73.3% 55.6%
QueryLogs-V2 65.8% 73.9% 95.8% — 98.6% 70.0% 57.1%
IPInterpolation 62.9% 87.2% 94.4% 98.6% — 0% 60.7%
Traceroute 66.7% 70.7% 73.3% 70.0% 0% — 54.1%
WHOIS 59.8% 67.6% 55.6% 57.1% 60.7% 54.1% —

least one location candidate.

The results yield a median error of 3.7 kilometers and a Root Mean Squared
Error of 604.8. Furthermore, 78.9% of data points that intersect with the
ground truth dataset are within 10 kilometers of their actual location. Even
using such a simple conflation scheme, these results surpass previous work in
both accuracy and IP coverage, which is 597.7 million addresses.

14.3 Approach

Now that we have established a strong manual baseline for conflation, we will
attempt to create a more accurate conflation model. We propose casting the
task of conflating IP geolocation information as a machine learning problem.
We train a multi-class classifier to choose among potentially conflicting location
candidates, for each range.

14.3.1 Features

The manual baseline makes a decision for every IP range where we have a loca-
tion candidate from at least a single data source. The union of all approaches
covers 597.7 million IP addresses. The IP coverage of the baseline there-

fore forms an upper bound of coverage for our improved model. The
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implication is that while our more complex model might achieve higher ac-
curacy, it can never surpass the manual baseline in IP coverage. To build a
better model, we propose the following categories of features:
• Candidate Exists. This category of features simply indicate if a location
candidate is available (present) for each data source type. For example, if for
a given IP range we have location information both from the ReverseDNS
and WHOIS data sources, then the ReverseDNSPresent and WHOISPresent
features would be set to true, while the equivalent features for the other five
data sources would be set to false. The intuition behind this category of
features is that during training a classifier can learn the prior probability of
each data source being correct.

• Location Consensus. The location consensus features count the degree to
which the approaches agree on the location of each network block. Each of
the seven approaches have a corresponding consensus feature which counts
how many other data sources agree with it. By agreement we mean that
the location candidate from one data source is within 25 kilometers of the
location candidate of another data source. For example, let us say that
for a network block we have information from ReverseDNS, IPInterpolation,
and Traceroute. If after computing the pairwise distance between them we
determine that each pair is within 25 kilometers of each other, then values
for the ReverseDNSConsensusCount, IPInterpolationConsensusCount, and
TracerouteConsensusCount would all be 2, since each data source agrees
with two other data sources. The value of this feature type indicates if
multiple data sources agree with each other on what the location for the
network block should be.

• Cluster Confidence. The clicks and query log methods rely on a variant
of the DBSCAN clustering algorithm. In each of these approaches for an IP
range we use the location of the largest cluster, if the confidence is above
a certain threshold. We define confidence as the number of underlying co-
ordinates that make up the cluster, over the total number of coordinates in
that IP range. So if for an IP range the largest cluster contains 23 data
points, and the entire IP range contains 30 data points, then the confidence
of this largest cluster is 23/30 = 0.77. The confidence value represents how
prevalent the cluster centroid location is among all the coordinates in the
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range. A higher confidence might indicate the chosen location is more likely
to be correct.

• Data Points Count. This feature class records the number of data points
that were used by an approach to determine the top location candidate for
an IP range. For instance, for ReverseDNS the value of the feature repre-
sents the number of hostnames from which we extracted the top candidate
location, and for IP Interpolation the value is the number of IPs in the net-
work block that were used to assign the location to the entire block. The
intuition behind this type of feature is that if a larger number of separate
data points agreed on a location, then the probability that the location is
correct increases.

• Outlier Count. This feature class is similar to the Cluster Confidence one
in that it relies on output from the modified DBSCAN clustering algorithm.
For a given set of points, the output of the algorithm contains a list of
clusters, and potentially a set of outlier points which are not part of any of
the clusters. We decided to try using the number of these outlier points as
a feature. A higher number of outlier points could indicate that the data
points used to make a judgment for an IP range are spread out over a large
geographical region.

• Other Features. All of the features in this category are obtained from the
output of the WHOIS approach:

• Location Extraction Confidence. When extracting location data
from WHOIS databases we determine locations for an IP range by
computing the pairwise distances between all the WHOIS records that
match that network block. If all of the pairs are within a certain thresh-
old distance of each other, we output the centroid as the likely location
for that IP range. We obtain these underlying data points that are
used to compute the centroid by using a variant of the Bing reverse
geocoding API [69]. For a given string, this API attempts to extract
a location. For each such extracted locations we receive a confidence
score. We set the Location Extraction Confidence feature to the maxi-
mum confidence value of any of the underlying individual data points.
We use this value as a proxy of the confidence of the entire centroid.
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• Original Source Range Size. As previously discussed, WHOIS
records contain network blocks that can overlap partially or completely.
We split these ranges by a target range size. This feature records the
maximum size of the original range sizes. The intuition behind this
feature is that if the data point originates from a large IP range size,
its location is likely to be less correct than if it originates from a smaller
network block.

• Location Candidate Global Occurrences. Some Internet Service
Providers cover large geographical areas, sometimes even spanning an
entire continent. When these ISPs receive IP address allocations, they
sometimes report the address of their corporate headquarters, regard-
less of the location of where they actually use these addresses. To
mitigate this problem, we count the global occurrences of each raw ad-
dress in the WHOIS database. If the same identical address appears
in the records of multiple IP ranges, the classifier could assign a lower
confidence to that location candidate. This feature therefore aims to
capture this intuition by storing for each IP range the maximum num-
ber of times we have seen the address of any underlying data point. A
side benefit of this feature is that it naturally also determines commonly
reused fake addresses such as Fake Street that we have not already cov-
ered by the manual black list previously shown in Figure 13.3.

• Source Database Name. We have shown in Figure 13.6 that WHOIS
databases have difference accuracy characteristics. This feature con-
tains the name of the WHOIS database from where this location candi-
date originates. Our assumption is that the classifier can use this name
to adjust to the characteristics of each source WHOIS database.

Table 14.4 presents a summary of the features. A checkmark at the intersec-
tion of an approach name and a feature type name indicates that we extract
that type of feature from that approach. Each checkmark represents a single
feature, except for the last checkmark in the table which covers all four fea-
tures in the Other category. This results in 30 distinct features, which are all
used together in a single classifier.
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Table 14.4: Categories of features available for each IP geolocation approach. Each
check-mark except the last one represents one specific feature. Includ-
ing the four features represented by the last checkmark, there are 30
features in total. All of these features are used together in the final
conflation classifier.

Candidate Location Cluster Data Outlier Other
Exists Consensus Confidence Points # Count Features

ReverseDNS X X X
GeoClicks-GPS X X X X X
GeoClicks-Index X X X X X
QueryLogs-V2 X X X X X
IPInterpolation X X X
Traceroute X X X
WHOIS X X X

14.3.2 Training

We train the classifier on the union of the location candidates from all geolo-
cation methods. For each IP range that matches at least one approach, if an
approach has any location candidate, we output the feature values for that
approach, or we output null values for the features if that approach does not
propose any candidate. For example, if for a particular network block four
out of seven approaches output location candidates, we populate the features
corresponding to those four approaches, while we set the approaches for the
remaining three approaches to null. The input of the classifier is the fea-

ture vector for an IP range and the output is the class name that

indicates which geolocation approach has the most likely location

candidate. The classifier has eight classes, one for each of the names of the
seven approaches, and a last class called None, which signifies that we should
not pick any of the location candidates for that block.

In order to train this classifier we attach class labels to the dataset we ob-
tained by taking the union of network blocks covered by the seven geolocation
approaches. We then intersect this dataset with the ground truth set. For
each IP range in the set we retain the location candidates generated by the
geolocation approaches, as well as the actual correct location from the ground
truth set. We then compute the distance between each geolocation approach
and the correct location. We set the class label to be the name of the geolo-
cation approach that is closest to the ground truth location. If none of the
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distances comes within 25 kilometers of the actual location, we set the class
label to None.

14.3.3 Classifier Type

To determine the optimal classifier, we ran experiments using multiple types
of widely used classifiers. Naïve Bayes classifiers use Bayes’ theorem, which
describes the probability of an event, based on prior knowledge of the features
that might be related to the event [180]. Logistic Regression classifiers
are statistical models that use a logistic function to model a binary variable.
The logistic functions has a common "S" shape sigmoid curve. The training
process uses data to estimate the parameters of the function [181]. The C4.5
algorithm uses the concept of information entropy to train a decision tree.
At runtime the tree can be quickly followed to reach a decision [182]. A
decision table consists of a hierarchical table in wich each entry in a higher
level table gets broken down by the values of a pair of additional attributes
to form another table. These tables can also be expressed as decision trees
[183]. Support Vector Machines is another well-known type of binary
classifier that learns a hyperplane boundary between training data points [184].
During training it attempts to minimize the geometric distance between the
two classes.

We also experimented with two meta-algoritms: Ada Boost [185] and
Rotation Forest [186]. These algorithms combine the individual decisions
of multiple classifiers to create an ensemble of classifiers that together make
a final decision. In Ada Boost the classifiers are added one at a time so that
each subsequent classifier is trained on data which was deemed "hard" for the
previous ensemble members. In each such step misclassified input data gains a
higher weight and examples that are classified correctly lose weight. Rotation
Forest is different in that it generates multiple smaller classifiers by splitting
the feature set randomly into sets. In each set a subset of features is selected
using Principal Component Analysis. Then, multiple smaller classifiers are
constructed by rotating which subsets of features are used. For a given input,
each smaller classifier outputs a confidence for each class. The confidence
per class is then averaged across all classifiers and the class with the highest
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Table 14.5: Comparison of the accuracy obtained from different types of classifiers.

Weighted Correctly % err Median RMSE
TP Rate Classified

%
<10km Error in km

Naïve Bayes [180] 79.50% 79.47% 78.52% 3.82 510.08
Logistic Regression [181] 84.30% 84.27% 80.62% 3.60 492.24
C4.5 Decision Trees [182] 84.30% 84.30% 80.72% 3.59 473.70
Decision Table [183] 84.20% 84.19% 80.73% 3.59 477.76
Support Vector Machines [184] 84.20% 84.21%% 80.52% 3.61 492.61
Ada Boost w/ C4.5 [182, 185] 82.10% 82.08% 80.63% 3.63 470.66
Rotation Forest w/ C4.5 [182, 186] 84.40% 84.36% 80.78% 3.59 483.53

confidence is chosen.

Table 14.5 lists the results across the different classifiers. Most classifier
types achieve a reasonable accuracy, with three of them reaching a median
error of only 3.59 kilometers. With the exception of the Naïve Bayes classifier
which has the worst performance, the classifiers yield very similar results. To
analyze why that is, we examined the decision tree generated by the C4.5 clas-
sifier. One property of decision trees is that they emit human readable rules.
The root of the tree makes a decision on the existence of the IPInterpolation
location candidate, which is the geolocation approach with the best accuracy
and highest total IP coverage. The second level of the tree makes decisions
on the existence of the QueryLogs-V2 and GeoClicks-GPS approaches. These
three geolocation methods have the best median error, and they are also the
first three approaches we use in our manual rules baseline. The difference
however is that the left and right branches on the second level make decisions
on different approaches, while our manual rules list uses a priority order. As
we get closer to the leaf nodes, more categories of features are used. The de-
cision tree contains 573 nodes and 290 leaves. In conclusion, the reason most
classifiers do a reasonable job at picking the right class label is that there
are several approaches with high accuracy, and their mere presence is a good
enough signal.

Furthermore, we also examined the confusion matrix of the decision tree.
We observed that the pair of methods with most confusion are the IP interpo-
lation and query-based ones. In Table 14.3 we have shown that the agreement
between these two methods is very high, at 98.6%. Therefore, it is expected
that the classifier is more confused as to which of the two labels to pick from,
since we only output a single class. The downside of this multi-class design
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is that we always output a single class, even if two or more geolocation ap-
proaches emit candidates that are close to the actual location from ground
truth. During training we always just pick the approach which is closest to
the ground truth IP location. This has a negative impact on true positive rate,
but does not have a significant negative impact on median error or RMSE, be-
cause picking either of the two labels would result in a small error.

The results show that Rotation Forest meta-algorithm with C4.5

decision trees is the best overall classifier. Therefore, in the remainder
of this chapter we will perform all experiments using this type of classifier.

14.4 Preliminary Evaluation

As a preliminary evaluation of the classifier we will compare the manual base-
line with the machine learning approach that we name SearchGeo. Table 14.6
presents both accuracy and coverage metrics. Compared to the accuracy of the
manual baseline, the classifier is better in the percentage of ground truth IPs
where error is smaller than 10 kilometers, in median error, and in Root Mean
Squared Error. This indicates that the additional features used in the classifier
can indeed achieve higher accuracy, which is what we set out to achieve.

We previously mentioned that the manual baseline represents an upper
bound in terms of IP coverage. The reason is that in the manual baseline we
make a decision for every network block covered by any of the geolocation
approaches. In contrast, the SearchGeo classifier can also output a None class,
which indicates we should not make a decision for an IP range, which in turn
reduces the overall IP coverage. The table shows that, as expected, the IP
coverage for the classifier is lower, but only by about 2.8%. The results show
that we can achieve higher accuracy, at the expense of more complexity and
slightly lower coverage. If IP coverage is more important than accuracy, then
using the manual priority approach might be a reasonable approach.

Figure 14.2 also shows the difference in accuracy between the two models.
The error distance curves reveal that the SearchGeo machine learning approach
has higher accuracy than the manual one across the entire error distance range.
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Table 14.6: Comparison of accuracy and coverage metrics between the manual
baseline and and our SearchGeo machine learning approach. The GT
Coverage column displays the percentage of the ground truth dataset
which is covered by the approach.

% error Median RMSE GT Total IP
<10km error in km Coverage Coverage

Manual Baseline 78.93% 3.71 km 604.76 70.7% 597,726,720
SearchGeo 80.78% 3.59 km 483.53 68.7% 581,010,688
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Figure 14.2: Comparison of cumulative error distance between the manual baseline
and the decision trees based classifier.

14.5 Feature Analysis

The classifier uses 30 features, segmented across seven geolocation approaches
and six feature categories. Some of these features may be more important than
others. Here we present an analysis on how important geolocation approaches
and feature classes are to the final classifier.

14.5.1 Leave One Approach Out

The results in Table 14.2 have shown that the IP interpolation approach has
both the highest accuracy and the best coverage. Our manual analysis of the
C4.5 decision tree has revealed that the most important decision at the root
of the tree checks if IP interpolation data is available. Therefore, a natural
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Table 14.7: Comparison of accuracy metrics when leave one IP geolocation ap-
proach out.

Correctly Median % error RMSE % GT err Total IP
Classified error <10km in km <10km Coverage

All Geolocation Approaches 84.36% 3.59 km 80.78% 483.53 55.49% 581,010,688
All except ReverseDNS 84.88% 3.60 km 80.78% 526.48 55.68% 574,211,840
All except GeoClicks-GPS 85.12% 3.56 km 80.80% 461.16 55.48% 573,776,640
All except GeoClicks-Index 85.96% 3.52 km 81.19% 376.55 55.13% 553,672,960
All except QueryLogs-V2 93.25% 2.68 km 91.03% 481.09 46.84% 510,349,568
All except IPInterpolation 84.32% 7.49 km 63.24% 642.75 31.75% 381,070,336
All except Traceroute 84.28% 3.60 km 80.48% 496.11 55.56% 579,872,256
All except WHOIS 84.98% 3.60 km 80.67% 477.39 55.50% 496,244,480

question arises as to what effect would removing the predicting power of an
individual approach have on the accuracy of the classifier.

To answer this question, we separately trained seven classifiers by leaving
out all features derived from one particular approach. The results in Table 14.7
confirm our prior findings that the interpolation-based geolocation method
has the biggest effect on overall accuracy. When we train a classifier with all
features except the ones based on the interpolation-based approach, we can
see that the median error more than doubles to 7.49 kilometers. However, this
result in itself is still better than most prior academic work. This accuracy is
also higher than that of commercial services, as we will show later.

An interesting, and perhaps counter-intuitive, finding is that if we train a
classifier without the features from the query-based method then the accuracy
of the classifier goes up. In fact, removing these features yields the best median
error and percentage of ground truth IPs where error is less than 10 kilometers,
at 2.68 kilometers and 91.03%, respectively. The reason for this change is that
QueryLogs-V2 is the approach with second-highest individual IP coverage and
on its own has a higher median error at 7.6 kilometers. Therefore, removing its
features allows the IP Interpolation approach, which has better median error,
to now cover a larger percentage of the IP coverage. However, the downside of
removing these query-based features is that the total IP coverage goes down
by tens of millions of IP addresses.

14.5.2 Leave One Feature Class Out

We continue our feature analysis by studying the contribution of feature classes
to the overall classifier. We have previously split the features in six feature
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Table 14.8: Comparison of accuracy metrics when we leave one feature class out.

Correctly Median % error RMSE % GT err
Classified error <10km in km <10km

All Features 84.36% 3.59 km 80.78% 483.53 55.49%
All except Location Consensus 84.28% 3.59 km 80.73% 479.55 55.47%
All except Cluster Confidence 84.38% 3.59 km 80.73% 484.27 55.54%
All except Data Points Count 84.35% 3.59 km 80.80% 487.42 55.46%
All except Outlier Count 84.34% 3.59 km 80.74% 482.19 55.51%
All except Other Features 84.31% 3.59 km 80.77% 476.84 55.47%

classes. The first class, called Location Candidate Exists is a fundamental
requirement in our classifier, so we cannot perform experiments by removing
it. If we were to remove these features, then the classifier could still derive their
values indirectly by the existence of the other features. When a geolocation
approach does not have any location candidate, then all of its features are set
to null. Therefore the Candidate Exists feature is somewhat redundant and
we only perform experiments with the other five feature classes.

Table 14.8 shows the effect that removing each feature type has on accuracy.
Note that since here we remove feature classes which span all geolocation
approaches, the total IP coverage does not change. This is because when
we remove a feature class, we do so from all approaches, but the rest of the
feature types of the approaches remain. The table shows little change in
accuracy metrics when removing any one feature type. It is possible that the
feature types are complementary and no particular feature type dominates the
other ones. Another likely explanation is that the mere presence of a location
candidate by a particular IP geolocation approach provides enough predictive
power as to make the other feature types irrelevant. We investigate this second
hypothesis in the next section.

14.5.3 Add Feature Types One By One

The final step of our analysis is to show the impact that adding feature types
one by one cumulatively has on classifier accuracy and error distance. We use
the same feature types as in the previous section, but we now progressively
add the feature types, instead of leaving one of them out. Table 14.9 demon-
strates that as we add more feature types, the median error reduces, and the
percentage of correctly classified data points increases.

To answer the question we posed in the previous section as to the impact
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Table 14.9: Comparison of accuracy metrics when we use all IP geolocation ap-
proaches and we progressively add feature classes one by one.

Correctly Median % error RMSE % GT err
Classified error <10km in km <10km

Location Candidate Present 83.92% 3.63 km 80.26% 525.61 55.56%
+ Location Consensus 84.01% 3.62 km 80.27% 525.13 55.58%
+ Cluster Confidence 84.08% 3.61 km 80.44% 519.35 55.49%
+ Data Points Count 84.30% 3.59 km 80.74% 477.63 55.48%
+ Outlier Count 84.31% 3.59 km 80.77% 476.84 55.47%
+ Other Features (All) 84.36% 3.59 km 80.78% 483.53 55.49%

Table 14.10: Comparison of accuracy metrics when we use all IP geolocation ap-
proaches except IPInterpolation and we progressively add feature
classes one by one.

Correctly Median % error RMSE % GT err
Classified error <10km in km <10km

Location Candidate Present 81.79% 7.62 km 62.39% 760.52 31.30%
+ Location Consensus 83.32% 7.60 km 62.35% 755.79 31.72%
+ Cluster Confidence 83.50% 7.57 km 62.57% 738.55 31.65%
+ Data Points Count 84.05% 7.52 km 63.07% 643.96 31.64%
+ Outlier Count 84.09% 7.50 km 63.16% 643.31 31.65%
+ Other Features (All) 84.32% 7.49 km 63.24% 642.75 31.75%

that the dominant interpolation approach has on accuracy, we perform the
same experiment, but we train the classifiers without using any data from the
IP Interpolation approach. The results, which are shown in Table 14.10, show
that the rate of increase in accuracy when adding feature types is slightly
higher. The percentage of correctly classified instances gradually increases
by 2.53 percentage points, while in the previous experiment it increased by
only 0.44 percentage points. We conclude that the mere presence of the IP
Interpolation approach does have some impact across all of the feature types,
but the impact is not significant. Therefore, the feature classes themselves do
help in achieving more accurate results.

14.6 Commercial Evaluation

Finally, we evaluate our combined approach against two state of the art com-
mercial geolocation services. The results in table 14.11 demonstrate that our
combined SearchGeo approach significantly surpasses the two commercial da-
tabases across several metrics. The median error of our database is three times
better than that of ProviderA, which is the best out of the two commercial
baselines. The results for the percentage of ground truth data points where
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Table 14.11: Comparison between our approach SearchGeo and two state of the
art commercial geolocation services, ProviderA and ProviderB, across
several metrics.

Median % error RMSE % GT err
error <10km in km <10km

SearchGeo 3.6 km 80.78% 483.5 55.49%
ProviderA 11.1 km 47.24% 545.9 47.24%
ProviderB 16.7 km 36.74% 545.3 36.74%

error is smaller than 10 kilometers, as well as Root Mean Squared Error are
also considerably better than that of the commercial databases.

One important caveat to these results is that the total IP coverage of the
commercial databases is larger than that of our approach. Whereas SearchGeo
has a total coverage of about 600 million addresses, the commercial databases
cover up to 3 billion IPs. However, our approach does outperform the com-
mercial services when we combine accuracy and coverage. The last column
in the table shows the percentage of IPs in the entire ground truth set of 70
million addresses where error is smaller than 10 kilometers. Here our com-
bined method is again significantly better than the commercial baselines, even
if they have the advantage of higher total IP coverage. The massive difference
in accuracy between the approaches is also apparent in Figure 14.3, which
shows cumulative error distance.

As we have detailed in Chapter 5, most previous work targets single specific
countries. In contrast, in this dissertation we have designed our approaches to
work across the entire globe. Figure 14.4 contains a comparison of accuracy at
10 kilometers across several countries of different sizes, and which are located
on several continents. In the figure we compare the accuracy of our approach
to that of ProviderA, which is the best out of the two commercial baselines.
Here our approach again significantly outperforms the commercial baseline.
In fact, we have not found a single country where our accuracy is worse than
either of the commercial databases.

In conclusion, our machine learning based approach unequivocally sur-
passes current state of the art commercial geolocation services in accuracy.
Its total IP coverage of close to 600 million IP addresses is also higher than
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Figure 14.3: Comparison of cumulative error distance between our approach
SearchGeo and two state of the art commercial geolocation services,
ProviderA and ProviderB.
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Figure 14.4: Increase in the percentage of data points with error smaller than 10
kilometers between the best commercial approach ProviderA, and our
approach, SearchGeo.

that of previous work in the area of IP geolocation. While the total IP coverage
of SearchGeo is not as high as that of commercial services, it still outperforms
them in a metric which combines both accuracy and coverage.
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Chapter 15

Conclusions and Future Work

The goal of this dissertation was to compile a geolocation database from
scratch. To that end, we have developed and evaluated seven methods for
IP geolocation. We have placed particular emphasis on approaches which ex-
ploit data extracted from search engine logs, as this source of information has
not before been used in IP geolocation literature. We have combined these
seven approaches to obtain SearchGeo, which has a median error of only 3.59
kilometers and a total IP coverage of 581 million IP addresses. Table 15.1
shows a summary of our approaches, compared to two commercial baselines.
The results show that SearchGeo achieves much higher accuracy, but it has
lower total IP coverage than the commercial baselines. However, using a met-
ric which combines accuracy and ground truth coverage, our approach again
outperforms the baselines.

In this final chapter we revisit and answer the research questions posed in
the Introduction section. We also propose multiple avenues for future research.

15.1 Revisiting Research Questions

At the onset of our work we set out to answer several research questions
pertaining to IP geolocation. Here we again address those same questions,
and summarize the approaches we have taken to answer them.

How can we obtain a large ground-truth set for IP geolocation?

Throughout this dissertation we have used ground truth datasets obtained by
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Table 15.1: Summary of the geolocation approaches presented in this dissertation,
compared to two commercial baselines.

Median % error RMSE % GT err Total IP
error km <10km in km <10km Coverage

ReverseDNS 21.9 23.1% 842.7 12.9% 37,156,096
GeoClicks-GPS 4.5 72.2% 893.4 2.2% 19,582,720
GeoClicks-Index 9.2 54.0% 1327.4 10.9% 118,515,200
QueryLogs-V2 7.6 63.3% 467.7 45.2% 210,220,544
IPInterpolation 2.4 96.2% 306.1 44.7% 357,289,728
Traceroute 8.9 55.6% 706.8 1.0% 1,409,792
WHOIS 24.8 36.4% 1794.2 1.2% 108,136,448

SearchGeo (all conflated) 3.6 80.8% 483.5 55.4% 581,010,688

Commercial Baseline A 11.1 47.2% 545.9 47.2% 3+ Billion
Commercial Baseline B 16.7 36.7% 545.3 36.7% 3+ Billion

mining search engine logs for impressions where the user has opted-in to pro-
vide their precise GPS location. Sections 3.1 and 8.5.1 detail how we compiled
these data sets. As discussed in Section 6.1, we have taken multiple steps to
safeguard the privacy of users, including randomizing each raw location by 200
to 584 meters in a random direction. Between 2014 and 2018 we compiled and
used for training and evaluation multiple ground truth datasets, ranging from
8.4 million to 70 million IP addresses in size. To the best of our knowledge,
these datasets are the largest ones used in IP geolocation literature. They
span all countries in the world and they contain IPs from both mobile and
fixed broadband IP addresses.

What is the impact of inaccurate IP geolocation on user experience?

In Chapter 3 we have studied the impact that incorrect IP geolocation has
on users, in the context of search engines. By mining Bing logs, we have
shown that both overall and ad click-through rates decrease when the location
is incorrect by 4.3% and 17.9%, respectively. Prior research has shown that
this metric is positively correlated with user satisfaction [45]. Furthermore, we
have found that ad revenue also decreased by 40.3%. Conversely, this result
suggests that correcting user location could have a positive impact on revenue.
To the best of our knowledge, our study is the only one in literature which
attempts to quantify the effect of inaccurate IP geolocation.

How accurate are commercial geolocation databases?

Using a ground truth set of 8.4 million IP addresses, in Section 4.2 we have
shown that the city-level accuracy of three commercial geolocation services
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does not exceed 70% in any country. The results also show that in some
countries such as UK, France, Italy, Spain, and Germany the accuracy dips
below 20%, and sometimes even below 10%. These findings suggest that IP
geolocation is still an unsolved problem. In contrast, Section 14.6 demonstrates
that our final approach results in accuracy higher than 70% in several countries.

Can we devise new IP geolocation approaches by exploiting infor-

mation from the logs of a search engine?

We developed several novel IP geolocation approaches that use information
mined from search engine logs. First, in Chapters 7 and 10 we extracted ex-
plicit locations from user queries such as "indian food denver". By clustering
these raw locations by IP range, we were able to achieve a median error of 7.6
kilometers, and an coverage of 210 million IP addresses. Second, in Chapter 9
we propagated locations from IP addresses with known location to addresses
with unknown location, through user clicks. The intuition behind this ap-
proach was that users who click on search results with local geographic focus,
such as on the website of a community theater in Seattle, are in aggregate
located in that location. The variant of this approach tuned for higher accu-
racy obtained a median error of only 4.5 kilometers, with a total IP coverage
of 19.6 million addresses. Third, in Chapter 9 we have also developed a click-
based approach which instead of propagating users’ GPS locations, it extracts
physical addresses from the body of clicked web documents. This web index-
based approach, also tuned for higher accuracy, yields a median error of 9.2
kilometers, and a much better IP coverage at 118.5 million addresses.

Is it possible to improve IP geolocation coverage by interpolating

(extrapolating) locations across neighboring IP addresses and neigh-

boring IP ranges?

In Chapter 11 we have proposed a process to extrapolate the location of an
entire IP range by using the locations of a few underlying IP addresses with
known location. Here we again use information mined from search engine logs.
Specifically, we use the ground truth set that contains IPs with known location
and we train and evaluate using ten-fold cross validation. This results in a
remarkable median error of only 2.4 kilometers, and a large total IP coverage
of 357 million addresses.
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Can we use public information such as WHOIS databases and tracer-

outes to augment IP geolocation?

We propose a systematic approach to parse, normalize, and combine WHOIS
databases in Chapter 13. We show that network block size is correlated with
median error, with larger blocks resulting in higher error, as they cover bigger
geographic regions. We also compare the accuracy characteristics of the differ-
ent databases. Using a target size of 256 IPs, this approach results in a median
error of 24.8 kilometers and a coverage of 108 million IPs. In Chapter 12 we
also investigate using traceroute information for geolocation. We introduce
the concept of latency neighbors, which are pairs of nodes along a traceroute
path that are within a certain threshold of milliseconds from each other. We
extract latency neighbors from a dataset provided by CAIDA which contains
9 billion traceroutes. We then propagate locations in the pairs, from neighbors
with known location to neighbors with unknown location. A variant of this
approach which we tuned for higher accuracy achieves a median error of 8.9
kilometers on the more recent 2018 ground truth set, and an IP coverage of
1.4 million addresses.

Which IP geolocation methods provide the most IP coverage and ac-

curacy? What are the advantages and disadvantages of each method?

In Table 15.1 we summarize the results for the high accuracy variants of each
of the seven geolocation approaches, along with the metrics of the combined
SearchGeo approach, compared to two commercial baselines. The results indi-
cate that the three approaches based on public data fare the worst in terms of
accuracy (ReverseDNS, WHOIS) and IP coverage (Traceroute). Although the
Traceroute approach has the lowest coverage at only 1.4 million addresses, the
methods based on ReverseDNS and WHOIS achieve higher coverage at 37.2
and 108 million addresses, respectively. Therefore, the advantages of these
approaches are that they are based on easily accessible public data, and some
of them have good coverage. Their main disadvantage is that they are less
accurate than the commercial baselines. The other four methods, which are
based on information mined from search engine logs, have the best accuracy,
with median error between 2.4 and 9.2 kilometers. The method based on IP
interpolation has the highest coverage, with 357.3 million addresses. Their
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advantages therefore include high accuracy and coverage. Their main disad-
vantage is that they require access to application logs, which are generally
proprietary. A challenge shared by all these seven approaches is that they
all require a large amount of data storage and computation. The SearchGeo
approach, which combines data from all seven geolocation methods, achieves
the highest accuracy for all metrics. Although its total IP coverage is lower
than that of commercial geolocation services, it still surpasses its commercial
counterparts by the metric which combines both accuracy and coverage.

How can IP geolocation methods be conflated into a larger geoloca-

tion database?

Chapter 14 presents our proposed approach on combining the output of the
several geolocation approaches into a database which provides a single location
candidate per IP range. Since for a network block the approaches can output
multiple and sometimes conflicting location candidates, we needed to find a
way to resolve conflicts. We cast this conflation task as a machine learning
problem. We trained a classifier which for a given IP range can decide which
location candidate is most likely correct. The combined approach, named
SearchGeo in Table 15.1, achieves good accuracy results and moderate IP
coverage.

15.2 Future Work

There are multiple avenues for future work. We begin by presenting multiple
approach-specific ways in which our work can be extended. Then, we also
propose several suggestions which span multiple approaches.

Approach-specific suggestions:

• Query Logs. Both versions of our query logs approach depend on locations
extracted from explicit user queries. To parse these locations we use a variant
of the Bing reverse geocoding API [69]. Although this API does a reasonable
job in parsing locations, a manual verification of its output reveals that
it sometimes misses or misinterprets locations. We have seen cases where
a street name is interpreted as a city, although the correct city name is
present later in the string. We have also seen indications that the reverse
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geocoder is less accurate when parsing foreign language queries. Therefore,
one potential avenue for future work would be to compare multiple types of
reverse geocoding APIs, or perhaps even develop a new one from scratch.
Potential outcomes of using a more accurate reverse geocoder are higher
accuracy and higher IP coverage.

• Reverse DNS. The classifier which evaluates location candidates from re-
verse DNS hostnames uses 11 primary features and 4 secondary features.
These features are listed in Tables 8.4 and 8.5 on page 96. The features
are extracted from multiple freely available databases. Since the classifier
can theoretically match any city in the world, it requires a large amount
of memory and CPU resources. We propose two potential ways to improve
memory usage, reduce computation complexity, and cut down on the num-
ber of location candidates. First, it may be possible to reduce the number of
strings that are used to find locations in hostname items. For instance, the
data behind the Alternate names feature sometimes contains tens or arcane
names per city. It may be possible to significantly reduce the number of
these strings, which will save on computing resources and potentially reduce
the number of false positives. Second, we have observed that not all features
are useful in practice. One could potentially remove some of these features,
without impacting accuracy too much.

• Geographic Clicks. Both the GPS and index-based approaches propagate
locations through user clicks. We do not distinguish between the type of
page or page element that was clicked. One could further develop these
approaches by further breaking down the types of clicks. For example, if
a click is issued inside a search result page, did the user click on a simple
algorithmic result, or inside an answer module such as business listings,
weather, or movie showtimes? Also, does the intent of the user query before
the click matter? Furthermore, is there a difference between users that click
on news articles, versus people that click on Wikipedia pages? In summary,
it might be worthwhile to investigate if specific categories of clicks better
reveal the location of users.

• IP Interpolation. One direction for future work is to perform IP interpola-
tion on progressively larger network blocks, every time assigning a location
to a larger parent block only if at least 50%+1 of the smaller underlying
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blocks agree on a location. This would allow increasing the IP coverage and
it would also allow outputting blocks of different sizes.
• Traceroute. One potential area for improvement would be to exploit more
information available in traceroute paths. For instance, it should be possible
to parse the reverse DNS hostnames of nodes along traceroute paths to
extract more location hints. These hints would then be propagated through
latency neighbors, similarly to how we propagated GPS locations.

•WHOIS. Using a better reverse geocoder could also improve the accuracy
and coverage of the WHOIS geolocation approach. Another area for future
work could be to intersect WHOIS locations with BGP network dumps.
Previous work has shown that Autonomous Networks which are stubs, that is
they have a single backbone connection to a larger ISP, are typically located
in the same geographic region [31]. Therefore, if we find the corresponding
WHOIS records for these networks, we might be able to assign a higher
confidence to their locations.
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Overall cross-approach suggestions:
• Location Granularity. Locations in geolocation databases typically have
city-level granularity. Once IP geolocation becomes precise enough, it might
be possible to target other granularities. For instance, since our combined
approach has a median error of 3.6 kilometers, it would be interesting to
investigate if we can output locations at a neighborhood level.

• IPv6. In this dissertation we focus on locating IPv4 addresses. However, all
of our proposed approaches could theoretically be applied to IPv6 addresses.
Therefore, an avenue for future work would be to investigate if there are
any new challenges that arise when we apply our findings to these types of
addresses.

• IP Coverage. Although our combined SearchGeo approach achieves a total
IP coverage of close to 600 million IP addresses, that still falls short of
commercial geolocation services, which cover most of the IPv4 space. One
potential of improvement would be to investigate how to improve total IP
coverage further.

• Block Size. Although in this dissertation we have experimented with block
sizes to some degree in some chapters, it would be interesting to more sys-
tematically study the effect that block size has on geolocation accuracy. For
instance, would clustering clicks using a different block size have an impact
on accuracy? Furthermore, it might be worthwhile to investigate ways in
which the final conflated database can contain blocks of variable size.

• Network Delay. In Chapter 5 we have established that network delay
based approaches have poor accuracy and coverage, and therefore we avoided
using them in this dissertation. However, there is one use case for using
network delay information. The RMSE metric is influenced by outliers. If
a geolocation approach outputs an incorrect location which is very far away
from the true location, then this outlier has an outsized effect on RMSE
than, for example, on median error. We could use network delay to reduce
the number of outliers. For example, by converting ping latency to distance
we could easily confirm if a location extracted from WHOIS databases is
plausible. If we issue pings from servers located in the same country as the
target IP, converting the resulting latency measurements to distance could
indicate whether the country is correct. If instead the latency is much higher
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than expected, this could indicate that the location extracted from WHOIS
might not be correct.
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