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Abstract
With the prevalence of online information resources, a massive amount of

text has been produced. The unprecedented amount of information makes hu-
man processing, whether editing or verifying, unrealistic. The research goal in
this thesis is to develop models that can automatically induce representations
of human language, and also to demonstrate the advantages that text repre-
sentation can bring to the applications. Text representation is a fundamental
yet important task. It is the very first step to extract useful information
to solve multiple language tasks. In this dissertation, we analyze the exist-
ing state-of-the-art language models and make improvements on challenging
problems.

Bias in general-purpose online information resources has raised much at-
tention. Existing approaches for bias detection rely on pre-compiled lexicons
of biased words. A key challenge is that biases can emerge rapidly, making it
impractical to rely on lexicons that are labor-intensive to build. We first ex-
plain the bias types that exist on open-editing platforms. We develop machine
learning approaches to automatically deal with the bias. We focus on ex-
pressions of bias that violate neutrality of general-purpose online information.
Many types of bias can cause such violation.

In this dissertation, we investigate and solve problems in text vector rep-
resentation; we design algorithms to tackle the bias detection problem. We
present a lexicon-free approach to detect bias. We further investigate the types
of bias that exist in an open-editing platform. A new language model to pro-
duce a bias-aware embedding is proposed. Our work can serve as a starting
point for researchers working in the bias detection field.
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Chapter 1

Introduction

1.1 The Importance of Text Representation

Over the years great progress has been seen in natural language processing
(NLP), such as text classification, dialog generation and machine comprehen-
sion. Representing language is an essential problem in the development of NLP.
The goal is to capture the semantic meaning of the language in a manner so
that the machine can understand. The success of language representation al-
gorithms has applied to diverse downstream NLP tasks such as part-of-speech
tagging and sentiment analysis [103, 116, 133].

Among them word embedding is a language representation technique to
learn for each word a real-valued vector representation from neural language
models. Previous language representation algorithms learn a sparse high-
dimensional vector representation and words with similar meanings do not
have similar representations [109]. The emergence of word embedding algo-
rithms have opened a new era in NLP by learning a dense, low-dimensional
vector with fine-grained semantic meaning for each word.

The first word embedding algorithm, Word2Vec, developed by Mikolov
et al. [116], consists of a group of widely used neural language models that
produces words’ vector representations. We are the first to apply word embed-
ding algorithms to the word-level bias detection [80]. Doing so is worthwhile
because there are multiple problems unsolved in word embedding algorithms.

Many other researchers have also contributed to the area of neural language
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model based word embedding [28, 33, 100, 157]. Word embeddings serve as
machine-learned features for downstream classification tasks.

Recent years have seen great success of word embedding or sentence em-
bedding either as features or inputs to sentence-level classification, such as
name entity recognition (NER) [150], dependency parsing [96] and other NLP
applications [80, 158]. Researchers usually train word embeddings from a large
amount of raw text [116, 133].

Word embedding algorithms are also beneficial to the NLP downstream
applications such as bias detection. In bias detection task, compared to the
previous handcrafted-lexicon approach, the unsupervised word embedding al-
gorithms can be adapted to different tasks and different corpora. Recently we
have seen great progress in contextual embedding, such as BERT [37]. In clas-
sic word embedding algorithms such as word2vec, the same word will always
have the same vector representation regardless of different context. In the con-
textual embedding algorithm, take BERT for example, the words’ semantics
are captured through the hidden layers of a transformer-based model. The
words’ vector representations can be extracted from those hidden layers. Be-
cause the hidden layers are derived from the words in a particular sentence, the
word embeddings obtained in this manner are called contextual embeddings
[37]. The focus of this dissertation is on non-contextual embedding.

Text representation has been a fundamental problem in natural language
processing field. Applications based on text representation are numerous, in-
cluding machine translation, natural language understanding and natural lan-
guage generation. Every application has its unique purpose designed models
and datasets. But one thing in common is text representation. Recent years
great progress has been observed in text representation. From bag-of-words
model, n-gram model to vector space model, etc., researchers have developed
multiple ways to represent text. Text representation can directly show intrinsic
similarities in text using mathematical operations such as cosine similarities.
It also can be utilized as input features to many machine learning models such
as convolutional neural network models and recurrent neural network model
[78]. Progress in text representation can thus lead to progress in many natural
language related fields.
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1.2 The Importance of Research on Bias

Every individual’s behavior and language is affected by his/her own culture
and ideology. These behaviors and languages reflect certain paradigms and
perspectives. When the paradigms exaggerate or underplay the essential el-
ements that the sentence tries to convey, bias occurs. Bias, advocacy of a
certain standpoint, is inevitable. And bias is closely related and reflected in
language. Some biases are easy to spread prejudice and discrimination, for ex-
ample in gender bias, “man is to doctor as woman is to nurse”. Some biases can
influence people’s ideology implicitly. For example, in political bias, conserva-
tive media have more positive attitudes towards religion and alcohol drinks,
and thus are more likely to positively discuss the topics like “’Religious peo-
ple” and “alcohol”, while liberal media have more positive attitudes towards
newly-emerged concepts and behaviors, and thus more likely to discuss the
topics of “Atheists” and “Tattoos” [55]. Human efforts to detect biases in the
language have a long history. We seek automatic machine learning approach
to investigate bias.

Online information resources have transformed the way people acquire
knowledge. Traditionally, people acquire knowledge from certified people with
special expertise such as an expert-compiled dictionary or textbook. With the
advance of social media and the usage of “the wisdom of crowds”, knowledge
now can be created and shared with everyone and by everyone in a large scale.
Such a new style of knowledge acquisition can benefit people from its unique
attributes such as easy access, open editing and broad range of topics. But
this new trend also brings the dark side: the easy accessibility is prone to
introduce errors, misinformation and various biases into the content.

Multiple types of bias exist in online information resources. For example,
racial bias and gender bias refer to the attitudes that affect an individual’s un-
derstanding, decisions and actions towards a certain race or a certain gender
[129]. Political bias means unjustifiable prejudice or stereotype discrimination
against certain political opinion [85]. Media bias exist when media is biased
with unfavorable or deliberately limited or skewed coverage [98]. We take a
particularly close look at the bias on open-editing platforms in this disserta-
tion. When open-editing platforms serve as open information resources and
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reference, it should remain neutral in its stance. In fact, the Neutral Point
of View (NPOV)1 is one of the key policies that all editors should abide by
in the world’s largest knowledge open-editing platform, Wikipedia. However,
the information contributors are still found to unfairly bias certain articles
[22, 57, 67]. In this work, we explore how to detect the violations of the
neutral point of view policy that are common in open-editing platforms. For
example, although Wikipedia formally defines NPOV as a key requirement,
information contributors are still found to unfairly bias certain articles. An-
other side effect with online information resources is that the unprecedented
amount of information makes manual checking unrealistic. With the rapid
development of text representation and bias detection, it has raised great at-
tention. Thus an automatic bias-checking algorithm becomes crucial for online
information resources.

Traditional bias detection methods usually rely on a pre-compiled lexicon
that contains suspicious keywords of information bias. The underlying assump-
tion is that bias can mostly be clustered into a limited number of categories
and similar biased keywords have been repeatedly used. Some representative
work in this stream studies certain categories of information bias. For example,
Greenstein and Zhu [58] study political bias in Wikipedia against its NPOV
rule; Wagner et al. [165] analyze gender bias in the content of Wikipedia; Otter-
bacher [124] explores stereotypes in biography articles in Wikipedia. However,
not to mention the difficulty of building a good lexicon, the performance of
lexicon-based methods may downgrade quickly when new keywords and even
new types of bias emerge with the unprecedented growth of online informa-
tion sources like Wikipedia. Different biases may be merged together which
make existing lexicons less applicable and effective. For example, a biography
Wikipedia article can be both gender-biased and racially-biased, and using ei-
ther one or the other lexicon will be sub-optimal since the combined bias may
seem different from either a well-defined gender- or racial-bias.

We seek automatic machine learning methods for bias detection and bias
substitution tasks. Recently machine learning models that utilize modern text
representations (i.e., word embeddings) on bias-related task have raised much

1https://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
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attention. Research work has focused on detecting and substituting bias using
modern text representation methods [142, 175, 178].

1.3 Focus of the Dissertation

The subject of this PhD dissertation is text representation and its application
in bias detection and substitution tasks. We explore the advantages, disad-
vantages, improvements and potential solutions to text representation and its
application on bias-related tasks. We also introduce the relationship of the
chapters to the published works.

1.3.1 Thesis Statement

In this dissertation, we target two types of research problems.
The first is text representation, in which:

• We improve the neural language model to produce word embeddings
with better semantic meaning. There are text representation algorithms
utilizing the context, words surrounding the target words, to produce
a better target word’s vector representation. We scrutinize the context
and eliminate potential noise.

There are even more noise in the current corpus environment. Noise
can downplay the relevant context. This work is an simple example for
future researchers working with a noisy corpus.

• We target the quantitative information in the corpus when the quanti-
tative information is too important to ignore.

How to better deal with quantitative information remains a challenging
research problem, especially for corpuses in fields like economics, finance,
sports and geography.

• Many words have multiple senses. We target the polysemy problem in
word embeddings.

Ever since the emergence of word embeddings built using sub-words [8]
and contextual embeddings [37], the polysemy problem is reduced. But it
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is not solved, especially considering the inference cost for the contextual
embeddings. Our work can serve as an example to utilize label informa-
tion to tackle the polysemy problem in small to mid-sized datasets.

The second type of problem we target is bias detection:

• The research problem is to detect the most biased word in the sentence.
We formulate the word-level bias detection task as a supervised binary
classification problem. We treat word embeddings as pre-trained fea-
tures.

There are few researchers working on word-level bias detection task.
There is still a large space for performance improvement. Our work
serves as a starting point for research in this area.

• We incorporate authorship in the bias detection task. Authors tend to
be consistent in ideology when they write with implicit biases. Their
writing habits are present in their writing histories.

Bringing authorship related information into bias detection unleashes so
much to be exploited. In our work we only utilize the writing histories
and Wikipedia categories. But many other kinds of information such
as user profiles and social network of users can be explored for future
research in bias detection.

1.3.2 Relationship to Published Work

In this dissertation, we investigate multiple directions to continue improving
vector representations of natural language text and its application in bias
detection and bias substitution. The chapters in this dissertation that has
been published in the following conferences and journals:

Chapter 4: We are the first to explore text representation algorithms for
the bias detection task. We introduce our contribution to combine the text’s
vector representation as features.

This work was published in the IJCAI-16 workshop on Natural Language
Processing meets Journalism [80].
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Chapter 5: The words in the context window are treated equally in the
prediction task in Mikolov et al’s original CBOW model. However, not all
words in the context window contribute equally to the prediction of the target
word. Greedily incorporating all the words in the context window will largely
limit the contribution of the useful semantic words and unduly weight noisy or
irrelevant words in the learning process. We improve the original Word2Vec
by introducing new algorithms to learn word embeddings based on a weighted
context. We devise the weighted continuous bag-of-words model.

This work was published in 2017 in the journal Applied Sciences [81].

Chapter 6: Quantity information is important in numeric-intensive sce-
narios. Embedding methods often focus on the text while ignoring numeric
attributes that could be helpful to further interpret the text. We formulate a
novel vector representation of numeric attributes. We design an approach to
incorporate quantity information into vector representations.

This work was published in 2018 IEEE International Conference on Big
Data and Smart Computing (BigComp) [83].

Chapter 7: We devise an algorithm to tackle polysemy through linear
compositionality. Despite the usefulness of word embeddings in NLP, most
non-contextual word embedding algorithms suffer from a significant drawback.
That is, most models learn only a single embedding per word.

We use label or class information as a type of context. We train the number-
of-classes vector representations per word. We observe that the polysemy
problem can be better managed when class information or label of the sentence
is presented. Class information helps the system to interpret the correct sense
of a word. We adopt the linear compositionality property to encode the class
or label information to learn class-specific word embeddings.

This work matured over time, starting with a workshop publication, then
a conference version, and ultimately a journal version. This work was pub-
lished in IEEE International Conference on Big Data and Smart Computing
(BigComp 2018) [82] and in the Jounal of Supercomputing, 2019 [84].

We have explored the possible solutions to continue improving vector rep-
resentation of natural language: using text representation on bias detection,
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learning semantic representations on number-intensive datasets, improving
Word2Vec using weighted context approaches and quantitative analysis of bias
vector representation. We present multiple solutions and results in this disser-
tation. Bias in general-purpose online information resources has raised much
attention over the years. In our work, we focus on expressions of bias that vi-
olate neutrality of general-purpose online information. Many types of bias can
cause NPOV violations. In Chapter 2, we look at the background knowledge
of text representation and bias detection. We elaborate on bias in online infor-
mation resources and how researchers tackle various biases. Because we also
research on how to use Wikipedia categories to discover implicit groups of bi-
ased authors, we briefly introduce how others conduct research when utilizing
Wikipedia categories.

1.4 Contributions

Our work has resulted in a number of advances but we highlight the most
important contributions below.

• We propose a new theory of how to weigh the terms in the context of
the target word in the word embedding algorithm.

• We invent a novel lexicon-free approach to detect bias. We further give
a detailed analysis on the bias type in open-editing platform. A new
language model to produce bias-aware embedding is proposed.

1.5 Organization of Dissertation

The organization of this dissertation is as follows: Chapter 2 introduces the
background knowledge used in this dissertation. We present related work
in Chapter 2. We elaborate on the datasets we used in this document in
Chapter 3. We describe how we use word embedding algorithms to boost
the performance on bias detection on Chapter 4. We present how we develop
a weighted continuous bag-of-words model in Chapter 5. In Chapter 6, we
introduce how we include quantity information into embeddings. We explain
how we tackle polysemy problem in word embedding in Chapter 7. We account
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for using authorship information in bias detection in Chapter 8. In Chapter
9 we describe future research directions for follow-on work and conclude the
dissertation.
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Chapter 2

Background

2.1 Introduction

In this chapter, we provides the necessary background knowledge of text rep-
resentation and the background knowledge of bias detection. We also present
the related work in text representation and bias detection.

2.2 Text Representation

Over the years understanding the semantic meaning of the natural text either
in a sentence, a piece of paragraph or a document has always been the core
of natural language processing (NLP). We need to devise a representation to
teach machines to truly understand the semantic concept of words. How to
encode the meaning into vector space has been a fundamental challenge in
NLP. Recent progress in machine learning enables researchers to train more
complex models on much larger datasets. We continue this line of research to
build better vector representations of natural language.

Unsupervised approaches to learn word embeddings have succeeded in
many NLP tasks. The trend is that the traditional textual features such
as bag-of-words and Latent Semantic Analysis (LSA) [90] have almost been
replaced by those distributional vector representations learned from neural
language models such as Word2Vec [116]. Recent work have demonstrated the
importance of word embeddings learned from neural language models for their
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representation quality semantically and syntactically.

2.2.1 Early Approaches in Text Representation

Bag-of-words Model

The bag-of-words model has been successful in language modeling and doc-
ument classification at the earliest days for its simplicity to understand and
implement. The dimensionality of the vector representing a word is the same
as the size of the vocabulary. A researcher manually decides the index value of
each word in the vector representation, disregarding the semantic meaning and
the properties of the word. In the vector representation of the bag-of-words
model, the index of the word is set to one while the other indices in the vector
are set to zero.

Thus intuitively the weaknesses of this approach are the high dimensional-
ity due to volume of vocabulary, sparsity and binary representation. Because
the location of the word index in the vector is manually decided, no correla-
tions between the different words can be caught in this approach. For example
in Example 2.1 and Example 2.2, assume in one hot encoding, we assign each
word with a different dimension in the one-hot encoding vector. the occur-
rences of “dog” will not tell us anything about the occurrences of “cat”. But in
the dense vector representation the learned vector for “dog” should be similar
to the learned vector of “cat”.

vector(cat) = [ 0 0 0 1 0 0 0 ] (2.1)

vector(dog) = [ 1 0 0 0 0 0 0 ] (2.2)

The bag-of-words model only focuses on individual words. Compared to
a single word, phrases can be more informative such as ’new york’ compared
to ’new’ and ’york’. The bag-of-words model can be extended to be a bag-
of-ngrams model. Instead of focusing on individual words, we can include
more context into the representation. Take the sentence “William Shakespeare
was an English poet” for example. We break this sentence into n-grams. In
bi-gram and tri-gram representation, we can see that “william shakespeare”
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and “english poet” information in the phrase are better captured compared to
bag-of-words model. The disadvantage is a more sparse and longer vector.

• uni-gram (bag-of-words): william, shakespeare, was, an, english, poet

• bi-gram: william shakespeare, shakespeare was, was an, an english,
english poet

• tri-gram: william shakespeare was, shakespeare was an, was an english,
an english poet.

Vector Space Model

The vector space model is a model to represent text documents as vectors
[60]. Each dimension in the vector is separate term. There are several dif-
ferent methods to calculate each term in the vector. One of the well-known
term calculation is tf-idf weighting [109]. The popularity of the vector space
model of documents lies in its ability to quantify semantic similarities by the
distributional structure of the language [46, 60]. The assumption here is that
words with similar distributional statistics turn to have similar semantic mean-
ing. The distributional structure of the language can be captured by multi-
dimensional vectors learned from the words’ co-occurrence statistics. The
research based on this assumption to quantify words’ meaning and similarity
is called distributional semantics [32]. There are multiple vector space mod-
els implementing distributional semantics, including Latent Semantic Analysis
(LSA) [36] and Latent Dirichlet Allocation (LDA) [12]. Landauer and Dumais
endowed LSA with a psychological interpretation and used LSA as a com-
putational theory to solve the fundamental problem of knowledge acquisition
and knowledge representation [89]. Enlightened by LSA’s capability to cap-
ture similarity between words and its usage of Singular Value Decomposition
(SVD) [52] to smooth the vector and handle the sparseness, Turney proposed
capturing the relations between pairs of words and developed a new algorithm
called Latent Relational Analysis (LRA) which also used SVD to smooth the
data [162]. Context of a target word is defined as a small unordered number
of words surrounding the target word in semantic space models. Pado and
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Figure 2.1: Skip-gram model architecture with word embedding dimension n = 4,
vocabulary size |V | = 6, window size 5 (c = 2). The input layer is a
one-hot encoding I ∈ |V | × 1 denoting the target word in the context
window. In the hidden layer, after multiplying I with the vocabulary
matrix P ∈ R|V |×n, the resulting vector is h ∈ n×1. After multiplying
h with the output weight matrix q ∈ n × |V | in the output layer and
sending the result vector to softmax function, a vector of probabilities
O ∈ |V | × 1 in the output layer specifies the likelihood of each word to
appear in the context window.

Lapata incorporated the syntactic information (dependency relations) to rep-
resent the context of the target word and formed a general framework for the
construction of semantic space models [125].

2.2.2 Advanced Algorithms in Text Representation

Word Embedding

Since the introduction of the first efficient word embedding algorithm by
Mikolov et al. in 2013, great progress has been made in the NLP field.

Skip-gram Model

Mikolov et al. [116] introduce the skip-gram model, which learns continuous
vector representations of words from the context in which the word resides.
Figure 2.1 shows the skip-gram model’s architecture. The model takes word
wt as input and predicts the c words ahead of and behind wt by maximizing
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the log likelihood function:

L =
∑
wt∈C

log p(Context(wt) | wt)) (2.3)

Where C is the corpus, the function tries to maximize the conditional proba-
bility of words appearing within a certain range of wt given the target word
wt. To address computational complexity, Mikolov et al. adopts hierarchical
softmax and negative sampling [116] to implement the skip-gram model. In
this dissertation, we address the skip-gram model trained with hierarchical
softmax. The vocabulary in the skip-gram model with hierarchical softmax is
initialized as a Huffman tree.

Besides the architecture difference in the skip-gram model and the CBOW
model described below, the skip-gram model generally performs better in se-
mantic tests [116] in terms of accuracy though more slowly than CBOW. Com-
pared to CBOW, the skip-gram model trains over more data since each word
in the corpus can be a training tuple.

Continuous Bag-of-words Model (CBOW)

Another neural language-based model is the CBOW model, which is also in-
troduced by Mikolov et al. [116]. Figure 2.2 shows the architecture of the
CBOW model. It consists of three layers: an input layer, a projection layer
(also known as a hidden layer) and an output layer. Unlike skip-gram, the
CBOW model predicts the target word given the context words, both c words
preceding and following the target word. In the input layer, the vocabulary
is represented as an input vocabulary matrix P ∈ R|V |×n. Each column in
P is the vector representation of a word in the vocabulary. P is randomly
initialized from the uniform distribution in the range [−1, 1]. In the hidden
layer, the vector representation of the context, g, is calculated as the arith-
metic mean of the vector representation of all words hi in the context window
with c words before and after the target word, as shown in Formula 2.4.

g =
1

2c

∑
i∈[−c,−1]∪[1,c]

hi (2.4)

p(wt|g) is used to calculate the probability of the target word given context
vector representation g as shown in Formula 2.5, which is represented as a
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Figure 2.2: CBOW model architecture with word embedding dimension n = 4,
vocabulary size |V | = 6 and window size 5 (c = 2). It consists of three
layers: input layer, hidden layer and output layer. In the input layer,
each Ii ∈ |V | × 1 is a one-hot encoding vector of a context word in the
context window surrounding the target word; in the hidden layer, each
one-hot encoding vector ITi multiplied against the vocabulary matrix
P ∈ R|V |×n to select the matrix row that represents the context word;
g ∈ n× 1 is the average of the context word vectors. After multiplying
g with the output weight matrix q ∈ n× |V | and sending the result to
a softmax function, a vector of probabilities O ∈ |V | × 1 in the output
layer specifies the likelihood of each word to be the target word in the
context window.

softmax function over the dot product of the vector representation of the
context g and target word wt.

p(wt|g) =
ewt·g∑

wi∈V ocab
ewi·g

(2.5)

Finally we can depict the loss function of the CBOW model in Formula 2.6.

L =
∑
wt∈C

log p(wt|g) (2.6)

where over all training tuples in the corpus C, we are maximizing the proba-
bility of finding the target word wt given g, its context. However, to go over
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all the words in the vocabulary in Formula 2.5 is expensive. Instead of com-
paring all words in the vocabulary, to only distinguish the target word from
several noise words largely reduces the computation load. This is called nega-
tive sampling. The window size 2c + 1 and the word embedding dimension n
are all hyperparameters. In chapter 7 we modify the CBOW model to train
class-specific word embedding.

Contextual Embeddings

The word2vec approach maintains a single vector representation for each word.
The vector representation will be updated whenever the word appears in the
context window. This could be problematic. For example, most models learn
only a single embedding per word. The problem is that many words are
polysemous (have multiple senses). For example, the word “apple” can be
interpreted either as fruit or as computer brand. In previous models such as
the skip-gram and CBOW models, all the different meanings of a polysemous
word will be combined into a single vector. In such a representation, quality
of semantics will suffer.

2.2.3 Other Related Work

There are many methods to obtain a vector representation of words, such as
Latent Semantic Analysis (LSA) [90] and Latent Dirichlet Allocation (LDA)
[12]. Word embeddings trained by neural language models are well known
for their fine-grained ability to represent words’ semantic meaning. Word2Vec
has demonstrated a new state-of-the-art performance in NLP tasks. Many
researchers have contributed to the area of neural language model based word
embedding [33, 100, 157].

Polysemy Problem

The current neural language models are based on the assumption that a word’s
semantics can be learned from the context in which it resides. This assump-
tion generally holds. However, many words are polysemous. Context alone
can hardly figure out which sense of the word is used in the sentence. Tang et

19



al. [157] tackle this problem by encoding the class information through modi-
fying Collobert et al.’s C&W [33] model to a supervised approach. The class
information in their paper is the sentiment polarity. Collobert et al. utilize
the context to predict the center word, while Tang et al. use the context to
predict the sentiment distribution of text.

A single word embedding is insufficient to address the polysemy problem.
Some researchers address this issue by training multiple word embeddings per
word according to their multiple senses [120, 161]. Hang et al. [65] tackle this
problem by incorporating both local and global document context. Huang et
al. used an outside knowledge base, WordNet [43] to obtain different senses
of the words. To let the model learn automatically the number of vector
representation that a polysemous word should have, Zheng et al. developed
an algorithm to learn a new sense vector for a word if the cosine similarity
between the new emerged context vector and every existing sense vector is
less than a threshold [180]. Tian et al. extended the skip-gram model from
Mikolov’s work and generated multiple vector representations for each word in
a probabilistic manner [159]. However, we think that a word’s sense such as
“water” can sometimes be better interpreted with the aid of class information.
For example, when the tweet “The water level is rising” is labeled as “hurricane-
related tweet”, we would know that the “water” here means flood.

Most existing models only produce one vector representation per word,
which is problematic for words with multiple meanings. A single word em-
bedding does not address the polysemy problem. Several multiple-embedding
models have been proposed to alleviate the problem caused by polysemy.

Researchers typically address the polysemy issue by training multiple em-
beddings per word according to their multiple senses [120, 161]. Most existing
work utilizes context-based models. That is, they learn various word em-
beddings per word by discriminating among distinguishable contexts in the
corpus. Huang et al. [65] tackle the polysemy problem through k-means clus-
tering. They heuristically pre-define k senses for each polysemous word and
cluster all the local contexts of a word into k clusters. Local context is defined
as 5 words before and after the target word. The local context limits the in-
formation we can use to learn to distinguish the word’s sense, especially in a
dataset consisting of short text snippets such as tweets.
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Neelakantan et al. [120] further extend Huang et al.’s idea and apply a
context-clustering schema on the skip-gram model. They notice that in Huang
et al.’s work, the context-clustering schema is a pre-processing step; the context
vectors are not updated in the learning process. They propose a joint model
by concatenating the clustering algorithm and the skip gram model. Their
approach clusters all the contexts the word has and finds the cluster centroid
that is most close to the word’s current context as its sense vector. Then the
sense vector is sent to skip-gram model for learning and updating. The learned
sense vector is updated as the new centroid for that cluster. Neelakantan et
al.’s approach still suffers from the need to cluster contexts for every word,
which makes training expensive.

Guo et al. [59] also propose a multiple embedding model. They combine
the context-clustering schema with bilingual resources to learn multiple em-
beddings per word. Motivated by the intuition that the same word in the
source language with different senses is supposed to have different translations
in the foreign language, the authors obtain the senses of one word by clustering
its translation words, exhibiting different senses in different clusters. Another
bilingual word embedding (BWE) approach is proposed by Su et al. [153].
Different from traditional BWE approaches which either distinguish the cor-
rect bilingual alignments from the corrupted ones or model the joint bilingual
probability, the authors introduce a latent variable to explicitly induce the
underlying bilingual semantic space which generates word tokens in both two
languages.

Pelevina et al. [131] generate multiple embeddings per word by clustering
the related words in the ego-network. Similar to our approach, their method
relies on existing single-prototype word embeddings, transforming them to
sense vectors via ego-network clustering. An ego network consists of a single
node (ego) together with the nodes they are connected to (alters) and all the
edges among those alters. In their case, for each word w, they construct an
ego network with word w as ego node and w’s nearest neighbours calculated
by vector similarities as other nodes with connections to word w. Then the
authors use graph clustering to obtain multiple senses for word w.

Other than context-clustering schema, other approaches have also proposed
to generate multiple embeddings per word. The main idea is still to obtain
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distinguishable context vector representations through other learning models
or outside expert annotators. Zheng et al. developed a convolutional neural
network to learn a new sense vector for a word if the cosine similarity be-
tween the new context vector and every existing sense vector is less than a
threshold [180]. Tian et al. extended the skip-gram model from Mikolov’s
work and generated multiple vector representations for each word in a prob-
abilistic manner [159]. They added an item specifying the probability of the
sense of the given word to the original skip-gram objective function and used
the Expectation Maximization algorithm to train multi-sense vectors. Chen
et al. rely on WordNet glosses, which have summarized each word’s senses, to
initialize multiple embeddings per word and update the multiple embeddings
per word through a skip-gram model [27]. Instead of figuring out how many
latent senses a word may have, Bollegala et al. [15] take a different path by
directly learning the k-way co-occurrences embeddings. Most of the success-
ful word embedding models, such as Word2Vec [116] and Glove [133], depend
on word co-occurrences when k = 2. Bollegala et al. extend to the situa-
tion when k ≥ 2; treat every context of size k as a bag-of-tokens and learn
a vector representation for every context. Scheepers et al. [148] improve the
semantics represented in the word embedding by using outside lexicographic
definitions (i.e., definitions and lemmas from WordNet). All the context-based
approaches suffer from same weakness. That is to learn all the distinguishable
contexts to discriminate word senses regardless of the future application for
the embedding and the computational cost.

Unlike the above word-level construction of word embeddings, some re-
search work focuses on morphology, that is, the sub-word level, to learn mul-
tiple embeddings per word. Bojanowski et al. also extended the skip-gram
model [13], targeting the morphology of words. Unlike previous approaches
which train a single word vector for each word and ignore the internal struc-
ture of words, they modified the skip-gram model to represent each word as a
bag of character n-grams. Each character n-gram is trained to associate with
a vector representation. The vector for the word is the sum of the n-grams’
vectors. Athiwaratkun, Wilson and Anandkumar [8] combine Bojanowski et
al.’s FastText with a Gaussian mixture model [143]. They initialize each word
with a hyper-parameter of k Gaussian components. Each Gaussian component
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represents a different sense of a word.

The polysemy problem not only exists in words but also in entity disam-
biguation. Chen et al. try to solve the challenging task of finding the correct
referential entity in a knowledge base (KB) [26]. The authors learn word and
entity embeddings by training a bilinear joint learning model. Their embed-
ding learning model is the same as the skip-gram model. The only difference
is that they propose a bilinear model to learn the semantic gap (a projection)
between word embedding and entity embedding.

Quantity Information in Text

Although many vector space models achieve good experimental performance,
we think one major issue that could be further improved for the models is
involved with quantified numbers. It is a challenge to interpret the number’s
quantification meaning from its neighboring context. Thus for tasks closely
associated with numbers, we need a different solution.

Previous researchers have made great efforts to take advantage of the num-
bers present in text. Macskassy et al. proposed a way to incorporate numbers
in the text [107] by converting numbers to bag-of-tokens and incorporating
those tokens into text that was represented as a bag of words. Their main
contribution lies in the proposed algorithm to optimally split the number to-
kens such that if two numbers are close, these sets will be similar, and if they
are further apart the sets will be less similar. For example the number 1800
could be represented as [“lengthunder500′′, “lengthover500′′,
“lengthunder1500′′, “lengthover1500′′]. However, treating numbers as tokens
results in losing their original quantity and value. Using a pre-defined dis-
cretization set, numbers such as 499 and 501 are less similar than 499 and 1
in the example. Besides it is unscalable in the sense that when new training
data pulled in, new split points needs to be generated.

In contrast, Aman et al. extracted number relations in the text [108]. This
is another paper about extracting numerical relationships from phrases or
sentences in the text. Their goal is to extract information from a sentence
in the form of a tuple with quantity as the second entity, subject as the first
entity and a relationship phrase to describe the relation between the quantity
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and the subject. Without a labeled training set, they use an unsupervised
text corpus. They present two systems: 1. NumberRule use a small list of
keywords to identify and extract number relations. Because of low precision
they design 4 tests still based on keywords to eliminate unqualified extractions.
2. NumberTon is a learning system that uses a graphic model to identify
relations. They also perform an ablation study on the features. Their approach
cannot be directly used in text classification since they only focus on extracting
the numerical relationship.

Chaganty and Liang [24] tackle the problem of how to automatically gen-
erate short descriptions of phrases containing numbers using units or concepts
that are easier or familiar to illustrate. Their first step is to manually collect
a knowledge base consisting of 9 fundamental units. The second step is to use
regular expression patterns to collect phrases containing numbers to form a
dataset. Then they use a graph to represent its unit and all the units men-
tioned in the knowledge, so that when future phrases come they could find
all the units close to it for formula representation. After all the formulas are
generated based on all the units in the knowledge base, they use crowdsourcing
to choose the most appropriate formula through rating (in this way they have
labels for formulas in the training set). Their final step is to generate a brief
description of the phrase containing numbers using a sequence-to-sequence
RNN.

Wallace et al. investigate the numerical problem as a question answering
task [166]. Given a text containing numeric information, the trained model’s
performance is assessed by a set of question answer pairs in which each answer
has numeric information.

2.3 Bias Types

We introduce multiple different types of bias in the text. We also present how
previous researchers deal with each kind of bias.
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2.3.1 NPOV Bias

As virtual encyclopedias, open-editing platforms should keep neutral. The
Neutral Point of View (NPOV) is a Wikipidia policy to guide platform editors
to write in a fair and proportionate manner. We explore different bias types
that can trigger the violations of the neutral point of view policy that are
common in the open-editing platforms. We introduce three types of bias,
namely subjective intensifier, one sided bias and epistemological bias.

Subjective Intensifier

Subjective intensifier bias is identified by subjective words or phrases linked
with a particular point of view. When this kind of bias happens, people are
affected by the positive or negative connotations delivered in the text. Such
wording should be avoided in a knowledge sharing platform.

Example of Subjective Intensifier. This example is extracted fromWikipedia.
We highlight the word that elicits subjective intensifier bias. The word “pow-
erful” gives a positive tone towards the North Korea football teams listed
afterwards. This describing tone can affect the readers’ decisions and evalu-
ations towards those teams. The original sentence should only narrate a fact
without boasting about any team. Such positive tone can be removed when
the word “powerful” is modified to “major”.

• Traditionally powerful teams in the men’s league include April 25, Py-
ongyang municipal, and Rimyongsu.

• Traditionally major teams in the men’s league include April 25, Py-
ongyang municipal, and Rimyongsu.

One-sided Bias

This often happens in a two-sided controversial issue such as home birth.
Especially in social media, people are often exposed to one-sided social media
comments, posts or articles. The wording in describing the one-sided story
can sway or affect people’s stance, choice or decision.
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Before Form String After Form String
1 Mar 24 , 1955 - terrorists threw

hand grenades and opened fire on
a crowd at a wedding in the farm-
ing community of Patish, in the
Negev.

Mar 24 , 1955 - gunmen threw
hand grenades and opened fire on
a crowd at a wedding in the farm-
ing community of Patish, in the
Negev.

2 Mussolini and his Generals
sought to cloak the operations of
chemical warfare in the utmost
secrecy, but the crimes of the
Fascist army were revealed to the
world through the denunciations
of the international Red Cross
and of many foreign observers.

Mussolini and his Generals
sought to cloak the operations of
chemical warfare in the utmost
secrecy, but the actions of the
Fascist army were revealed to the
world through the denunciations
of the international Red Cross
and of many foreign observers.

3 Human rights criticisms relating
to Israel arise primarily around
continued conflict between it-
self and Muslim/Arab neighbor
countries, as well as its interac-
tion with civilians in occupied
areas such as the Golan Heights
or the Palestinian territories.

Human rights criticisms relating
to Israel arise primarily around
continued conflict between it-
self and Muslim/Arab neighbor
countries, as well as its interac-
tion with civilians in disputed
areas such as the Golan Heights
or the Palestinian territories.

Table 2.1: Examples of the one-sided bias

Example of One-sided Bias. The examples of the one-sided bias in Table
2.1 are extracted from Wikipedia. We highlight the words that elicit one-sided
bias in pink. In Example # 1, the editor names one side participants of the
war as “terrorists”. The editor presumably takes a stance in the two-sided
controversial issue. This can affect the readers who treat the writing seriously.
Similarly in Example # 2, “crimes” is used to cast presupposition. In Example
# 3, the editor uses “occupied” to implicitly suggest that the areas should
belong to Israel.

Epistemological Bias

Most researchers ascribe epistemological bias as kind of ideological bias or psy-
chological bias [39, 135]. Epistemological bias refers to relating to the theory of
background knowledge that leads to the distinction between justified belief and
opinion [39]. Compared to gender bias and political bias, epistemological bias
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is implicit and unconscious. The detection and the neutralization of such bias
needs the justification of the background knowledge. Table 2.2 shows examples
of epistemological bias. All the examples are taken from Wikipedia history
revisions which will be described in Section 3.2 and modified by Wikipedia
editors. In example #1, compared to the word “noting”, the modified word
“claiming” indicates that this is a statement without providing any evidence
or proof. It leads the readers to be dubious to the content. Example #2 is
similar to Example #1. In Example #3, “found” means a revealing or dis-
covery of a reality, while “says” in the modified version delivers the content
with a neutral tone. Example #4’s “attacked” implies taking aggressive action
with weapons in an attempt to harm. It implicitly affects the readers with
negative opinion towards the subject. A special case is shown in Example #5.
One is adding the doubt by changing from “noting” to “claiming”; the other
example is removing the doubt by changing from “claimed” to “suggested”.
The detection of the epistemological bias is related to the validation and justi-
fication of the context. To detect the epistemological bias needs the expert to
review the sentences one by one. However, the rapid growth of content on the
web makes expert-reviewed bias detection unfeasible. We seek an automatic
machine learning approach to consider the context.

Without considering the semantic context, previous methods try to focus
on the existing sentence examples of epistemological bias and extract the word
forms that possibly lead to the bias. Recasens et al. [142] attributed the de-
tection of epistemological bias to the verbs in the sentences. They divided the
verbs into factive verbs, entailments, assertive verbs and hedges. Each verb
type forms a pre-compiled lexicon. This approach is effective only when the
samples are limited, thus only limited types of verbs exist in the corpus. With
the number of samples increasing and more word types appearing, a fixed lexi-
con is unlikely to cover all cases. Without considering the context information,
it can hardly deal with the contradictory examples shown in example 1 and
example 5 in Table 2.2.

In this thesis, we emphasize the role of context in the detection of epistemo-
logical bias. In Chapter 4 we first combine the word embeddings trained from
the context with the traditional Boolean lexicon-made features. In chapter 8
we also work on non-lexicon approach to detect the possible word tokens that
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Before Form String After Form String
1 Most of the casualties were

Hamas policemen and militants.
there has been both support and
criticism of the israeli attack ,
noting that the attack was a re-
sponse to rocket and mortar at-
tacks against Israel.

Most of the casualties were
Hamas policemen and militants
. there has been both support
and criticism of the israeli attack,
claiming that the attack was a
response to rocket and mortar at-
tacks against Israel.

2 The purpose of the mandate is
to solve the adverse selection
problem often faced by insur-
ance companies , by ensuring
healthy individuals purchase in-
surance and thus broaden the risk
pool.

The purpose of the mandate is
to solve the adverse selection
problem often claimed by in-
surance companies , by ensuring
healthy individuals purchase in-
surance and thus broaden the risk
pool.

3 Greenpeace found that between
1997 and 2008 Koch industries
donated nearly $ 48 million to
groups which doubt or oppose the
theory of anthropogenic global
warming.

Greenpeace says that between
1997 and 2008 Koch industries
donated nearly $ 48 million to
groups which doubt or oppose the
theory of anthropogenic global
warming.

4 They attacked the Fascists on
the streets until 1949 when they
lost heart and faded away.

They fought the Fascists on the
streets until 1949 when they lost
heart and faded away.

5 In the late 1990s , controversy
over vaccines escalated in both
the US and the United Kingdom
when a study , published in the
respected journal “Lancet”, by
Dr. Andrew Wakefield claimed
a possible link between bowel dis-
orders , autism and MMR vaccine
, and urged further research.

In the late 1990s , contro-
versy over vaccines escalated in
both the US and the United
Kingdom when a study , pub-
lished in the respected journal
“Lancet”, by Dr. Andrew Wake-
field suggested a possible link
between bowel disorders , autism
and MMR vaccine , and urged
further research.

Table 2.2: Examples of the epistemological bias

cost the epistemological bias.

Related Work of NPOV Bias

Riloff and Wiebe are the first researchers to extract subjective expressions
from the corpus [145]. They provide a bootstrapping process to extract sub-
jective expressions from large unannotated corpus. Sentiment analysis in bias
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detection is often used to detect a negative tone or a positive tone of a sentence
or a document which should have been neutral [74, 147]. This kind of bias
in reference works is easier to detect due to the emotional identifier it uses,
usually an adjective.

Lin et al. present a Bayesian model based on latent Dirichlet allocation
(LDA) to identify whether a sentence expresses opinion or states facts [99].

Some researchers realize that it is the emotions aroused from the narration
that play a key role in influencing people’s decision. Gosling and Moutier
research the relationship between emotions and the decisions influenced by the
bias [22]. They conducted two experiments, one with ninety-six undergraduate
students and the other one with forty-eight. Students are shown with literature
and their immediate emotions and the choices of decisions are recorded and
analyzed.

Recasens et al. build a linguistic model using 32 manually crafted features
to detect single biased word in a sentence [142]. They formulate the bias
detection problem as a binary classification task. They also conduct ablation
study on the features. Most of their features are boolean features from pre-
compiled lexicons.

Hube [67] is the most related to our work to detect NPOV bias. How-
ever, the author only studied the NPOV violation problem in one particular
Wikipedia article, Malaysia Airlines Flight 17. Unlike our research on bias de-
tection at the word level, Hube tried to detect NPOV violation at the article
level. The author analyzed several factors that might lead to NPOV violations,
including lexical factors and cited sources. Hube also mentioned that the text
that the editor added or deleted in the Wikipedia history of the article will be
extracted. However, how the author analyzed such content is not revealed.

To capture the inter-dependencies between words that introduce NPOV
biased language, Hube and Fetahu propose a attention based recurrent neu-
ral network [68]. They cast the research question as a binary classification
problem. They use word embeddings, POS tags, and LIWC word functions
respectively as input basic features for their model. They demonstrate that
this approach is better than word lexicon and hand-crafted feature based mod-
els.

Pryzant et al. provide an automatic approach to neutralize NPOV bias in

29



the text [137]. But they manually detect the problematic words using Recasens
et al.’s method. They cast the problem as a text generation task. They devise
an BERT-based encoder-decoder architecture for generation purpose.

Morstatter et al. research on identifying bias in online news [118]. They use
a two-pass approach. They first use a binary classifier to identify a sentence as
biased or not biased. Then for those biased sentence a second multi-classifier
is to identify certain types of bias.

2.3.2 Social Stereotype Bias

Social stereotype is a kind of bias that is a widely accepted and fixed im-
pression about specific individuals intended to represent the entire group of
individuals [73].

Related Work of Stereotype Bias. Otterbacher [124] analyzed the social
stereotype bias in the biographies of Internet Movie Database (IMDB) from
a linguistic point of view. Several linguistic description factors are examined,
such as adjectives vs. verbs, the usage of certain parts-of-speech, and the usage
of words from a subjectivity lexicon. The author conducted several case studies
such as white men vs. white women and white men vs. black men. That work
found linguistic differences such as the usage of adjectives vs. verbs in the
description of different race and gender.

2.3.3 Gender Bias

Gender bias is the prejudice or discrimination towards one gender. It can
be shown in behavior, psychology, speech and language. We are particularly
interested in language related gender bias detection.

Related Work of Gender Bias. Many research efforts have studied gen-
der bias in Wikipedia. Lam et al. [87] showed an imbalance exists in that
Wikipedia editors are predominantly white males. Wagner et al. [165] extends
this line of research by assessing gender bias in Wikipedia along multiple di-
mensions such as lexical difference, for example the 150 most indicative and
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discriminate words for women compared to that of men. They also assess gen-
der bias through coverage difference, for example comparing the proportions
of notable men and women covered by Wikipedia. Park et al. reduce gender
bias by detecting abusive language in the Tweet corpus using CNN [78] and a
GRU [29] based models [126].

Other than detecting gender bias inside text, researchers look at gender
bias shown in word embeddings. Bolukbasi et al. manually define a set of
gender specific words [16]. They calculate the gender subspace based on those
words. If a word’s distances to the two genders are unequal, it suggests bias.
Zhao et al. introduce a coreference resolution approach to detect gender bias
[178]. They select a vocabulary of 40 occupations. The co-reference tests
predict the gender pronouns such as “he” and “she” given either male or female
stereotypical occupations in the sentence.

2.3.4 Political Bias

Political bias is the bias involving slanting or altering information that affecting
people’s perception on political stance.

Related Work of Political Bias. Current research in political bias detec-
tion often uses both pre-compiled word lists and machine learning algorithms
[70, 171]. Most define the bias detection problem as a binary classification
problem. Gentzkow and Shapiro [50] select 1,000 phrases based on the fre-
quency that these phrases appear in the text of the 2005 Congressional Record.
They form a political word list that can separate Republican representatives
from Democratic representatives as the initial step in detecting the political
leaning of the media. Greenstein and Zhu [58] applied Gentzkow and Shapiro’s
method to Wikipedia articles to estimate Wikipedia’s political bias. Their re-
sult shows many Wikipedia articles contain political bias and the polarity of
the bias evolves over time.

We found typical work on political bias detection relies on the presence of
certain adjectives and keywords as indicators, which often leads to inaccurate
result. In 2014, Iyyer et al. introduced the use of a recursive neural net-
work (RNN) to natural language processing [70]. Without any pre-compiled
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word list based features and by taking into account the hierarchical nature of
language, RNNs can model grammatical relationship based languages.

Yano et al. [171] evaluated the feasibility of automatically detecting such
biases using Pennebaker et al.’s LIWC dictionary [132] compared to human
judgments using Amazon Mechanical Turk in the politics domain.

Preotiuc-Pietro et al. research automatic political preference prediction
from social media posts [136]. They develop a seven-point scale to examine
users’ political ideology. They characterize the political groups of users based
on their language when they comment on political events, political scientists
and pollsters.

2.4 Summary

We provide the necessary background knowledge of text representation. We
introduce multiple different types of bias. We present how previous researchers
conduct research in both text representation and bias detection field.
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Chapter 3

Datasets

We investigate multiple directions to improve text representation and have
used improved representations to develop and apply the algorithms to bias
detection and bias substitution tasks. We use multiple datasets for evaluation.

3.1 Introduction

Multiple datasets are used in this dissertation for evaluation purposes. Datasets
are an important ingredient to test the generalization ability. All the datasets
presented are publicly available. In this chapter we briefly introduce the
datasets we used and formulated. In Chapter 4 and Chapter 8 we use the
Wikipedia datasets explained in Section 3.2. The Wikipedia dataset is ex-
tracted from Recasens et al’s dataset [142]. Section 3.3 describes the dataset
used in Chapter 7. In Section 3.4, we use two healthcare-related datasets in
Chapter 5. The first dataset, called the healthcare dataset, is from Paul and
Dredze [128]. The second dataset, called the influenza dataset, is from Lamb
et al.’s work [88]. In Section 3.5, we introduce the Yelp product review dataset.
The approach explained in Chapter 6 is evaluated on the Yelp dataset.

3.2 Wikipedia Dataset

Wikipedia is a free online open-editing platform. Wikipedia is written col-
laboratively by anyone with Internet access. It serves as a natural resource
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for NLP field. Many researchers have established their research based on the
articles from Wikipedia [44, 62, 142, 165].

Wikipedia records all the changes that have been made since the appear-
ance of each article, called revision history1.

As a free online reference, Wikipedia publishes its data dumps once per
month (English version Wikipedia) in XML or HTML form2. In this disser-
tation we use Recasens et al’s Wikipedia dataset which can be found online3.
By doing a diff4 operation on the same Wikipedia articles from two different
Wikipedia dumps, we are able to extract the “before form” string (the sen-
tence before the modification) and the “after form” string (the same sentence
corrected by Wikipedia editors) [142]. The successive modification combined
with the Wikipedia editor’s comments on the prior text can largely explain
the error, misinformation or bias involved in the change.

• Greenwald noted that the text of the legislation does not require court
review of individual targets, and Time’s response, only repeating what
each side says, disregarded this fact.

• Greenwald asserted that the text of the legislation does not require
court review of individual targets, and Time’s response, only repeating
what each side says, disregarded this fact.

The above sentences were extracted from the revisions of Wikipedia article of
“Joe Klein”. In this example, the word colored in red is the biased word “noted”
tagged by the Wikipedia editor. The word colored in green “asserted” is the
word after modification. The word “note” implies the statement of a reality
while “assert” casts doubt to the statement. As a virtual encyclopedia and
resource for the public, the Wikipedia editors pay attention to those implicit
biases injected into the text. As a researcher, we seek an automatic approach
to detect and correct such implicit biases.

With an online encyclopedia like Wikipedia being increasingly popular and
relied upon by web users, a new concern about the integrity of its information

1https://en.wikipedia.org/wiki/Wikipedia:About
2https://dumps.wikimedia.org/
3https://www.cs.cornell.edu/~cristian/Biased_language.html
4https://en.wikipedia.org/wiki/Diff
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arises. Traditionally, online information platforms depend on the collective
efforts of (voluntary) online editors to manually check each entry. However,
the rapid growth of content makes expert-reviewed bias detection unfeasible.
For example, 10 edits are happening each second on Wikipedia projects, and
approximately 1,500 new articles are being included each day.5

3.2.1 Pre-processing Steps

Besides following the pre-processing steps of Recasens et al’s work [142], we
also add more detailed pre-processing steps to do data cleaning. If and only if
all the conditions are satisfied, the sample is retained in the dataset, otherwise
thrown away.

1. The comments that the editors can associate with a revision, if the com-
ments mentioned “(N)POV”. It is an important notification that the mod-
ification is related to NPOV bias.

2. Remove HTTP links, since we found anecdotally that HTTP links are
irrelevant to bias detection.

3. Between the successive revisions, the difference of the before form string
(BFS) and the after form string (AFS) in the same sentence should be
five or fewer words.

4. Discard samples if BFS and AFS’s Levenshtein distance [95] is less than
4.

5. Discard samples if BFS and AFS only contain numbers or contents in
<> and {}. Contents within <> and are not text in Wikipedia.

6. Remove HTML tag, HTML link, punctuation, <>, {}.

7. Remove stop words and numbers.

For the qualified samples, we do lemmatization and tokenization. Lemmatiza-
tion is a linguistic processing step to reduce various inflected forms of a word
into a single common basic item. For example, the lemmatization of “better”

5https://en.wikipedia.org/wiki/Wikipedia:Statistics
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and “ best” is “good”. Tokenization is to chop the sentence into tokens. For
example, “the sky is blue.” after tokenization is, “the”, “sky”, “is”, “blue”.

3.2.2 NPOV Bias in Wikipedia

To quantitatively analyze the bias in Wikipedia, we selected 300 samples from
the pre-processed samples extracted from Wikipedia and manually labeled
them. In the comment area of the 300 samples, Wikipedia editors have already
tagged as related to NPOV. We further analyzed the NPOV bias in detail and
show the bias types that constitutes the NPOV bias in Table 3.1.

Although it is tagged by a Wikipedia editor to reflect that the modification
is related to NPOV, there still exists a substantial number of samples that are
actually noise and reflect a lack of description precision that we have verified
are irrelevant to NPOV bias. In the following, we introduce several typical
bias examples of NPOV bias listed in Table 3.1.

The first typical bias type in NPOV bias is one-sided bias as listed in Table
3.1. One-sided bias shows that the author only represents one point of view
in a two-sided controversial issue. Examples of one-sided bias are shown in
example a) and example b):

a) one-sided BFS: Offensive military build up was initiated by India in
response to a terrorist attack on the Indian parliament on December
13, 2001 during which twelve people, including the five terrorists who
attacked the building, were killed.

b) one-sided AFS: Offensive military build up was initiated by India in
response to a terrorist attack on the Indian parliament on December 13,
2001 during which twelve people, including the five men who attacked
the building, were killed.

Another typical bias type in NPOV bias is subjective intensifier as listed in
Table 3.1. Subjective intensifier means the author uses emotional subjective
adjectives or adverbs in description. Subjective intensifier bias is shown in
example c) and example d).

c) Subjective intensifier BFS: Shwekey’s albums are arranged by many
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Class Ratio(%)
One-sided 6.55
Subjective intensifier 10.34
Description precision 24.48
Epistemological bias 17.93
Counter epistemological bias 4.14
Unclear 32.76
Noise 3.79

Table 3.1: Ratios of different bias types in NPOV bias in a 300-sample Wikipedia
dataset

talented arrangers , including Yanky Briskman, Moshe Laufer, and Yis-
roel Lamm.

d) Subjective intensifier AFS: Shwekey’s albums are arranged by many
different arrangers , including Yanky Briskman, Moshe Laufer, and Yis-
roel Lamm.

We listed both epistemological bias and counter epistemological bias in
Table 3.1. We use “Epistemological bias” to describe the removal of doubt, e.g.,
modify from “claim” to “suggest”. “Counter epistemological bias” to express
the adding of doubt, e.g. modify from “report” to “claim”. More examples can
be seen in Table 2.2.

Note that we do not use the 300-sample labeled dataset in any project
in this dissertation. The goal of labeling this dataset is to understand and
analyze the subtle bias types in the NPOV bias. To use this dataset in the
future, we will adopt more professional approach to label the dataset, such as
using Amazon Mechanical Turk to label it.

We also analyzed the topics discussed in each sentence and the ratios of
the 300-sample dataset are shown in Table 3.2.

3.2.3 Statistics of the Wikipedia Dataset

We divide the pre-processed samples into training set and test set for super-
vised approaches. We show the statistics of the Wikipedia dataset we have
used in the thesis.
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Topic Ratio (%)
Cult, religion 10.69
Military, nation, politics, policy 54.83
Gender and race 3.10
Music 0.70
Animal 0.34
Economy 1.72
Entertainment (film) 2.41
Famine 0.69
Environment and health 2.76
Sport 2.76
Company and corporation 3.10

Table 3.2: Ratios of different topics in NPOV bias in a 300-sample Wikipedia
dataset

Data Number of sentences Number of words
Train 1779 28638
Test 207 3249

Table 3.3: Statistics of the dataset

3.3 Disaster-related Twitter Datasets

Twitter provides an open access data resource. People tend to share their
observations, feelings, opinions on Twitter. Researchers can access tweets via
the Twitter API 6. We utilize Twitter datasets in Chapter 7.

We extract useful information from the text in social media during disaster
time or post-disaster time to provide information for post-disaster service and
administrative decision. For example, the information can include road status,
structural information and communication status, etc.

In the Twitter corpus, for example, the tweet “The water level is rising.” is
more relevant to a hurricane rather than the water in your kitchen. Similarly,
“The lights went off in this area.” is a hurricane-related tweet. It describes the
blackout, a piece of hurricane-related information. We use a Twitter dataset
to evaluate word embeddings.

The first dataset is a disaster-related Twitter dataset [123], called T6. T6

6https://developer.twitter.com
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Data On-topic Off-topic Total
Train 4911 3098 8009
Test 1227 772 1999

Table 3.4: Hurricane Sandy dataset characteristics

Data Positive Negative Total
Train 2256 849 3104
Test 330 172 502

Table 3.5: SemEval 2013 dataset characteristics

is labeled by crowdsourcing workers according to disaster relatedness (as “on-
topic”, or “off-topic”) [123]. T6 contains 6 crisis events in 2012 and 2013. We
choose to test our approach on the hurricane Sandy dataset. The statistics of
the hurricane Sandy dataset are shown in Table 3.4.

The other dataset is the benchmark Twitter sentiment classification dataset
in SemEval 20137. Each tuple in the SemEval dataset has three class label
options: positive, negative and neutral. Since we focus on the binary text
classification task and we aim to use the same classification framework for
both datasets, we filter out the tuples in the SemEval 2013 dataset which are
labeled as neutral. We also do a pre-processing step: we first eliminate all
tweets in the two datasets that are non-English, and then we eliminate tweets
that contain fewer than five words. Our pre-processing step is in line with
Olteanu et al.’s work on the same dataset [123].

3.4 Healthcare Datasets

The healthcare dataset is collected and labeled using Amazon’s Mechanical
Turk (AMT) and has two labels: health-related and health-unrelated. All
tweets were collected using healthcare keywords filtering as a first step; thus,
even health-unrelated tweets contain healthcare keywords. Tweets that were
not about a particular person’s health (e.g., advertisements of flu shots and
news information about the flu) were labeled as unrelated. The statistics of
the healthcare dataset are shown in Table 3.6. The influenza dataset was also

7https://www.cs.york.ac.uk/semeval-2013/
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Data Healthcare-Related Healthcare-Unrelated Total

Train 868 1301 2169
Test 217 325 532

Table 3.6: Tweet counts for the healthcare dataset (from [128]).

Data Influenza-Related Influenza-Unrelated Total

Train 2148 1609 3757
Test 537 402 939

Table 3.7: Tweet counts for the influenza dataset (from [88]).

collected from Twitter. It contains tweets posted during the 2009 and 2012
outbreaks of swine and bird influenza. The data is also labeled as influenza-
related and influenza-unrelated by AMT workers. The statistics of the in-
fluenza dataset are shown in Table 3.7.

3.5 Product Review Dataset

The text in the product review is good for evaluating approaches and models.
We use the publicly available Yelp dataset offered in 2017 as part of round 9
of the Yelp Dataset Challenge8. The statistics in the experiment are shown in
Table 3.8.

Dataset Yelp
review size 20000
numeric attributes 174
labels 7

Table 3.8: The statistics of the Yelp dataset

8https://www.yelp.com/dataset_challenge
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3.6 Summary

We introduced three major datasets that we utilized in the dissertation. We
mainly described how to obtain the datasets so that the experiments elaborated
in the dissertation can be rebuilt.
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Chapter 4

Improving Bias Detection using

Word Embedding

Prior work on bias detection has predominantly relied on pre-compiled word
lists. However, the effectiveness of pre-compiled word lists is challenged when
the detection of bias not only depends on the word itself but also depends on
the context in which the word resides. In this work, we train neural language
models to generate vector space representation to capture the semantic and
contextual information of the words as features in bias detection. We also
use word vector representations produced by the GloVe algorithm as semantic
features. We feed the semantic and contextual features to train a linguistic
model for bias detection. We evaluate the linguistic model’s performance on
a Wikipedia-derived bias detection dataset and on a focused set of ambiguous
terms. Our results show a relative F1 score improvement of up to 26.5% versus
an existing approach, and a relative F1 score improvement of up to 14.7% on
ambiguous terms.

4.1 Introduction

Bias in a reference work can affect people’s thoughts [122]. It is the editor’s job
to correct those biased points of view and keep the reference work as neutral as
possible. But when the bias is subtle or appears in a large corpus, it is worth
building computational models for automatic detection. Most prior work on
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bias detection rely on pre-compiled word lists [70, 142, 171]. This approach
is good at detecting simple biases that depend merely on the word. Such
methods are appropriate when the word itself indicates strong subjectivity
polarity or the author’s stance intuitively and straightforwardly. In Examples
1a and 2a shown below1, both “terribly” and “disastrous” are subjective words
indicating the author’s negative emotion; the word “terrorist” in Example 3a
clearly identifies the author’s stance on the event. Use of a pre-compiled word
list is sufficient to detect such bias instances.

1. (a) The series started terribly for the Red Sox.

(b) The series started very poorly for the Red Sox.

2. (a) Several notable allegations of lip-synching have been recently targeted at

her due to her disastrous performances on Saturday Night Live.

(b) Several notable allegations of lip-synching have been recently targeted at

her due to her poor performances on Saturday Night Live.

3. (a) Terrorists threw hand grenades and opened fire on a crowd at a wedding

in the farming community of Patish, in the Negev.

(b) Gunmen threw hand grenades and opened fire on a crowd at a wedding

in the farming community of Patish, in the Negev.

However, using a pre-compiled word list also has significant drawbacks. It is
inflexible in the sense that only words appearing in the list can be detected.
Words with similar meanings but not collected in the list would not be de-
tected. Thus this method only focuses on the surface form of the word while
neglecting its semantic meaning. Focusing on the word itself also means ne-
glecting the context in which the word resides. But some bias can only be
detected when contextual information is considered. Words associated with
this kind of bias, such as “white” in Example 4a, are often ambiguous and hard
to detect using only a pre-compiled word list. The meaning of such words can
only be clarified by interpreting the context of the word. The modified sentence
in each example is the correct version supplied by Wikipedia editors.

1All examples in this chapter are extracted from the dataset derived from Wikipedia
2013 [142].
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4. (a) By bidding up the price of housing, many white neighborhoods again

effectively shut out blacks, because blacks are unwilling, or unable, to

pay the premium to buy entry into white neighborhoods.

(b) By bidding up the price of housing, many more expensive neighbor-

hoods again effectively shut out blacks, because blacks are unwilling, or

unable, to pay the premium to buy entry into white neighborhoods.

Recent years have seen progress in learning vector space representations for
both words and variable-length paragraphs [92, 115, 116, 133]. In this work,
we use and build models to generate semantic and contextual vector space
representations. Equipped with semantic and contextual information, we then
build a semantic and context-aware linguistic model for bias detection.

4.2 Background

We have covered the background knowledge of bias detection and text repre-
sentation in Chapter 2.

Many researchers working on bias detection use pre-compiled word lists.
Recasens et al. [142] use a pre-compiled word list from Liu et al. [101] to detect
non-neutral tone in reference works. Yano et al. [171] evaluated the feasibility
of automatically detecting such biases using Pennebaker et al.’s LIWC dictio-
nary [132] compared to human judgments using Amazon Mechanical Turk in
the politics domain. In this chapter we seek an automatic machine learning
approach without using pre-compiled lexicons.

We learn word and document vector representations from two neural lan-
guage models [91] and the GloVe algorithm [133]. The word vectors and docu-
ment vectors are used as semantic and contextual features to build a linguistic
model. Below we introduce the models and algorithm we use to learn the
features.

Neural Language Model

Neural language models are trained using neural networks to obtain vector
space representations [10]. Although the vector space representations of the
words in a neural language model are initialized randomly, they will eventually
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learn the semantic meaning of the words through the prediction task of the next
word in a sentence [91, 116]. Using the same idea, we treat every document
also as an unique vector. And the document vector will eventually learn the
semantics through the same prediction task as we do for word vector.

We use stochastic gradient descent via backpropagation to train document
vector representations and word vector representations. The model that con-
siders the document vector as the topic of the document or the contextual
information when predicting the next word, is called the Distributed Mem-
ory (dm) Model. In the process of building a dm model, word vectors in the
corpus will capture the semantic meanings; besides using the dm model to
learn document vectors as contextual features, we also use the dm model to
learn word vectors as semantic features. The Distributed Bag of Words model
(dbow) learns document vector representations and it is trained by predicting
words randomly sampled from the document [91]. In this work, we also use
dbow model to learn document vectors as contextual features.

GloVe Algorithm

In both the dm and dbow models, text is trained from a local context window.
By utilizing global word-word co-occurrence counts, the ratio of co-occurrence
probabilities are able to capture the relevance between words. Pennington et
al. [133] use this idea to construct a word-word co-occurence matrix, and re-
duce the dimensionality by factorization. The resulting matrix contains vector
space representations for each word. In this work, we use GloVe’s pre-trained
word vectors learned from Wikipedia in 20142 as semantic features to train a
linguistic model.

4.3 Approach

Our work extends the work of Recasens et al. [142], who use eight pre-compiled
word lists to generate boolean features to train a logistic regression model to
detect biased words. In Recasens’s work, 32 manually crafted features for each
word being considered are utilized to build a logistic regression model. Among

2http://nlp.stanford.edu/projects/glove/
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the features, about two thirds of their features (20/32) are boolean features
derived from the pre-compiled word lists. Other features include the word
itself, lemma, part of speech (POS) and grammatical relation.

By using pre-compiled word lists, their method neglects semantic and con-
textual information. Moreover, in their evaluation, they evaluate their model’s
performance as the ratio of sentences with the correctly predicted biased word.
This metric has two flaws: first using a word-feature matrix as input, the lin-
guistic model is a word-based classification model and thus word-based evalu-
ation metrics are needed; second, to calculate the sentence-based metric, the
authors obtain the predicted probabilities for all words in the sentence—the
word with the highest probability is predicted as the biased word. The authors’
implicit assumption is that there must exist a biased word in every sentence,
which is not the case in real-world text. Since the dataset is derived from
Wikipedia, non-biased words form the majority class and so accuracy is not
an effective metric. In contrast, we focus on the model’s quality on detection
of biased words. To address the above problems, we use word-based evaluation
metrics—precision, recall and F1 score—to evaluate performance.

In this work, we train two neural language models using stochastic gradient
descent and backpropagation, a distributed memory model and a distributed
bag of words model, to learn vector space representations to capture the con-
textual information of each word under consideration. Our assumption is that
equipped with contextual information the linguistic model should be better
able to detect bias associated with ambiguous words. To tackle the problem
that the pre-compiled word list method only focuses on remembering the form
of the words in the list, we use recent approaches from Pennington et al. [133]
and Mikolov et al. [91, 115] to obtain vector space representations that can
capture the fine-grained semantic regularities of the word. We incorporate the
semantic features and contextual features when building a logistic regression
model for the bias detection task.

4.4 Experiment and Analysis

Since our task comes from Recasens et al. [142], we aim to build a linguis-
tic model to detect framing bias and epistemological bias. Recasens et al.
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used multiple boolean features derived from pre-compiled word lists (true if
in the list, false otherwise) to describe the target word. Our first expectation
is that by using the finer structure of the word vector space using methods
by Pennington et al. [133] and Mikolov et al. [115], the finer-grained seman-
tic regularities should become more visible and thus get better bias detection
performance because similar words will be classified similarly. Second, by gen-
erating document vector space representations to capture the context of each
word, we should improve the model’s performance on bias detection associated
with ambiguous words, since we can potentially distinguish different uses of
the same word.

We use Recasens et al.’s approach as baseline. To better understand the
behavior of the semantic features and the contextual features, we design our
experiments to be in three scenarios: first we retain all the features in Recasens
et al.’s work and only add our semantic features to train a logistic regression
model; second we retain all the features in Recasens et al.’s work and add our
contextual features to train a logistic regression model; third we add both the
semantic and contextual features. In their work, Recasens et al.’s feature space
consists (in part) of lexical features (word and POS) and syntactic features
(grammatical relationships). A list of all 32 features may be found in Recasens
et al. [142].

To better measure the contextual feature’s behavior in detecting bias as-
sociated with ambiguous words, we extract a focused subset of the test cases
consisting of ambiguous words (i.e., those in the training set that are incon-
sistently labeled as biased). We measure the precision, recall and F1 score of
the focused set before and after we add the contextual features. The logistic
regression model computes each word’s probability to be biased. We derive a
threshold probability to decide beyond which the words should be predicted
as biased by choosing the threshold when the F1 score is maximized on the
training set, examining thresholds across (0, 1) using intervals of 0.001.

4.4.1 Dataset

To evaluate our proposed approaches, we use the Wikipedia dataset described
in Chapter 3.
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Data Number of sentences Number of words
Train 1779 28638
Test 207 3249
Focused set NA 706

Table 4.1: Statistics of the dataset

baseline dm
doc
vec

dbow
doc
vec

dm doc vec
+ dbow doc
vec

# features 32 332 332 632
precision 0.245 0.228 0.228 0.224
recall 0.228 0.335 0.335 0.330
F1 score 0.236 0.271 0.271 0.267

Table 4.2: Results on test set after adding contextual features

The Wikipedia datset from Recasens et al. [142] is derived from articles
from Wikipedia in 2013. The biased words are labeled by Wikipedia editors.
However, since some details of their data preparation are not included in their
paper, our statistics of the dataset (shown in Table 4.1) are slightly different
from theirs.

4.4.2 Baseline

For our baseline, we built a logistic regression model using the approach of
Recasens et al. [142]. To better prepare the data, we also added the following
steps in data cleaning which are not specified in their paper: we discard data
tuples in both training set and test set if the “before form” string and “after
form” string only differ by numbers or contents inside

〈〉
and

{}
, since contents

inside
〈〉

and
{}

are not text in Wikipedia and we also ignore the words
within

〈〉
and

{}
when we generate the word-feature matrix. We also remove

tuples from the dataset in which the biased word belongs to the stopwords set.
Moreover, we use regex to check and remove those tuples if the biased word of
that tuple happens to be in the Wikipedia article’s title. We use the Stanford
CoreNLP (version 3.4.1) [111] to generate grammatical features, such as part
of speech, lemma and grammatical relationships. The result of the baseline is
shown in the first column of Table 4.2.

49



4.4.3 Experiment on Contextual Features

For each word in the data set, we generate fixed length vector representations
of the Wikipedia articles in which the word resides as the contextual features
by training two neural language models. This fixed length document vector of
the article, together with the original 32 features from Recasens et al.’s paper
[142] will be the input to train a logistic regression model to perform bias
detection.

To generate the contextual features for each word in the dataset, we use
all 7,464 Wikipedia articles and altogether 1.76 million words as input to
train two neural language models, a distributed memory model (dm) and a
distributed bag of words model (dbow), using the open source package gensim
on a 128GB memory machine with 16 3.3 Ghz cores. The training process
took approximately 5 hours using 16 workers (cores). For each model, we
iterate over 10 epochs. For each Wikipedia article, we split and clean it using
the same procedures as we process the “before form” strings [142]. For each
article, we use the Wikipedia article name as the label to train the neural
language model. For both models, we use a window size of 10 and vector
dimension of 300 for the vector representations. As suggested by Mikolov and
Le [116], we also experiment on the combination of dm and dbow vectors as
contextual features.

For metrics, precision is defined as

# words predicted to be biased and labeled as biased
# words predicted to be biased

(4.1)

Recall is defined as

# words predicted to be biased and labeled as biased
# words labeled as biased

(4.2)

F1 score is defined as the harmonic mean of precision and recall

2 · precision · recall
precision+ recall

(4.3)

We use F1 score to measure the overall performance of the linguistic model
of the baseline. The result is shown in Table 4.2. We can see a decrease in
the precision and an increase in the recall, which result in an overall increase
of F1. This indicates a significant rise in false positives. Compared to the
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baseline, the precision of the contextual-aware model slightly drops. But we
should point out that contextual features are only helpful when detecting bias
associated with ambiguous words. There are relatively few ambiguous words
(706 out of 3249) in the test set. For non-ambiguous words, the contextual
features are not helping but increase the feature dimensionality.

4.4.4 Experiment on Semantic Features

To capture fine-grained semantic regularities of words, we use pre-trained word
vectors of size 300 from the GloVe algorithm [133] trained on articles from
Wikipedia 2014. Since the dm model can also learn the word vector repre-
sentation inside its input documents, we also use the dm model to generate
word vectors of size 300 as semantic features. The learned semantic features
are used as input to train a logistic regression model to classify bias, with the
result presented in Table 4.3. The result shows that compared to contextual
features, semantic features generally performs better in this task. Semantic
features trained by the GloVe algorithm give the best F1 score. This sug-
gests that semantic features trained either by GloVe or the dm model could
significantly improve a linguistic model’s performance on bias detection.

Figure 4.1: F1 relative improvement on focused set compared to the Recasens et
al. baseline.

51



baseline GloVe dm word vec
# features 32 332 332
precision 0.245 0.284 0.304
recall 0.228 0.316 0.282
F1 score 0.236 0.299 0.292

Table 4.3: Results on test set after adding semantic features
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Figure 4.2: F1 relative improvement on test set against the Recasens et al. baseline

4.4.5 Combination of Semantic and Contextual

Features

To see if the two types of features together can strengthen the logistic regres-
sion model’s power in detecting bias, we try different combinations of semantic
and contextual features to build linguistic models. The relative improvement
of F1 score of different combinations against the Recasens et al. baseline is
shown in Figure 4.2. The result shows in general semantic features alone per-
form better than both contextual features and the combinations of those two.
The result shows that adding the GloVe as semantic features alone can reach
a relative improvement of up to 26.5%. The group of results after adding con-
textual features alone gives second tier best result showing the model can learn
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baseline glove dm
word
vec

dm
doc
vec

dbow
doc
vec

dm doc
vec+dbow
doc vec

precision 0.239 0.286 0.254 0.267 0.267 0.271
recall 0.484 0.438 0.453 0.500 0.500 0.516
F1 0.320 0.346 0.326 0.348 0.348 0.355

Table 4.4: Result on focused set when one type of feature is added

baseline GloVe
+ dm
doc
vec

GloVe
+
dbow
doc
vec

GloVe
+ dm
doc vec
+ dbow
doc vec

dm
word
vec
+ dm
doc
vec

dm
word
vec +
dbow
doc
vec

dm word
vec + dm
doc vec +
dbow doc
vec

precision 0.239 0.280 0.280 0.275 0.271 0.271 0.285
recall 0.484 0.438 0.438 0.438 0.500 0.500 0.516
F1
score

0.320 0.342 0.342 0.337 0.352 0.352 0.367

Table 4.5: Result on focused set when the combination of two types of features are
added

from contextual features along. However, the performance drop significantly
when combining semantic and contextual features. After adding contextual
features, the relative ratio of F1 drops. However, we cannot conclude that
contextual features do not help, since they are only helpful when detecting
bias associated with ambiguous words. There are relatively few ambiguous
words in the test set. For non-ambiguous words, the contextual features are
not helping but increase the feature dimensionality. It shows that in gen-
eral cases, the logistic regression model does not learn well when adding the
combination of semantic and contextual features.

4.4.6 Experiment on Focused Set

To better measure the performance of the contextual features in detecting bias
associated with ambiguous words, we extracted a focused set of ambiguous
words within the test set. We put the word in the focused set if the word is
in the training set, labeled as biased at least once, and it is also labeled as
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not biased at least once. We found words such as “white”, “Arabs”, “faced”,
“nationalist” and “black” to be in this focused set. We test our contextual
features: dm vector, dbow vector and the combination of the two vectors on
the focused set. We also test using the semantic features and the combination
of semantic features and contextual features. The result is shown in Tables 4.4
and 4.5; the relative improvement of F1 score against the baseline is shown in
Figure 4.1. In the focused set, the maximum F1 score relative improvement
of 14.7% is obtained when adding both the dm document vector and dbow
document vector combined with dm word vectors.

In the focused set, the advantage of the GloVe feature is not as obvious as
in the full test set. Our result shows contextual features (dm document vector
+ dbow document vector) do help in detecting bias associated with ambiguous
words. The model’s performance reaches a maximum when the dm document
vector and dbow document vector are combined with dm word vector. GloVe
features alone behave consistently well in general cases. The result shows the
linguistic model behaves better in detecting bias associated with ambiguous
words when the contextual information in which the word resides is given.
But when we combine GloVe features and contextual features together, the
performance gets worse. The performance of the model when GloVe features
are combined with contextual features is consistent in both test set and focused
set. The result suggests that in bias detection for reference works, we should
train two linguistic models: one with added semantic features from either
GloVe or the dm model to determine non-ambiguous words’ bias detection;
one with adding semantic and contextual features learned from dm and dbow
models to determine bias associated with ambiguous words. Example 5a was
found in the focused set, where it was not predicted correctly by baseline but
predicted correctly after dm document vector and dbow document vector are
added to train the logistic regression model:

5. (a) According to eyewitnesses, when one of the occupants went to alert the

Israelis that people were inside, Israelis began to shoot at the house.

(b) According to eyewitnesses, when one of the occupants went to alert the

Israeli soldiers that people were inside, the soldiers began to shoot at

the house.

54



The example was extracted from the Wikipedia article “Zeitoun incident”.
After we learn the document vector representation of the article “Zeitoun inci-
dent” and add it as context when training the linguistic model, the ambiguous
word “Israelis” is now recognized as a biased word.

4.5 Discussion

In this work, we consider vector space representations of text in the bias detec-
tion task. Traditional bias detection is usually conducted through manually
crafted features as input in a machine learning algorithm such as SVM or lo-
gistic regression. After words have been successfully learned as vectors, these
vectors could be understood by complex language models such as deep neu-
ral networks. Future work can consider a deep learning solution for the bias
detection task.

4.6 Summary

In this work, we have noted some drawbacks of using pre-compiled word lists
to detect bias. We use recent research progress in vector space representations
of words and documents as semantic features and contextual features to train
a logistic regression model for the bias detection task. Our experiment shows
that semantic features learned from the GloVe algorithm reach a F1 relative
improvement of 26.5% against baseline. In the experiment on a focused set of
ambiguously labeled words, the linguistic model reaches the highest gain in F1
score when adding the combination of contextual features learned from the dm
and dbow models combined with semantic features learned from the dm model.
Semantic features learned from the GloVe algorithm behave consistently well
in all experiments. The linguistic model behaves better in detecting bias as-
sociated with ambiguous words when the context in which the word resides is
given.

Word embeddings and document embeddings have shown their value as
features for bias detection task. We will continue this line of research to learn
better word embeddings in Chapter 5.
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Chapter 5

Weighted Continuous

Bag-of-words Model

Twitter is a popular source for the monitoring of healthcare information and
public disease. However, there exists much noise in the tweets. Even though
appropriate keywords appear in the tweets, they do not guarantee the iden-
tification of a truly health-related tweet. Thus the traditional keyword-based
classification task is largely defeated. Algorithms for word embeddings have
proved to be useful in many NLP tasks.

We introduce two algorithms based on an existing word embedding learn-
ing algorithm, the continuous bag-of-words model (cbow). We apply the pro-
posed algorithms to the task of recognizing healthcare-related tweets. In the
cbow model, the vector representation of words are learned from their con-
texts. To simplify the computation, the context is represented by an average
of all words inside the context window. However, not all words in the con-
text window contribute equally to the prediction of the target word. Greedily
incorporating all the words in the context window will largely limit the con-
tribution of the useful semantic words and bring noisy or irrelevant words into
the learning process. While existing word embedding algorithms [49, 96, 138]
also try to learn a weighted cbow model [116], their weights are based on
existing pre-defined syntactic rules while ignoring the task of the learned em-
bedding. We propose to learn weights based on the words’ relative importance
in the classification task. Our intuition is that such learned weights place
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more emphasis on words that have comparatively more to contribute to the
later task. We evaluate the embeddings learned from our algorithms on two
healthcare-related datasets. The experimental results demonstrate that em-
beddings learned from the proposed algorithms outperform existing techniques
by a relative accuracy improvement of over 9%.

5.1 Introduction

More and more researchers have realized that Internet data could be a valuable
and reliable source for tracking and extracting healthcare-related information.
For example, in 2008 Google researchers found that they can “forecast” flu
prevalence in real time based on search records [51]. Google later turned this
research into one of their projects called Google Flu Trends (GFT)1. However,
GFT later failed by missing the peak of the 2013 flu season by 140 percent
[20]. One reason is the presence of too much noisy data [20]: people who search
using the keyword “flu" might know very little about the symptoms of the flu.
And some disease, whose symptoms are similar to the symptoms of the flu, is
not actually the flu. The failure of GFT does not negate the value of the data
but highlights the importance of classification of truly healthcare-related data
from irrelevant and noisy data.

Healthcare researchers desire to extract more healthcare information from
information that people have shared online. Thus we are more interested
in tweets that talk about real disease symptoms as shown in Examples 4, 5
and 6 which we name healthcare-related tweets, rather than those tweets that
simply highlight healthcare information as seen in Examples 1, 2 and 3 which
we name healthcare-noise tweets. The classification task in the healthcare field
is a challenging one since both healthcare-related tweets and healthcare-noise
tweets might contain some keywords such as “flu” and “health” which makes
basic filtering approaches unworkable. Below we show examples of healthcare-
noise tweets (1, 2 and 3) versus the truly healthcare-related tweets (4, 5 and
6).2 Compared to the healthcare-related tweets, we found that although the
healthcare-noise tweets all have keywords such as “swine flu” and “flu shots”,

1https://en.wikipedia.org/wiki/Google_Flu_Trends
2The example tweets are all drawn from a published dataset by Lamb et al. [88]
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they are not really talking about the symptoms of the flu of individuals.
With this motivation, the task of this work is to classify truly healthcare-

related data from healthcare-noise data that is typically collected through the
keyword filtering approach provided by the Twitter API3.

1. Worried about swine flu? Here are 10 things you need to know: Since it
first emerged in April, the global swine ..

2. Swine Flu - How worried are you? - Take our poll now and check out
how others feel!

3. Missed getting a FREE FLU SHOT at Central last night? You’ve got
three more "shots" at it.

4. feels icky. I think I’m getting the flu...not necessarily THE flu, but a flu.

5. Resting 2day ad my mthly blood test last 1 ok got apoint 4 flu jab being
lky so far not getting swine flu thats something

6. 38 degrees is possible swine flu watching the thermometer go up. at 36.9
right now im scared :/

Twitter provides support for accessing tweets via the Twitter API. Health-
care researchers have long been utilizing social media data to conduct their
research [66, 88, 127, 151, 167]. Because of the popularity of social media
platforms such as Twitter, the number of healthcare-related posts is growing
fast. To extract further healthcare information, the most basic and crucial
task is to discriminate and extract healthcare-related tweets from the massive
pool of tweets. Researchers have made efforts to collect healthcare-related
tweets [2, 88]. Using modern machine learning algorithms and hand-crafted
features, such as keyword-based binary features and support vector machines
(SVM) with linear kernels [2], researchers are able to collect tweets that are
potentially related to healthcare. However, many words are polysemous. For
example, “cold” has a potential to talk about the disease but it might refer
to the weather; besides the health-related concept, “virus” might also mean

3https://dev.twitter.com/streaming/overview
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computer virus. Thus tweets that are collected through ambiguous keyword
filtering could be irrelevant. Another reason for the limitation of the keywords-
based approach is that the set of important words can change over time, e.g.,
from H1N1, H5N1 to H7N9.

Recent years have seen the success of word embedding algorithms applied
to many downstream NLP tasks such as part-of-speech tagging and sentiment
analysis [103, 116, 133]. We have introduced the word embedding background
knowledge in Chapter 2. Compared to the handcrafted keywords approach,
the unsupervised word embedding algorithms can be adapted to different tasks
and different corpora.

Our work extends the cbow model. The cbow model learns to predict the
target word from the words in the context window surrounding the target word.
The vector representations of the words in the context window are averaged
in the process to predict the target word. Thus the cbow model treats every
word in the context window equally in terms of their contributions to the
prediction of the target word.

The cbow model effectively learns a representation of the semantic mean-
ing of each word as measured by a word-similarity evaluation, as long as the
corpus is large enough. Mikolov et al. tested the cbow model on the 6B-
word Google news dataset. News articles are often written by professional
reporters. Thus the sentences are expected to be compact and the sentences
should have meaningful semantic words. The intuitive and straightforward
idea of equal contribution of every word in the context in the cbow model is
effective enough. However, when the corpus has plenty of slang expressions,
abbreviations, emojis and unusual syntax, such as in a microblog , the de-
fault combination that treats every word equally in the cbow model might
not be the optimal solution. We note that not all words in the context win-
dow contribute equally to the prediction of the target word. Incorporating all
the words in the context window will largely limit the contribution of useful
semantic words and bring more noisy or irrelevant words into the learning
process.

Thus motivated, we propose an alternative, to learn weights based on their
relative importance in the classification task. Our intuition is that such learned
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weights place more emphasis on words that have comparatively more to con-
tribute to the later classification task.

The chi-square (χ2) statistical test is often used in feature selection for
data mining [64]. It calculates the dependency between the individual feature
and the class. By utilizing the χ2 statistics for each word in the corpus as
weights, we emphasize words that would later benefit the classification task
and de-emphasize words that are usually independent of the class label.

We propose two algorithms based on the cbow model. Inspired by the
max-pooling layer of the convolutional neural network model (CNN), in a
small context window setting, the first algorithm selects the word with the
maximum χ2 value to represent the context to predict the target word. The
second algorithm keeps every word in the context window but weights them
proportionally according to χ2 values. The main contributions of Chapter 5
can be summarized as follows.

• We are the first to propose to use the χ2 statistic to weight the context
in the cbow model to enhance the contribution of the useful semantic
words for the classification task and limit the noise brought by compar-
atively unimportant words.

• We propose two algorithms to train word embeddings using χ2 on the
task of healthcare tweet classification for the purpose of identification of
truly health-related tweets from healthcare-noise data collected from a
keyword-based approach.

• We evaluate our learned word embeddings for each of the proposed al-
gorithms on two healthcare-related twitter corpora.

5.2 Related Work

Microblogging sites and online healthcare forums distribute many posts that
share aspects of an individual’s life and experience each day. The potential
for working with great amounts of real healthcare-related clinical records, dis-
ease and symptom descriptions and even clinical transcripts attracted many
researchers with interesting projects. To further extract and track healthcare
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information especially from users’ social media profiles, the most basic and
crucial task is to discriminate the healthcare-related tweets or target users
from the massive pool of tweets and users that are irrelevant to the topic.

Wang et al. note that prior research on eating disorders only focused on
datasets collected from particular forums and communities [167]. Their goal
was to identify behavioral patterns and psychometric properties of real users
that suffered from eating disorders and not the patterns of people who simply
discussed it on Twitter. They proposed a snowball sampling method to collect
data based on the labeled eating disorder users’ social media connections.

Lamb et al. also used tweets to track influenza by distinguishing tweets
about truly flu-affected people from the ones that express only concerns and
awareness [88]. Because of the subtlety in distinguishing the two types of
tweets, a keyword-based approach is insufficient since both sets contain typical
keywords. Lamb et al. proposed handcrafted feature types such as a word
lexicon, stylometric features and part-of-speech template features. However,
handcrafted features have the problem of scalability.

Paul and Dredze [128] build an unsupervised topic model based on latent
Dirichlet allocation (LDA) [12] to extract healthcare topics discussed in tweets.
Ali et al. designed a platform to detect the trend and breakout of disease at
an early stage [2]. They identify healthcare-related tweets from a pre-defined
keywords list.

Signorini et al. tracks H1N1 activity levels and public concerns on Twitter
in real time [151]. They used SVM and handcrafted features such as age,
recent clinic visits, etc., to track public sentiment with respect to H1N1, the
swine flu. Interestingly they found hygiene keywords such as “wash hands”
positively correlated with the outbreak of the disease.

The popularity of the vector space model lies in their ability to quantify se-
mantic similarities by the distributional structure of the language [46, 60]. The
assumption here is that words with similar distributional statistics turn to have
similar semantic meaning. The distributional structure of the language can be
captured by multi-dimensional vectors learned from the words’ co-occurrence
statistics. The research based on this assumption to quantify words’ meaning
and similarity is called distributional semantics [32]. There are multiple vector
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space models implementing distributional semantics, including Latent Seman-
tic Analysis (LSA) [36] and Latent Dirichlet Allocation (LDA) [12]. Landauer
and Dumais endowed LSA with a psychological interpretation and used LSA
as a computational theory to solve the fundamental problem of knowledge ac-
quisition and knowledge representation [89]. Enlightened by LSA’s capability
to capture similarity between words and its usage of Singular Value Decom-
position (SVD) [52] to smooth the vector and handle the sparseness, Turney
proposed capturing the relations between pairs of words and developed a new
algorithm called Latent Relational Analysis (LRA) which also used SVD to
smooth the data [162]. Context of a target word is defined as a small unordered
number of words surrounding the target word in semantic space models. Pado
and Lapata incorporated the syntactic information (dependency relations) to
represent the context of the target word and formed a general framework for
the construction of semantic space models [125].

The development of distributional vector representation of words greatly
solves the scalability issue by releasing engineers from tedious handcrafted fea-
ture creation work. Neural network language models (NNLM) [9] produce a
distributed vector representation of word, known as a word embedding. The
neural language model utilizes the neural network model to predict the word
from the words appearing ahead of it [9], thus words with similar context will
be mapped to close vector locations. In 2013, Mikolov et al. [116] used a three
layer neural network model to build word embeddings, to capture the semantic
and syntactic regularities through the words in the context window of the tar-
get word. They proposed two models: the skip-gram and cbow models. Both
learn the vector representation of the word from the context in which the word
resides. The skip-gram model trains the weights in the hidden layer and uses a
softmax function to produce a probability of appearance in the context for ev-
ery vocabulary word. Since it is very expensive to compute every word’s prob-
ability in the corpus for every sample, Mikolov et al. adopt two mechanisms to
further reduce the computation: hierarchical softmax and negative sampling.
While hierarchical softmax uses a fixed Huffman tree structure with leaves as
words in the vocabulary, negative sampling only samples n negative exam-
ples instead of the full vocabulary. Tian et al. extended the skip-gram model
from Mikolov’s work and generated multiple vector representations for each
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word in a probabilistic manner [159]. Researchers also incorporated syntactic
information into neural language models. Levy and Goldberg [96] extended
Mikolov et al. [116]’s skip-gram model by replacing the linear context with an
NLP dependency-based syntactic context. Their model reported further im-
provement than the original model in the word similarity task (WordSim353
[45]).

In this work, we focus on an extension of the cbow model. There are
several existing works that also develop this line of research. Trask et al. [160]
develop a very simple and effective method, incorporating additional infor-
mation, the part-of-speech (POS) tag attached to each word during training.
However, they did not invent a brand new model; instead they used cbow

model from Word2Vec. For example, for polysemy disambiguation to train
the embedding of (banks, verb) in the sentence “He banks at the bank.”, the
input of cbow is (He, PRON), (at, ADP), (the, DET), (bank, NOUN), where
the POS tag PRON stands for English pronouns; the POS tag ADP stands
for the adposition; DET stands for the determiner and NOUN stands for En-
glish noun. For sentiment disambiguation, words are labeled with both of the
part-of-speech tag (and sentiment for adjectives). Similarly, Liu et al. used the
part-of-speech information to weight the context window in the cbow model
[103]. They argue that in their learning algorithm the POS tags capture syn-
tactic roles of words and encodes inherently the syntactic relationships inside
the word vector representation. However, the authors overlook the ultimate
goal of the learned embeddings. The usage of the pre-defined syntactic rules
to weight the context does not guarantee later success in the classification task
in which the trained embeddings will be used.

Statistical measures have long been used in natural language processing.
In terminology extraction, a fundamental processing step to extract technical
terms from domain-specific textual corpora before complex NLP tasks, statis-
tical measures such as mutual information, log likelihood and t-test are used to
rank and identify the candidate terms from the texts. Zhang et al. developed
a weighted voting algorithm that incorporated five existing term recognition
algorithms to recognize both single- and multi-word terms in the text [176].
Most of the five term recognition algorithms adopt both statistical measures
and frequency-based measures to rank the terms.
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In this work we propose to use χ2 to weight the context words according to
the words’ contribution to the classification task. There is existing work which
also uses statistical measures in the vector space model. Gamallo introduced
a count-based vector space model. Different from most of the co-occurrence
context-based word vector space models, the context of the target word in
Gamallo’s model is the syntactic context (dependencies) of the target word
[49]. To store the word-context sparse matrix Gamallo used a global hash
table. One inevitable weakness of count-based model is that the word-context
matrix could be huge. Each word can have multiple context in the word-
context matrix. To reduce dimensionality and only keep the most relevant
and informative contexts of the target words, Gamallo used the log likelihood
score to select the top R contexts for each word in the corpus. In our proposed
algorithms, we also use an informativeness measure, the chi-square statistical
test. Different from Gamallo’s model, we use the chi-square statistical test to
calculate the dependency between each word and the target class. The chi-
square value for each word in the context are used as weights based on their
relative importance in the later classification task. Another difference is that
our work focuses on neural language model while Gamallo’s work extends from
the count-based vector space model.

Word embedding algorithms have been applied to the healthcare field. Sev-
eral studies have shown the performance of word embedding in extracting use-
ful clinical concepts and information from either clinical notes or clinical free
text [30, 77].

5.3 Algorithms

In this section, we introduce two algorithms to learn word embeddings for
healthcare tweet classification. We first introduce the background knowledge
of the chi-square (χ2) statistical test and the cbow model.

5.3.1 Chi-square Statistical Test

The Chi-square (χ2) statistical test has been widely accepted as a statistical
hypothesis test to evaluate the dependency among two variables [130]. In
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natural language processing, the Chi-square test is often applied to test the
independence between the occurrence of the term and the occurrence of the
class. It is often used as a feature selection method in NLP. Formula 5.1 is
used to rank the terms that appear in the corpus [110].

χ2(D, t, c) =
∑

et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)2

Eetec
(5.1)

where et and ec are binary variables defined in a contingency table; et = 1

means the document contains term t and et = 0 means the document does
not contain term t; ec = 1 means the the document is in class c and ec = 0

means the the document is not in class c; N is the observed frequency in D and
E is the expected frequency. For example, N11 is the observed frequency of
documents appearing in class c containing term t; E11 is the expected frequency
of t and c occurring together in a document assuming the term and class
are independent. A higher value of χ2 indicates that term t and class c are
dependent thus making term t a useful feature since the occurrence of t means
the document is more likely to be seen in class c.

Utilizing the property of χ2 that higher χ2 values of term t indicate higher
likelihood of occurrence in the class c, we use χ2 to weight the context words
in the cbow model. The key aspect of our discovery is that words with higher
χ2 statistics tend to be keywords for class identification. Thus we are using
the chi-square statistical test to select the lexicon that particularly caters to
the specific class identification task of short sentences such as tweets. Our
rationale is that in our modified cbow model, words are weighted according
to their χ2 statistics; words that are likely to be valuable for the classification
task are more heavily weighted thus reducing the disturbance of the noise
words which are not helpful comparatively to the later task.

5.3.2 Continuous Bag-of-words Model (cbow)

We have introduced the cbow model in Chapter 2. By averaging the context
words, the cbow model overlooks the fact that the contribution of the words
for the prediction should not be equal. We develop two algorithms to re-weight
the context words.
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5.3.3 Algorithm I

Inspired by good performance of the max-pooling layer in the convolutional
neural network model (CNN) in which only the maximum value within a win-
dow of the feature map is returned, instead of incorporating all the context
words, we only select the word with the maximum χ2 value to represent the
context. Thus Formula 2.4 of calculating the vector representation of the con-
text is substituted by Formula 5.2

C = argmax
χ2(wi ), i∈[−b,−1]∪[1,b]

wi (5.2)

where χ2(·) represents the Chi-square statistical value of wi for the target
class. Although the trained word embedding complies to the property of linear
compositionality, in a small context window size, and a corpus containing as
much noise such as Twitter, we choose the word from the context window that
is likely to contribute the most to the later classification task. The expectation
is that this will be more beneficial than the original strategy of averaging
all of the context words. We emphasize a small context window size in this
algorithm because when the context window is large, there is a greater chance
that more than one word with a substantial contribution to the prediction
will be included in the context window, thus selecting only the word with the
maximum χ2 statistic might not be beneficial. We test our algorithm in a
context window size of 3 (b = 1), and in Section 5.4.4 show that our approach
can improve performance on data from Twitter.

5.3.4 Algorithm II

In Algorithm I, we remove all the other words that have smaller χ2 values and
only keep the word with the maximum value to represent the context. Com-
pared to Algorithm I, Algorithm II weights every word in the context window
proportionally according to its χ2 test statistic. Thus Formula 2.4 calculating
the vector representation of the context is substituted by Formula 5.3.

C = 1∑
j∈[−b,−1]∪[1,b] χ

2(wj)

∑
i∈[−b,−1]∪[1,b]

χ2(xi)wi (5.3)
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In the original cbow model, the words in the context window are treated
equally assuming equal contribution to the prediction task. However, the
assumption is generally not held based on language characteristics. Previous
work also tries to improve this by the pre-defined syntactic rules such as using
part-of-speech to weight the words. For example, nouns and verbs are usually
more important than prepositions, pronouns and conjunctions; thus they are
often weighted heavier comparatively. But they overlook the purpose and the
usage of the learned embedding. The weighting mechanism based on pre-
defined rules is not necessarily in line with the classification task. We propose
to use the χ2 test statistics as the weighting strategy, which directly links the
weights to the term’s correlation to the classification task.

5.4 Experimental Method

In this section, we describe experiments on the two proposed algorithms on
two carefully selected datasets.

5.4.1 Datasets

We have introduced the datasets in the dissertation in Chapter 3. Here we
used the two healthcare datasets described in Section 3.4.

Our goal is to extract healthcare information from people’s profile and
Twitter posts. We are more interested in tweets that talk about real disease
symptoms as shown in Examples 4, 5 and 6 which we named healthcare-related
tweets, rather than those tweets that popularize the healthcare information as
seen in Examples 1, 2 and 3 in the Introduction which we named healthcare-
noise tweets. Our current classification task is a challenging one since both
heathcare-related tweets and healthcare-noise tweets might contain keywords
such as “flu” and “health” which makes basic filtering approaches unworkable.

We use two datasets in the experiments. The first dataset, called the
healthcare dataset, is from Paul and Dredze [128]. It was collected and labeled
using Amazon’s mechanical turk (AMT) and has two labels: health-related and
health-unrelated. All tweets were collected using healthcare keywords filtering
as a first step; thus, even health-unrelated tweets contain healthcare keywords.
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Tweets that were not about a particular person’s health (e.g., advertisements
of flu shots and news information about the flu) were labeled as unrelated. The
statistics of the healthcare dataset are shown in Table 3.6. The second, called
the influenza dataset, is from Lamb et al.’s work [88]. It was also collected
from Twitter. It contains tweets posted during the 2009 and 2012 outbreaks
of swine and bird influenza. The data is also labeled as influenza-related and
influenza-unrelated by AMT workers. The statistics of the influenza dataset
is shown in Table 3.7.

5.4.2 Baselines

We compare the proposed two algorithms with the following baseline methods
for healthcare tweet classification.

(1) tf-idf + SVM: we calculate the tf-idf scores [146] for the words of each
tweet as the features and train a support vector machine (SVM) classifier
[34] using the Liblinear library [41].

(2) skip-gram + CNN: we train Mikolov et al.’s skip-gram model on the
training set for both datasets. We learn the word embedding for each
word in the corpus to use as features and train a convolutional neural
network model (CNN) for classification [78].

(3) cbow + CNN: we train the original cbow model and learn the word em-
beddings for the word in the corpus as feature and train a convolutional
neural network model (CNN) for classification [78].

5.4.3 Experimental Setup

Preprocessing is necessary when working with the text of tweets. We strip the
punctuation, the HTML tags and hypertext links, and downcase all letters.
We use Tensorflow [1] to implement the two proposed algorithms. In both
cases we keep the default model setting as in the Tensorflow skip-gram model
codec in Github4. Word embeddings are learned using a window size of b = 1,
embedding dimension n = 128 and a negative sampling rate of 64. Words

4https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec.py
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with frequency smaller than 3 are eliminated from the vocabulary. We use the
stochastic gradient decent optimizer (SGD) to train the two algorithms with
a learning rate of 1.0. To perform the χ2 statistical test, we use sklearn [19]
on the training sets of the two corpora. We train CNN models for the two
datasets for the classification task. We use filter size of 3, 4 and 5 and 128
filters for each filter size in the training process.

5.4.4 Evaluation and Results

Figure 5.1: Boxplot of the values of the Chi-square (χ2) statistical test for the
healthcare dataset and the influenza dataset.

We completed the χ2 statistical test on the two Twitter datasets. Boxplots
for the χ2 values in both datasets is shown in Figure 5.1. As we can see most
of the words in the two corpora have very low χ2 value. We list the words
in table 5.1 that ranked highest by χ2 value. Words with higher χ2 value
are recognizable as plausible keywords for the identification of the health-
related tweets. Using the χ2 statistics in Algorithms I and II, the result of the
experiment is shown in Table 5.2.
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Healthcare dataset Influenza dataset
1 headache sick
2 sick vaccine
3 allergies throat
4 feeling fear
5 flu news
6 surgery swineflu
7 cramps bird
8 throat shot

Table 5.1: Words with highest χ2 value for both datasets

Since we assume equal importance for the identification of both of the
two classes, related versus unrelated, we choose accuracy, the commonly used
evaluation criteria, as the metric to measure the classification performance as
shown in Formula 5.4.

accuracy(ylab, ypred) =
1

ntest

ntest∑
i=1

1(ypred = ylab) (5.4)

Since tweets in both classes (related versus unrelated) contain the keywords
of the topic, it is not surprising that the keywords-based approach in the tf-
idf+SVM baseline behaves poorly for both datasets. For the two Word2Vec
baselines, the cbow model performs better than the skip-gram model for the
smaller (healthcare) dataset; they have very similar results in the influenza
dataset (which is a larger dataset). Overall Algorithm I and Algorithm II
improve over the cbow baseline model by 1.35% and 9.23% respectively. We
can see Algorithm I which chooses the word with the maximum χ2 value also
performs well in terms of accuracy. As we noted earlier, we have a small context
window size of 3 (b = 1). When the context window is larger, more context
words are included. It might not be optimal to choose only the word with the
maximum statistical measurement score to form the context representation
Our experimental results indicate the χ2 weighting scheme of Algorithm II
generally outperforms the others.
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Method Healthcare dataset Influenza dataset
tf-idf + SVM baseline 59.96 57.18
Skip-gram + CNN baseline 66.61 66.99
cbow + CNN baseline 69.00 66.67
Algorithm I + CNN 69.19 72.31
Algorithm II + CNN 69.93 72.84

Table 5.2: Comparison of testset classification accuracy across the two datasets
using word embeddings from various models

5.5 Summary

To improve tweet classification accuracy, we use the Chi-square (χ2) statistical
test statistic to directly link the weight of each term to its correlation to
the tweet classification tasks. We proposed two algorithms: in Algorithm I,
assuming a small context window setting we select the word with the maximum
χ2 value; in Algorithm II we use the χ2 statistics to proportionally weight the
words in the context window. Our evaluation result shows improvement over
the original cbow Word2Vec model by as much as 9.2%.

Some natural directions for future work include hyperparameter optimiza-
tion (e.g., selecting the best window size), and testing of other term weighting
functions.
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Chapter 6

Vector Representation of Quantity

Information in Text

Modern embedding methods focus only on the words in the text. The word
or sentence embeddings are trained to represent the semantic meaning of the
raw texts. However, many quantified attributes associated with the text, such
as numeric attributes associated with a product review, are ignored in the
vector representation learning process. Those quantified numeric attributes
can provide important information to complement the text. For example,
review stars, business stars and number of likes, etc., have great influence on
interpreting the semantic meaning of text. Numeric attributes associated with
the text often reveal the quantity or the significance of the object that the
number is modifying. We propose an algorithm using vector projection to
generate numeric-attribute-powered sentence embeddings for multi-label text
classification. We evaluate our algorithm on a public Yelp dataset, showing
that classification performance improves significantly when numeric attributes
are incorporated well.

6.1 Introduction

Recent years have seen great success of word embedding or sentence embedding
both as features or inputs to sentence-level classification [80, 158]. Researchers
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usually learn embeddings from the raw text [116, 133]. Many numbers associ-
ated with the text are ignored in the learning process. However, those numbers
can provide important global information for the interpretation of the text.
For example, in a review dataset there are many numeric attributes associated
with text. Take the numeric attribute review_star for example. It is usually
designed as a 1-5 rating-scale attribute (as in Amazon, Yelp and TripAdvisor).
An easygoing user writes a review “it is good” and marks 5 in the review_star
attribute while a stern user might mark 3 in the review_star attribute even if
he or she uses similar words in the review text such as “not bad experience”.
Combining the review text with the value in the attribute review_star, we
have a deeper understanding of the significance level of the text (how “good”
as in the example). Thus raw text alone can only provide limited information
regarding semantics of the sentence.

In this chapter we focus on formulating the vector representation of nu-
meric attributes and combine such attribute information into a sentence vector
representation for a multi-label classification task. We propose to use vector
projection to formulate the vector representation of the numeric attribute. We
define the name of the numeric attribute as subject. Instead of ignoring the
numbers associated with the text, we incorporate the number by regarding the
(number, subject) pair as a whole and treat the number as the scalar projec-
tion of the subject. In summary, the main contributions of this chapter are
three-fold: (1) we are the first to propose the vector projection approach to in-
corporate numbers associated with the text to formulate vector representation;
(2) we propose an algorithm to generate numeric-attribute-powered sentence
embeddings; and, (3) we evaluate the proposed approach and the algorithm
on a multi-label classification task using public data. Our experimental results
demonstrate the effectiveness of the proposed approach.

6.2 Related work

Sentence embeddings have been built via various methods [35, 93, 106]. Wi-
eting et al. generate sentence embedding based on supervision from the Para-
phrase Database (PPDB) [169]. The authors utilized six sentence embed-
ding models such as recurrent neural network (RNN), deep averaging network
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(DAN) [71] and LSTM [63]. They also choose a simple model, averaging
all word embeddings in the sentence. They embedded the developed model
into an objective function. This objective function is a margin loss function
based on PPDB. With the additional semantic supervision of the PPDB, the
authors expected similar sentences’ trained embeddings should be high in co-
sine similarity. Their results showed that the most simple model, averaging all
word embeddings in the paraphrase had a better result than those complicated
models such as RNN and LSTM. Socher et al. build a recursive neural tensor
network to combine components in the sentence for sentiment prediction [152].
Researchers have made progress to take the advantage of both categorical fea-
tures and numerical features for classification task. Zhao et al. found that a
decision tree model is good at handling numeric features while a factorization
machine is good at handling categorical features, and so proposed a combined
model [179].

Researchers have made great efforts to take advantage of numbers in the
text in text classification tasks. Macskassy et al. proposed a way to incorpo-
rate numbers in the text [107] by converting numbers to bag-of-tokens and
incorporating those tokens into text that was represented as a bag of words.
Their main contribution lies in the proposed algorithm to optimally split the
number tokens such that if two numbers are close, these sets will be similar,
and if they are further apart the sets will be less similar. For example the
number 1800 could be represented as [“lengthunder500′′, “lengthover500′′,
“lengthunder1500′′, “lengthover1500′′]. However, treating numbers as tokens
results in losing their original quantity and value. Using a pre-defined dis-
cretization set, numbers such as 499 and 501 are less similar than 499 and 1
in the example. Besides it is not scalable in the sense that when new training
data is pulled in, new split points need to be generated.

Aman et al. extracted number relations in text [108]. Their goal is to
extract information from a sentence in the form of a tuple with quantity as the
second entity, subject as the first entity and a relationship phrase to describe
the relation between the quantity and the subject. They devise two algorithms
to extract numerical relations. One is rule-based and the other is a learning
system using a graphical model.

Chaganty and Liang [24] tackle a problem of how to automatically generate
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short descriptions of phrases containing numbers using units or concepts that
are easier or familiar to illustrate. Their first step is to manually collect a
knowledge base consisting of 9 fundamental units. The second step is to use
regular expression patterns to collect phrases containing numbers to form a
dataset. Then they use a graph to represent its unit and all the units mentioned
in the knowledge, so that when future phrases come they could find all the
units close to it for formula representation. After all the formulas are generated
based on all the units in the knowledge base, they use crowdsourcing to choose
the most appropriate formula through rating (in this way they have labels for
formulas in the training set). Their final step is to generate a brief description
of the phrase containing a number using a sequence-to-sequence RNN.

However, none of the existing research combines the quantitative nature of
the numbers and neural language model embeddings to form sentence embed-
dings from textual data with numeric attributes.

Multi-label problem has been throughly studied. Gong et al. proposed
a novel framework for multi-label propagation [54]. It assigned a teacher for
each label. The framework utilized the teacher-learner strategy. The teacher
assigned simplest labeled samples for the model to learn at the very beginning.
According to the metrics’ feedback, the teacher gradually raised the bar and
gave more complex samples to the model. We use multi-label classification to
evaluate our work.

6.3 Background of vector projection

We present guidelines when designing an algorithm to generate a numeric-
attribute-powered sentence embedding:

1. Numbers alone do not carry semantic meaning. A proposed approach
should combine numbers and the subjects they are modifying.

2. Since numeric attributes usually share the same context with the text,
numbers and words in the sentence should come from the same vector
space to enable the combination of the (number, subject) pair.

3. Since our goal is to use the generated sentence embedding as features for
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Figure 6.1: Projection of ~u on ~v, Proj~v~u is the projection of ~u onto ~v.

a classification task, the formulated embedding of the (number, subject)
pair should account for at least the semantic and the syntactic regulari-
ties of the subject alone.

Based on the desiderata above, the vector projection approach is ideal. We
use this approach to combine the (number, subject) pair.

Figure 6.1 illustrates the vector projection approach. We use this approach
to combine the (number, subject) pair. It shows the projection of vector ~u on
~v and SProj~v~u is the scalar projection of ~u onto ~v. In our case, the scalar
projection SProj~v~u is the number in the sentence; v̂ is the unit vector in the
direction of ~v, the subject that the number is modifying. Our goal is to find
the vector representation of the (number, subject) pair, Proj~v~u. Based on the
vector projection approach, Proj~v~u is obtained by:

Proj~v~u = SProj~v~u× v̂ (6.1)

6.4 Numeric-attribute-powered Sentence

Embedding

This section introduces in detail our proposed algorithm to incorporate num-
bers into sentence embeddings by utilizing the simple idea of vector projection.
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The numeric-attribute-powered sentence embedding consists of two parts: the
text vector representation temb and the numeric attribute vector representa-
tion nemb. temb corresponds to pure text vector representation leaving out the
numeric attributes associated with the text. nemb corresponds to the vector
representation of the numeric attributes. Algorithm 1 illustrates the proposed
algorithm to generate numeric-attribute-powered sentence embeddings. Gen-
erally we use the vector projection approach described in Section 6.3 to repre-
sent the numeric attributes in vector space. We use the χ2 test to rank all the
numeric attributes, then a holdout set to select the optimum set of numeric
attributes to include. The text vector representation temb is represented as the
average of the word representations in the sentence. In general, we calculated
temb and use vector projection approach to represent nemb; We concatenate
temb and nemb to form the numeric-attribute-powered embedding.

Recall that our goal is to verify the effectiveness of the vector projection
approach to incorporate numeric attributes into vector representation. Thus
we do not focus on generating the vector representation of text leaving out
the numeric attributes. According to Wieting et al. and Kenter et al., the
simplest averaging model is competitive with systems tuned for the particular
tasks while extremely efficient and easy to use [169] and it has proven to be
a strong baseline or feature across a multitude of tasks [76]. We adopt the
averaging model to generate text vector representation temb before we add
numeric attributes to the embedding.

temb =
1

p

p∑
i=1

W ti
ω (6.2)

Equation 6.2 shows the averaging model. Considering in a sentence s we have
a word sequence s = 〈t1, t2, . . . , tp〉, W ti

ω is the word embedding for word ti.

To generate the numeric attribute vector representation, we first find the
vector in the direction of the subject that the number is modifying by the
numeric attribute name. We use the same averaging model in Equation 6.2
to obtain the vector representation of the subject ~v′. Then we obtain ~v, the
unit vector in the direction of the subject that the number is modifying, by
dividing the norm on each element of ~v′. Then we use Equation 6.1 to obtain ~u,
the vector representation for the (number, subject) pair. Since there could be
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Algorithm 1 Numeric-attribute-powered sentence embedding
1: Data: numeric-attribute intense text dataset of size m: D(s1, s2, . . . , sm).

We divide the dataset into Dtrain, Dholdout and Dtest, where
s1(t

1
1, t

1
2, . . . , t

1
p1 , n

1
1, n

1
2, . . . , n

1
q), s2(t

2
1, t

2
2, . . . , t

2
p2 , n

2
1, n

2
2, . . . , n

2
q), . . .,

sm(t
m
1 , t

m
2 , . . . , t

m
p2 , n

m
1 , n

m
2 , . . . , n

m
q ); t is text feature of size p; n is nu-

meric attributes of size q; each t represents a word in the text; each n
represents a numeric attribute consist of nval, the number and n1, the
numeric attribute name/type; both of them could be multi-dimensional.
Result: the selected numeric attributes to incorporate; a matrix of size
m× (|temb|+ |nemb|);

2: temb ← generating_text_embedding(D)
3: −→n1,

−→n2, . . . ,
−→nq ← generate_vector_representation_number_attribute

4: n̂1, n̂2, . . . , n̂q ← compute the unit vector in the direction of −→n
5: v̂n1, v̂n2, . . . , v̂nq ← vector_projection(nval, (v̂n1, v̂n2, . . . , v̂nq))
6: Q← Chi2(v̂n1, v̂n2, . . . , v̂nq)) . Q is a list of the sorted numeric attribute

using feature selection approach χ2

7: currMetric← 0 . currMetric records the current metric value in the
Dholdout

8: maxMetric← 0, numIndex← 0 . maxMetric records the highest metric
value in the Dholdout so far

9: . numIndex records the index of the numeric attributes when maxMetric
is achieved

10: while C ← top_next_element(Q,curr_index) do
11: X ← concatenate(temb,Q(1 : C)) . X is the feature set which

combines text vector representation
12: currMetric← evaluation(Dholdout, X)
13: if currMetric > maxMetric then
14: numIndex← curr_index
15: maxMetric← currMetric
16: else
17: currMetric← 0
18: end if
19: end while
20: X ← concatenate(temb,Q(1 : numIndex)) .

use numeric attribute features Q(1 : numIndex) selected from Dholdout to
formulate numeric-attribute-powered sentence embedding to generate the
test feature set

21: Return X
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multiple numeric attributes associated with the text, we use feature selection
algorithm χ2 [102] to rank the numeric attributes and use a hold-out dataset to
select the optimum set of numeric attributes that should pair with text vector
representation. We conduct an approach to select the optimum set of numeric
attributes. Namely we first incorporate the numeric attribute that ranks first,
then we incorporate the top 2 numeric attributes, then top 3, etc. We use
the same averaging model in Equation 6.2 to generate the numeric attributes
vector representation.

6.5 Evaluation

We verify our proposed algorithm on a multi-label classification task. We first
describe the dataset. Then we elaborate on the metrics and the experimental
result.

6.5.1 Dataset

We evaluate the proposed algorithm on the product review dataset described
in Section 3.5 in Chapter 3. Since our proposed method does not involving
training embeddings from scratch, we do not need a large corpus. In the
experiment we use the pre-trained Word2Vec embedding trained on Google
News1. The statistics in the experiment are shown in Table 3.8 in Section
3.5. We decide to evaluate the proposed algorithm on Yelp dataset for several
reasons: first, it is a numeric attribute intensive dataset; second, our goal is
to predict the business type for each review. Thus the numeric attributes
associated with review text such as “review counts” and “review votes useful”,
etc., are related to the task and this is also proved in the feature selection χ2

step. Third, this dataset is made for competition and data structure is clear
and appropriately processed. Thus it is easily accessible to extract numeric
attributes associated with the review text. The number and the subject pair is
clearly stated in the dataset. An example of the numeric attributes associated
with text is shown in Table 6.1. There are 7 main business types in the dataset,

1https://code.google.com/archive/p/word2vec/
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numeric attributes
1 business review count
2 user votes useful
3 user votes cool
4 user votes funny
5 review count
6 friends
7 review stars
8 business stars

Table 6.1: Examples of the numeric attributes associated with review text

F-score Stratified
Classifier

Review
Text Only

Numeric-attribute-
powered Sentence
Embedding

Macro-
average

18.6% 47.3% 54.0%

Micro-
average

36.9% 76.9% 79.2%

Table 6.2: Performance of the two metrics with pre-trained word embedding di-
mension 300

such as Active Life, Food and Restaurants and Services. A review may belong
to one or several business types. Thus it is a multi-label classification problem.

6.5.2 Baselines

To evaluate the effectiveness of the proposed algorithm, we compare it with
two baselines.

1. A stratified classifier: generates predictions by respecting the training
set’s class distribution.

2. SVM using review text as features: in this baseline we only consider temb
as features for the multi-label classification task. We use the averaging
model to generate temb. We use the same linear SVM on this baseline
and the proposed algorithm.
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6.5.3 Experimental Setup and Result

We employ 5-fold cross-validation and divide the dataset into 3 folds for Dtrain,
1 fold for Dholdout and 1 fold for Dtest. We build a binary linear SVM classifier
for each category. The classification performance is measured via two com-
monly used evaluation criteria, macro-average and micro-average [112]. F1
measure is commonly used for binary classification. Both macro-average F
score and micro-average F score are based on F1 measure. Macro-average F
score is the arithmetic mean of F1 measure across all categories; thus treat-
ing all categories equally; micro-average F score is the harmonic mean of the
precision and recall regardless of the category. The experimental results are
shown in Table 6.2.

The result shows the proposed algorithm has a 14.16% relative increase in
the macro-average F score and a 3% relative increase in the micro-average F
score compared to the baseline that only uses review text as features. Thus we
can conclude that the vector projection algorithm we proposed to incorporate
numeric attributes is effective.

6.6 Summary

In this chapter, we proposed a numeric-attribute-powered sentence embedding
algorithm by utilizing a simple vector projection approach. The experimental
results demonstrate the effectiveness of this algorithm. Many future research
directions are open in this work. For example, we only consider concatenating
the text vector representation and the numeric attribute vector representation.
Other composition functions can be adopted to learn the information from
both sides. For example, tensor-based composition is worth investigating [168].
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Chapter 7

Polysemy Problem in Word

Embedding

Recent years have seen the success of applying word embedding algorithms to
natural language processing (NLP) tasks. Most word embedding algorithms
only produce a single embedding per word. This makes the learned embed-
dings indiscriminative since many words are polysemous. Some prior work
utilizes the context in which the word resides to learn multiple word embed-
dings. However, context-based solutions are problematic for short texts, such
as tweets, which have limited context. Moreover, existing approaches tend to
enumerate all possible context types of a particular word regardless of their
target applications. Applying multiple vector representations per word in NLP
tasks can be computationally expensive because all possible combinations of
senses of words in a snippet need to be considered.

Sometimes a word sense can be captured when the class information or
label of the short text is presented. For example, in a disaster-related dataset,
when a text snippet is labeled as “hurricane related”, the word “water” in the
snippet is more likely to be interpreted as rain and flood; when a snippet is
labeled as “hurricane-unrelated”, the word “water” can be interpreted as its
more general meaning. In this work we propose to use class information to
enhance the discriminativeness of words. Instead of enumerating all potential
senses per word in the text, the number of vector representations per word
should be a function of the future classification task. We show that learning
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the number of vector representations per word according to the number of
classes in the classification task is often sufficient to clarify the polysemy.

Word embeddings learned from neural language models typically have the
property of good linear compositionality. We utilize this property to encode
class information into the vector representation of a word. We explore four
approaches to train class-specific embeddings to encode class information by
utilizing the label information and the linear compositionality property of word
embeddings. We present a general framework consisting of a pair of convolu-
tional neural networks to utilize the learned class-specific word embeddings as
input for text classification tasks. We evaluate our approach and framework
on topic classification of a disaster-focused Twitter dataset and a benchmark
Twitter sentiment classification dataset from SemEval 2013. Our results show
a relative accuracy improvement of 3-4% over a recent baseline.

7.1 Introduction

Language is symbolic and discrete. To represent a word in human language
in a form for machines to understand has always been a challenge in natu-
ral language processing (NLP). In the early (and simple) one-hot encoding
approach, the vector representation of a word has the same length as the
size of the vocabulary, thus naturally resulting in a sparse, high-dimensional
word representation. Such a word representation approach cannot reflect the
similarity or relatedness between words. The vector space model (VSM) of
semantics addresses the shortcomings of the one-hot encoding approach by
learning from the co-occurrence statistics from the word’s context [121]. The
center assumption here is the distributional hypothesis: the context surround-
ing a given word provides important information about its meaning [60]. The
words’ vector representations are constructed from the distributional patterns
of co-occurrence with their neighboring words. In recent years, word vector
representations learned from word embedding algorithms have demonstrated
improvements both as inputs to other learning algorithms and as word fea-
tures in NLP tasks, such as word similarity [116], part-of-speech tagging [103],
named entity recognition (NER) [150], dependency parsing [96] and sentiment
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analysis [157]. Word embeddings typically learned from neural language mod-
els are well-known for capturing the semantics of words by learning dense
low-dimensional vector representations [9, 116]. Since the introduction of the
first efficient and effective word embedding algorithm by Mikolov et al. in 2013,
multiple word embedding algorithms have been suggested, such as FastText
and ELMo [72, 134]. However, significant improvements have been made to
unsupervised word embedding learning to generate universal embeddings. We
show in this work, in addition to word co-occurrence patterns, short text labels
can be a new source to provide semantics. Our work extends Mikolov et al.’s
Word2Vec model.

There are two types of word embedding learning architectures in theWord2Vec
model: the first one uses context words to predict the target word, such as
the “continuous bag-of-words” (CBOW) model [116] and the “context-specific
vector” (CSV) model [180]; the second one is to use the target word to pre-
dict the context words, such as the skip-gram model [116, 159]. These word
embedding algorithms also follow the assumption that it is valuable to learn
a word’s meaning from its neighbors. Unlike VSM, which represents words
from a co-occurrence matrix, word embedding algorithms represent words as
dense vectors for input to a neural network model. The word embeddings are
trained, taking the first type of word embedding algorithms for example, by
maximizing the log likelihood of actual context versus random chosen context
by using negative sampling [116].

Example 1 I decided to buy the apple without considering the others.
Example 2 This is the case.
Example 3 The water level is rising.

Table 7.1: Examples of Polysemous Words

However, despite the usefulness of word embeddings in NLP, most word
embedding algorithms suffer from a significant drawback. That is, most models
learn only a single embedding per word. The problem is that many words are
polysemous (have multiple senses). For example, in Example 1 of Table 7.1,
“apple” can be interpreted either as fruit or as computer brand; “case” in
Example 2 of Table 7.1 is also ambiguous; “water” in Example 3 of Table 7.1
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can be interpreted as referring to a flood or water in a sink or bathtub.1 Thus
in previous models such as the skip-gram and CBOW models, all the different
meanings of a polysemous word will be combined into a single vector. In such
a representation, quality of semantics will suffer.

Researchers try to solve the polysemy problem in word embedding algo-
rithms mainly in two ways: the first is to process all the local contexts of a
word in the corpus in a fine-grained manner and group contexts according to
their semantic similarity [65, 120]; the second is to provide more information
besides local contexts in the learning process to help interpret the sense of the
word [42, 173], such as an outside knowledge base [27, 174].

A short text snippet provides limited context. Moreover, a dataset of social
communications, such as tweets, is full of newly-emerging words, acronyms and
emojis, etc., which makes it hard to comprehend word meanings efficiently
from context. We propose in this work to use label or class information as
a type of context. We train the number-of-classes vector representations per
word. We observe that the polysemy problem can be better managed when
class information or label of the sentence is presented. Take Example 3 in
Table 7.1 for example: in a disaster related classification task, when it is
labeled as “hurricane related", the word “water" in the sentence is more likely
to be correctly interpreted as rain and flood; when it is labeled as “hurricane-
unrelated", the word “water" can be interpreted with its common meaning.
Class information helps the system to interpret the correct sense of a word.

We adopt the linear compositionality property to encode the class or label
information to learn class-specific word embeddings. Word embedding algo-
rithms learned from neural language models typically have the property of
good linear compositionality [116]. The linear compositionality property is
best illustrated by the famous example

vector(“King”)− vector(“Man”) + vector(“Woman”) = vector(“Queen”).

We observed that vector(“King")-vector(“Man") results in a vector close to
“Royalty”. And the vector representation of “Queen” combines the semantic

1Example 3 in Table 7.1 is extracted from the disaster-focused Twitter corpus T6 [123]
which we describe in Section 7.4.1 and also in Section 3.3.
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definitions of both “Royalty” and “Woman” through simple addition opera-
tion. Inspired by this observation, we generate class-specific word embeddings
through the same operation.

A key problem remains as to how many vector representations per word
should be learned to express the senses of a word. Existing models try to
enumerate all possible senses of a word from the corpus while ignoring the
application task of the trained embeddings. To apply multiple vector repre-
sentations per word in future NLP tasks can be computationally expensive
because all possible combinations of senses of words in a sentence need to be
considered. For example, for a sentence of n words and l senses per word,
we need to enumerate ln sense combinations. Here we introduce the light
polysemy problem; that is, instead of enumerating all potential senses of a
word from the unlabeled corpus, we look to distinguish only a few vector rep-
resentations per word as a function of the classification task. We present a
framework which can input multiple vector representations per word for the
classification task. Thus it runs in linear time. We only train the number of
vector representations per word that is appropriate to the classification task.
For example, in a disaster-related classification task, the task is to classify
a sentence as “hurricane related” or “hurricane unrelated”; We train two em-
beddings per word: one is for “hurricane related” and the other one is for
“hurricane unrelated”. Although a word like “water” might have more than
two senses, we show in experiments that only two vector representations, one
representing “hurricane related” context semantically close to rain and flood,
and another one representing “hurricane unrelated” context which is trained
from all non-hurricane related context, are able to capture enough sense in-
formation needed for the classification task. We call the embedding trained
for each class per word, class-specific embedding. We show in the experiments
that class-specific embeddings can address the light polysemy problem within
the classification task.

In this chapter, we explore four approaches to learn class-specific word
embeddings for classification using the linear compositionality property. We
define the light polysemy problem and additionally modify the CBOW model
to incorporate class information to learn class-specific word embeddings [82].
We show in the experiments that class-specific word embeddings are useful
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to address the light polysemy problem in classification tasks. We modified
the skip-gram and CBOW models in Word2Vec [116] by introducing class
information. For our classifier, we combined two convolutional neural network
(CNN) models [78], which take the class-specific word embeddings from each
class as input. Our contributions include:

1. We are the first to use the linear composition property to build class-
specific embeddings.

2. We define the light polysemy problem in text classification tasks.

3. We propose the use of label information as global context to tackle the
light polysemy problem.

4. We present a general framework consisting of two convolutional neural
networks which take the class-specific word embeddings we trained as
input for a binary text classification task.

We compare our approach with multiple baselines on a disaster-related Twit-
ter dataset and a benchmark Twitter sentiment classification dataset from
SemEval 2013.

7.2 Related Work

Many methods can obtain vector representation of words, such as Latent Se-
mantic Analysis (LSA) [90] and Latent Dirichlet Allocation (LDA) [12]. Word
embeddings trained by neural language models are well-known for their abil-
ity to represent words’ general semantic meaning. Many researchers have
contributed to the neural language model-based word embedding literature
[28, 33, 100, 157].

Most existing models only produce one vector representation per word,
which is problematic for words with multiple meanings. Researchers typically
address this issue by training multiple embeddings per word according to their
multiple senses [120, 161]. Most existing work utilizes context-based models.
They learn various word embeddings per word by discriminating among distin-
guishable contexts in the corpus. Huang et al. [65] tackle this problem through
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k-means clustering. They heuristically pre-define k senses for each polysemous
word and cluster all the local contexts of a word into k clusters. Local context
is defined as 5 words before and after the target word. The local context limits
the information we can use to learn to distinguish the word’s sense, especially
in a dataset consisting of short text snippets such as tweets. Twitter is known
for having a short character limit.

Further extend Huang et al.’s idea, Neelakantan et al. apply a context-
clustering schema on the skip-gram model [120]. They notice that in Huang et
al.’s work, the context-clustering schema is a pre-processing step; the context
vectors are not updated in the learning process. They propose a joint model
by concatenating the clustering algorithm and the skip gram model. Their
approach clusters all the contexts the word has and finds the cluster centroid
that is closest to the word’s current context as its sense vector. Then the sense
vector is sent to the skip-gram model for learning and updating. The learned
sense vector is updated as the new centroid for that cluster. Neelakantan et
al.’s approach still suffers from the need to cluster contexts for every word,
which makes training expensive.

Guo et al. [59] also propose a multiple embedding model. They combine
the context-clustering schema with bilingual resources to learn multiple em-
beddings per word. Motivated by the intuition that the same word in the
source language with different senses is supposed to have different transla-
tions in the foreign language, the authors obtain the senses of one word by
clustering its translation words, exhibiting different senses in different clus-
ters. Another bilingual word embedding (BWE) approach is proposed by Su
et al. [153]. Different from traditional BWE approaches which either distin-
guish the correct bilingual alignments from the corrupted ones or model the
joint bilingual probability, the authors introduce a latent variable to explicitly
induce the underlying bilingual semantic space which generates word tokens
in both languages.

Pelevina et al. [131] generate multiple embeddings per word by clustering
the related words in the ego-network. Similar to our approach, their method
relies on existing single-prototype word embeddings, transforming them to
sense vectors via ego-network clustering. An ego network consists of a single
node (ego) together with the nodes they are connected to (alters) and all the
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edges among those alters. In their case, for each word w, they construct an
ego network with word w as ego node and w’s nearest neighbours calculated
by vector similarities as other nodes with connections to word w. Then the
authors use graph clustering method to cluster multiple senses for word w.
Each cluster is interpreted as a sense in the corpus. Words referring to the
same sense tend to be tightly connected. Words have fewer connections to
words referring to different sense.

In addition to the context-clustering schema, other approaches have also
been proposed to generate multiple embeddings per word. The main idea
is still to obtain distinguishable context vector representations through other
learning models or outside expert annotators. Zheng et al. developed a con-
volutional neural network to learn a new sense vector for a word if the cosine
similarity between the new context vector and every existing sense vector is
less than a threshold [180].

Tian et al. extended the skip-gram model from Mikolov’s work and gener-
ated multiple vector representations for each word in a probabilistic manner
[159]. They added an item specifying the probability of the sense of the given
word to the original skip-gram objective function and used the Expectation
Maximization algorithm to train multi-sense vectors. Chen et al. rely on Word-
Net glosses, which have summarized each word’s senses, to initialize multiple
embeddings per word and update the multiple embeddings per word through
a skip-gram model [27].

Instead of figuring out how many latent senses a word may have, Bol-
legala et al. [15] take a different path by directly learning the k-way co-
occurrences embeddings. Most of the successful word embedding models,
such as Word2Vec [116] and Glove [133], depend on word co-occurrences when
k = 2. Bollegala et al. extend to the situation when k ≥ 2; treat every con-
text of size k as a bag-of-tokens and learn a vector representation for every
context. Scheepers et al. [148] improve the semantics represented in the word
embedding by using outside lexicographic definitions. All the context-based
approaches suffer from the same weakness—that is to learn all the distinguish-
able contexts to discriminate word senses regardless of the future application
for the embedding and the computational cost.
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Unlike the above word-level construction of word embeddings, some re-
search work focuses on morphology, that is, the sub-word level, to learn mul-
tiple embeddings per word. Bojanowski et al. also extended the skip-gram
model [13], targeting the morphology of words. Unlike previous approaches
which train a single word vector for each word and ignore the internal struc-
ture of words, they modified the skip-gram model to represent each word as a
bag of character n-grams. Each character n-gram is trained to associate with
a vector representation. The vector for the word is the sum of the n-grams’
vectors. Athiwaratkun, Wilson and Anandkumar [8] combine Bojanowski et
al.’s FastText with a Gaussian mixture model [143]. They initialize each word
with a hyper-parameter of k Gaussian components. Each Gaussian component
represents a different sense of a word.

The polysemy problem not only exists in words but also in entity disam-
biguation. Chen et al. try to solve the challenging task of finding the correct
referential entity in a knowledge base (KB) [26]. The authors learn word and
entity embeddings by training a bilinear joint learning model. Their embed-
ding learning model is the same as the skip-gram model. The only difference
is that they propose a bilinear model to learn the semantic gap (a projection)
between word embedding and entity embedding.

Our approaches utilize class labels as a resource to comprehend a word’s
sense. We think that the sense of a word such as “water” can be better inter-
preted with the aid of class information as global context. We introduce the
light polysemy problem: instead of making efforts to enumerate all potential
senses per word from the unlabeled text, the number of vector representations
per word should be closely related to the number of classes in the future task.

In this work we address the light polysemy problem by utilizing the lin-
ear compositionality property in four approaches. In the first approach, we
build separate word embeddings using data filtered by class label and feed
the embeddings into the classification framework for a single class label pre-
diction. In the second approach, we build class-specific word embeddings by
directly adding the vector representation of the classification polarity to the
vector representing the general meaning of the word. In the third approach,
we modify the skip-gram architecture to train a class-specific word embedding.
In the fourth approach, we modify the CBOW model architecture to train a
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class-specific word embedding.

7.3 Methodology

In this section, we introduce the details of generating class-specific word em-
beddings. We incorporate class information into word embeddings by utilizing
the linear compositionality property shown by the word embeddings learned
from neural network based language models [116, 133]. Our work directly
extends the Word2Vec model architecture [116]. We have introduced the skip-
gram model and the cbow model in Chapter 2. In the following sections, we
present four model architectures to generate class-specific word embeddings.
We then describe the use of the class-specific word embeddings in a framework
consisting of convolutional neural networks for text classification.

7.3.1 Class-Specific Word Embedding

As described earlier in Chapter 2, the standard word embedding approach
is problematic for words with multiple senses. In this section, we describe
our proposed models and frameworks based on the linear compositionality
property of modern word embeddings.

Linear compositionality property

Word embeddings learned from the skip-gram model show good linear compo-
sitionality [116, 117]. A famous example would be that

vector(“King”)− vector(“Man”) + vector(“Woman′′)

results in a vector which is the closest to the vector representation of the word
“Queen” [116]. One interpretation is that the operation of vector(“King′′) −
vector(“Man′′) results in a vector which is close to the semantic definition of
“Royalty”; thus vector(“King′′) − vector(“Man′′) = vector(“Royalty′′); then
we add vector(“Royalty′′) to vector(“Woman′′), we get the semantic informa-
tion from both words, which is vector(“Queen′′). Based on this observation,
the semantic information in the vector representation trained from a neural
language model satisfies linear composition. Thus the vector representation of
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a word, such as “Queen”, which combines the semantic meaning of “Woman”
and “Royalty”, could be obtained directly through the addition operation. We
observe that the new vector representation combines the semantic definitions
of both sides. In our work, we use this linear compositionality property to
encode the class information into the word embeddings by adding a vector
that represents the class information.

Vector Representation of Class

Based on the linear composition property, we propose to obtain the class-
specific word embedding by adding the vector representation of the class to
the vector that represents the general meaning of the word. In this section,
we describe how we find the vector representation of the class information.

In the procedure to compute the vector representation of class, our first
step is to manually define the classification polarity of the task. Some clas-
sification tasks have one polarity while others have two or more polarities.
For example, in a basic sentiment analysis task, there are typically two po-
larities, namely positive and negative; in a task to classify hurricane related
Tweets from general Tweets stream, there is only one polarity, namely hur-
ricane. Because for tweets that are labeled as hurricane-unrelated, we treat
them as ordinary tweets which have no semantic polarity inside the sentences
in terms of this task. In the second step, we manually select the word that is
most representative of classification polarity of the task. We define the word
as polarity word, such as “hurricane”. In this work, the polarity words are de-
fined with the help of the label information of the dataset. For example, in a
disaster-related dataset, the labeling task of the dataset is to classify a sentence
as “hurricane-related” or “hurricane-unrelated”. Thus we manually choose the
polarity word to be “hurricane”. If a dataset is used for sentiment analysis,
now the labeling task of the dataset becomes labeling positive sentences and
negative sentences. By briefly examining the labeled dataset, we found that
the polarity word “good” can be used for positive class and the polarity word
“bad” can be chosen for negative class. It is true that we generally need two
steps to manually decide the polarity word. One is to know the labeling task
of the dataset. The other one is to manually decide the polarity words.
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In the third step, we adopt a heuristic approach to find the vector repre-
sentations of the classification polarities. We first use the original skip-gram
model from Word2Vec on our dataset to obtain class-independent word em-
beddings, providing a vector representation for each word in our vocabulary.
From the class-independent word embeddings we retrieve the polarity words’
vector representations. Next, for each polarity word we use cosine similarity
to select the top n words’ vector representations that are most similar to the
polarity word’s vector representation from the vocabulary of the dataset:

similarity_score =
vector(wpolarity) · vector(w)
‖vector(wpolarity) ‖‖ vector(w)‖

(7.1)

where w is a word in the vocabulary; wpolarity is the polarity word. According
to the similarity score, we choose n vector(w) which have highest similarity
scores. Then we calculate the arithmetic mean of the top n vector(w) as the
vector representation of the class:

V(class) = 1

n
(vector(w1) + vector(w2) + · · ·vector(wn)) (7.2)

where vector(·) denotes the embedding’s vector representation of a word; V(·)
denotes the vector representation of class information. Here n is a hyper-
parameter that we set to 100 to make sure that the vector representation of the
class is general enough to be representative when we calculate the arithmetic
mean of the top n vectors.

Basic Approach I

In Basic Approach I, we do not use the vector representation of class to build
class-specific word embeddings. Our idea is simple as shown in Figure 7.1:
we first divide the training set into subsets according to the class label. For
example, in a sentiment analysis dataset, the training set is divided into two
subsets according to class label, namely positive and negative; next we train
a skip-gram model over the data in each subset to generate a particular set
of word embeddings for a specific class. In the sentiment analysis example,
we generate one set of word embeddings on the positive set and we generate
another set of word embeddings on the negative set. So for each class, we
have a separate set of word embeddings. We then apply the two sets of word
embeddings to our parallel CNN classification framework.
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Figure 7.1: Diagram of Basic Approach I.

Figure 7.2: Diagram of Basic Approach II.

This approach is designed to allow us to test the effectiveness of the lin-
ear compositionality property. We expect that on the same dataset training
the embedding without utilizing the linear compositionality property would
dampen the classification framework’s performance. On the other hand, it is
the simplest of the four proposed approaches. We separate the dataset into
subsets, and build a Word2Vec model for each subset. For disadvantages, we
reduce the dataset to subsets separated by class labels. In this approach, we
do not really use the class label information to build word vector representa-
tions. A larger dataset results in more training data and thus leads to higher
accuracy; similarly, a smaller dataset results in less training data and leads to
lower accuracy [97].
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Basic Approach II

Considered an unsupervised approach, the skip-gram model does not utilize
class information to learn word embeddings. For a binary classification task,
we aim to train two vector representations for each word; one for each class. In
Basic Approach II, we use linear composition to encode the class information
into general word embeddings.

In Basic Approach II, we integrate the class information into the general
word embedding by directly adding the vector representation of the classifica-
tion polarities to the vector representing the general meaning of the word based
on the linear compositionality property. For example, in a task to classify hur-
ricane related tweets from a general tweet stream, we have elements of the
training dataset labeled as “hurricane-related” or “hurricane-unrelated”. Since
there is only one polarity word “hurricane”, we obtain the vector representation
of the class hurricane according to Section 7.3.1; then the class-specific word
embedding is defined as:

h = V(hurricane) + w (7.3)

where h denotes the class-specific word embedding of word w; w denotes the
vector representing the general meaning of word w trained from skip-gram
model.

An advantage of this approach is that we use the linear compositionality
property to build word vector representations for each class training on the
whole dataset compared to Basic Approach I. For disadvantages, we calculate
the vector representation of the class V(class). Then V(class) is added to
the word’s general vector representation for each word appeared in that class.
The linear shift for every word in that class might be a problem: some words
have polysemy problems can be clarified in this process; some words that have
no polysemy problems might be shifted away from its position in the latent
semantic space. We next use non-linear models to solve the polysemy problem.

Advanced Model I

Based on the linear compositionality property of word embeddings trained
on a neural language model, our Basic Approach II generates a class-specific
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Figure 7.3: The architecture of advanced model I. Based on the linear composition-
ality property, the class-specific word embedding of the target word is
obtained by adding directly V(class), the vector representation of class
information to w, the vector representation of the general meaning of
word wt.

word embedding by adding V(·) directly, the vector representation of class
information to w, the vector representation of the general meaning of word wt.
The main issue with the original skip-gram model is that only a single vector
representation per word is not enough to tackle the polysemy problem. In
the proposed advanced models, we utilize the neural language model to train
class-specific word embeddings for each class in the corpus. In the advanced
model I, instead of adding the class information vector linearly, we utilize
skip-gram’s neural language model shown in Figure 7.3 to predict the context
words’ embeddings from a class-specific word embedding of the target word.

Figure 7.3 shows the architecture of the advanced model I. For each class
in the corpus, we use the approach introduced in Section 7.3.1 to represent the
class information in vector space denoted as V(class). We add V(class) to the
general vector representation of the target word, w as shown in Equation 7.4.
Based on the property of linear compositionality, the summation of V(class)
and w should capture the semantic meaning from both sides. We use the class-
specific word embedding of the target word to update the word embeddings of
its context words in the modified skip-gram model.

hw,V(class) = w + V(class) (7.4)
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Equation 7.5 is the objective function of the modified skip-gram model.

L =
∑
w∈C

log p(Context(w) | hw,V(class)) (7.5)

where over all training tuples in the corpus C, we are maximizing the proba-
bility of finding the context words around w given w and its class information.

We adopt the hierarchical softmax based skip-gram model [116], which uses
a binary Huffman tree to organize the words in the vocabulary. Each leaf in
the Huffman tree represents a word. The path from root to leaf represents the
Huffman encoding of the word. For each non-leaf node in the tree, a binary
classifier produces a probability to decide which path to take. As in Mikolov et
al.’s skip-gram model, we choose a logistic regression classifier for each non-leaf
node. Thus the conditional probability in Equation 7.5 can be further written
as:

p(Context(w) | w,V(class)) =
lw∏
j=2

p(dwj |hw,V(class), θwj−1) (7.6)

p(dwj |hw,V(class), θwj−1) =

{
σ(hw,V(class)), dwj = 0

1− σ(hw,V(class)), dwj = 1
(7.7)

where hw,V(class) denotes the output of the projection layer in the advanced
model I, which is the summation of w and V(class); dwj is the binary Huffman
code at jth node of word w; θwj−1 is the vector representation of the (j − 1)th

non-leaf node of word w; lw is the number of non-leaf nodes for word w; σ(·) is
the sigmoid activation function of the logistic regression classifier at non-leaf
nodes. We use SGD (Stochastic Gradient Descent) to maximize L and update
hw,V(class) and θwj−1.

Advanced Model II

In advanced model II we modify the original CBOW model to train class-
specific word embeddings. The original CBOW model uses the averaged word
embeddings of the context words to predict the target word. Although CBOW
model is demonstrated to capture semantic information in the single vector
representation per word, it is problematic for polysemous words. We take
advantage of the architecture of the CBOW model to train class-specific word
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Figure 7.4: Architecture of Advanced model II. Based on the linear composition-
ality property of wording embedding algorithm, we modify the CBOW
model by adding V(class) the class vector to the context vector rep-
resentation g. The result, class-specific context gclass, combines the
local context g as well as global context, V(class).

embeddings to tackle the light polysemy problem existing in the classification
task.

For each class in the corpus, we first use the approach introduced in
Section 7.3.1 to represent the class information in vector space denoted as
V(class). Instead of representing the context using the average of the vector
representations of all the words in the context window, we learn class-specific
context gclass by adding the class vector V(class) to the context vector repre-
sentation g as shown in Equation 7.8 and 7.9.

g =
1

2c

∑
i∈[−c,−1]∪[1,c]

wi (7.8)

gclass = g+ V(class) (7.9)

Figure 7.4 illustrates the architecture of the advanced model II. As opposed
to the architecture of the original CBOW model in Figure 2.2, we generate
class-specific context gclass, which combines the local context g as well as
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global context, V(class) to tackle the light polysemy problem.

L =
∑
w∈C

log p(w|gclass) (7.10)

Equation 7.10 is the objective function of the advanced model II. The objective
function tries to maximize the conditional probability of the target word given
the class-specific context gclass for all the training tuples in corpus C.

p(w | gclass) =
lw∏
j=2

p(dwj |gclass, θwj−1) (7.11)

p(dwj |gclass, θwj−1) =

{
σ(gclass), dwj = 0

1− σ(gclass), dwj = 1
(7.12)

where g is the context representation; gclass denotes the output of the projec-
tion layer in the advanced model II, which is the summation of g and V(class);
dwj is the binary Huffman code at jth node of g; θwj−1 is the vector represen-
tation of the (j − 1)th non-leaf node of g; lw is the number of non-leaf nodes
for word w; σ(·) is the sigmoid activation function of the logistic regression
classifier at non-leaf nodes. We use SGD (Stochastic Gradient Descent) to
maximize L and update Xgclass and θwj−1.

In summary, compared with Basic Approach II, instead of adding the class
information vector linearly, the advanced approaches utilize skip-gram and
CBOW’s neural language models to generate the class-specific word embed-
dings. The skip-gram model trains over more data since each word in the cor-
pus can be a training tuple. Thus the skip-gram model favors small datasets.
In our work, we use a labeled dataset to encode the class information into em-
beddings. Labeled datasets are usually smaller (because of the cost to acquire
the labels), and thus an Advanced Model I that uses a skip-gram model has
advantages over an Advanced Model II that uses a CBOW model.

7.3.2 Classification Framework

We apply class-specific word embeddings for text classification under a su-
pervised learning framework. Our framework extends Kim’s work [78] which
introduced the use of convolutional neural networks (CNN) for sentence clas-
sification. In Kim’s work, the input is a sentence and for each word in the
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Figure 7.5: A general binary classification framework that takes two embeddings,
namely on-topic embedding and off-topic embedding as input.

sentence, Kim’s CNN takes one fixed length word embedding trained from
Word2Vec. It consists of a convolutional layer with multiple filters in different
widths, a max-pooling layer and a softmax output layer.

We aim to build a classifier framework which can take multiple sets of class-
specific word embeddings we trained as inputs. Since for each test sentence
its class label is not revealed yet, it is not known which word embedding, for
example class-specific word embedding or general meaning word embedding,
should be applied to a classifier. We design a classification framework that
takes multiple sets of word embeddings as input. The number of word embed-
dings per word depends on the class polarities of the classification task. For
example, for sentiment analysis we have two class polarities; thus we have two
word embeddings per word: one embedding learned from positive class and the
other embedding learned from negative class. For a topic-related classification
task, such as a task to classify hurricane-related tweets, we also have two word
embeddings per word: one on-topic embedding trained from hurricane-related
tweets and one off-topic embedding trained from hurricane-unrelated tweets.

In a multi-class text classification problem, for each word, we generate one
embedding per class using the proposed approaches; instead of a classification
framework that takes exactly two embeddings per word, we would need to
build a text classification framework that takes in the number of embeddings
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per word corresponding to the number of classes in the dataset. If we consider
binary text classification, the proposed classification framework is illustrated
in Figure 7.5. We combine two CNNs with a softmax layer which takes con-
catenated feature vectors from the two max pooling layers and outputs the
probability distribution over class labels.

7.4 Experiment

We conduct experiments to evaluate the proposed four approaches to learn
class-specific word embeddings. We apply class-specific word embeddings to
the supervised classification framework described in Section 7.3.2.

7.4.1 Experiment Setup and Datasets

We conduct experiments on two publicly available datasets. The first dataset is
a disaster-related Twitter dataset [123], T6 described in Section 3.3 in Chapter
3. The other dataset is the benchmark Twitter sentiment classification dataset
in SemEval 20132 also introduced in Section 3.3. Each tuple in the SemEval
dataset has three class label options: positive, negative and neutral. Since we
focus on the binary text classification task and we aim to use the same classi-
fication framework for both datasets, we filter out the tuples in the SemEval
2013 dataset which are labeled as neutral. We also do a pre-processing step:
we first eliminate all tweets in the two datasets that are non-English, and then
we eliminate tweets that contain fewer than five words. Our pre-processing
step is in line with Olteanu et al.’s work on the same dataset [123]. For the
parameters of our experiments, we choose a window size of 5 and word em-
bedding dimension of 50. To reduce the randomness and the stochasticity in
the experiments, we conduct each experiment 30 times and report the mean
results of the 30 runs for each experiment.

2https://www.cs.york.ac.uk/semeval-2013/
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Method Hurricane Sandy SemEval 2013
SSWE+CNN [157] 85.54 69.92
Skip-gram [116] created embedding using unlabeled text +
single CNN [78]

86.00 70.72

Basic Approach I: Two skip-gram-generated embeddings
from class-filtered text + parallel CNN framework

88.15 71.35

Basic Approach II: Addition of class vector and general
meaning vector + parallel CNN framework

87.72 71.60

Advanced Model I: Modified skip-gram + parallel CNN
framework

88.19 73.15

Advanced Model II: Modified CBOW + parallel CNN
framework

87.91 71.99

Table 7.2: Comparison of classification accuracy across the two datasets using word
embeddings from various models.

7.4.2 Baseline Methods

To compare the quality of the class-specific word embedding, we implement
the following baselines:

1. Sentiment-specific word embedding (SSWE): Tang et al. [157] introduce
a supervised method to learn sentiment-specific word embeddings based
on Collobert et al.’s unsupervised approach [33]. We build a word em-
bedding according to Tang’s method and test the embedding on our
classification framework. We use Attardi’s NLP pipeline to generate
this baseline [4].

2. Word embeddings trained using the skip-gram model: we train our own
embedding using Word2Vec’s original skip-gram model [116]. We apply
the word embeddings as features of a convolutional neural network [78].
A single embedding per word is trained on all training data without use
of the training labels.

Tang et al.’s approach [157] is the research work that is closest to our own.
Although their method is to generate a sentiment-specific embedding, we found
their method could be extended to any labeled dataset that has contrasting
polarities.
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7.4.3 Results and Analysis

Table 7.2 shows the results of the experiments on different approaches. We
choose convolutional neural networks over other classifiers. The reasons are:
since our proposed classification framework consists of two CNNs, it is reason-
able to compare our framework’s performance with a single CNN; secondly, a
CNN has achieved the state-of-art result in sentiment analysis [78].

For the SSWE baseline, we use Attardi’s implementation [4] of SSWE
[157] to generate hurricane-specific and sentiment-specific word embeddings.
Although our work and SSWE are both derived from neural language mod-
els, our model extends Mikolov’s skip-gram model, while SSWE extends Col-
lobert’s C&W model [33]. The skip-gram model has a simple architecture,
while C&W model keeps a look-up table for all the words in the vocabulary
and a fully-connected hidden layer, which makes SSWE slower to compute
and hard to scale to large datasets. In Basic Approach II, we use the tweets
in the training set to generate a general meaning word embedding w. We
then calculate V(hurricane) and add V(hurricane) to w to produce a class-
specific embedding for the second CNN. We then use the two sets of embed-
dings in the classification framework. In the advanced model, we use the same
V(hurricane) from Basic Approach II and added to the input word for each
training tuple in the input layer to train the class-specific word embedding.

In the SemEval dataset experiments, a slight difference is in the choice
of the polarity word when we try to calculate V(positive) and V(negative).
We choose the polarity word “good” for positive class and “bad” for negative
class for use in generating two sets of class-specific word embeddings for Basic
Approach II and the Advanced Model.

In both sets of experiments, the SSWE+CNN result is relatively weak
compared to skip-gram derived models. The result of Basic Approach I using
two sets of self-trained embeddings on our framework is better than the result
of the second baseline, which uses one single CNN. We ascribe the reason to be
that we combine more classifiers that use different features (e.g., from different
embeddings). It is similar to the ensemble method in machine learning, thus
improving the overall performance. The result of the Basic Approach II is very
similar to the result of the Basic Approach I. This indicates part of our concern
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that simply shifting all the embeddings in the vector space by the same distance
is insufficient to boost performance. Results for the Advanced Model I is
the highest, outperforming baselines, the basic approaches and also Advanced
Model II. Results for Advanced Model II, the modified CBOW, are lower
than the results of Advanced Model I, the modified skip-gram. Compared to
CBOW, skip-gram model trains over more data since each word in the corpus
can be a training tuple. Thus the skip-gram model favors small datasets.
Since both of our labeled datasets are small, it is perhaps unsurprising that
the results of Advanced Model I are better.

Figure 7.6: Mean classification accuracy of thirty additional runs for the proposed
models in bar chart, with standard errors, compared to the two existing
baseline approaches.

There is stochasticity in the proposed approaches. For example, all em-
beddings are initialized with random values. To reduce the uncertainty in our
measured results, we performed thirty additional runs and present the mean
performance in Figure 7.6 along with standard errors on the proposed models.
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Example a My power was out for like 5 days when Irene hit.
Example b Stranger danger! My power’s out too. Be safe #drink-

ingtillifallasleep
Example c People on the other side of the country won’t see specif-

ically how #lbi is doing. It’s all grouped into the east
coast.

Table 7.3: Three tuples extracted from test set of Hurricane Sandy dataset

Compared to SemEval 2013 dataset, results on the Hurricane Sandy dataset
tend to have tighter error bars. For the Hurricane Sandy dataset, the mean
Basic Approach I accuracy was more than 2 percentage points higher than
the results of baseline’s in Table 7.2. For both datasets, the advanced model
remains the best performer, achieving a mean relative improvement of 3.1%
(Hurricane Sandy) to 4.6% (SemEval 2013) over the SSWE+CNN baseline.
This suggests our proposed approaches to generate class-specific word embed-
dings combined with the parallel CNN framework can improve the performance
on text classification tasks.

Moreover, to better measure the performance of the class-specific word em-
beddings we trained, we compare word embeddings trained from the advanced
approach I with the embeddings trained from skip-gram model, one of our
baselines in the first dataset Hurricane Sandy. Most tuples in the test set that
mention “hurricane”, “hurricane Sandy” and “Frankenstorm” are recognized
correctly in both advanced approaches and baseline models. For example,
“Frankenstorm was actually the name of the creator. This hurricane should
properly be called Frankenstorm’s monster.”, “Praying for everyone in the path
of Hurricane Sandy.” and “This hurricane blowing me now.” To better verify
the effectiveness of the proposed advanced approach I, we look at some tuples
from test set that are classified correctly (True Positive) in advanced approach
I but classified incorrectly (False Negative) in the second baseline using skip-
gram model as shown in Examples a, b and c in Table 7.3. We found that after
adding class information in the advanced approach I, tuples such as Examples
a, b and c can be recognized as “hurricane-related” even without obvious words
or hashtag indicators.
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7.4.4 Parameter Sensitivity
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Figure 7.7: Parameter Sensitivity Study of Word Embedding Dimensionality

In order to evaluate how changes to the parameterization of the proposed
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approaches affect its performance on classification tasks, we conducted exper-
iments on the binary text classification tasks.

Word Embedding Dimensionality

For this test, to focus on the performance of parameterization, we need to
remove the randomness introduced during the training procedure. We first
fix the seed parameter in the initialization of the word embedding vectors so
that the experiments could be repeated with identical starting points; then
we use only a single thread to eliminate randomness introduced by operating
system thread scheduling. To further reduce the randomness in word vector
initialization, during the experiments of trials with different word vector di-
mensionality, we initialize the maximum dimension n of word vector so that
each word vector with different dimensionality s will be initialized by selecting
the top s numbers from the initialized word vector of size n. The result of
these steps was a process that repeatedly assigned exactly the same random
values regardless of the size of the word vector representation.

Figure 7.7 shows the effects of performance when increasing the number of
dimensions in our four proposed models in classification tasks of two datasets.
During all the experiments, we have fixed the window size to be 5. All the
experiments are performed starting from word vector of dimension 5 to word
vector of dimension 165 with an interval of 10. So altogether there are 17
points on each plot. We use standard Local Polynomial Regression Fitting
method (loess) in R to fit a polynomial surface for each plot to show the trend
of performance as dimensionality increases. Figure 7.7(a), 7.7(c) and 7.7(e) ex-
amine the effects of varying the dimensionality in the Hurricane Sandy dataset.
As shown in Figures 7.7(a) and 7.7(e), the optimal dimensionality for Basic
Approach I and the Advanced Approach is obtained near 65 dimensions, while
Figure 7.7(c) shows a steady trend. Figures 7.7(b), 7.7(d) and 7.7(f) examine
the effects of varying the dimensionality in the SemEval 2013 dataset. The
experimental results of Advanced model II in the Hurricane Sandy dataset in
Figure 7.7(g) become steady around 87.69% when the number of dimensions
reaches 73. For the SemEval dataset, the Advanced Model II achieves highest
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performance at around 55 dimensions as shown in Figure 7.7(h). The perfor-
mance is quite consistent between both Hurricane Sandy dataset and SemEval
2013 dataset in the sense that the Advanced model I in both datasets shows a
better performance at a lower dimensionality (around 75 for Hurricane Sandy
dataset and around 45 for SemEval 2013 dataset) compared to the other pro-
posed approaches.

Number of Most Similar Words to the Polarity Words

We have conducted grid search for hyper-parameters word embedding dimen-
sion and the number of words which have the highest similarity scores to the
polarity word. We denote the number of words which have the highest similar-
ity scores to the polarity word as n. We generated word embedding dimension
candidates from the list [30,50,65,80]. We generated the candidates of n from
the list [50,70,90,100,150,200]. We exhaustively generated a grid of parameter
values specified by the two lists above. Altogether we have 24 (4*6) different
combinations of word embedding dimension and n. Other than the Basic Ap-
proach I which does not utilize the class vector, we apply all 24 combinations
on the Basic Approach II, the Advanced Approach I and the Advanced Ap-
proach II on the two datasets, Hurricane Sandy and Semeval. We performed
grid search for the two hyper-parameters, word embedding dimension and n,
the number of most similar words to the polarity words. We found that our
approach is fairly robust to the choice of n. We found that there are no obvious
trending or conclusion can be made as to which n and dimension is the best
fit. In general, different approach in different dataset prefers a different com-
bination of hyper-parameters. In all cases, n = 100 seems to be a good setting
(except for Advanced Approach I in Semeval dataset, in which peak value is
obtained at n = 150). But the accuracy value does change with different word
embedding dimension settings.

We performed additional experiments to use the polarity word itself di-
rectly as the class vector representation. We found that all the accuracy val-
ues of Basic Approach II, Advanced Approach I and Advanced Approach II
dropped slightly. We think that if n is larger than one, the class representation
might have a greater chance to incorporate the words that can most accurately
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represent the class’s semantic meaning.

7.4.5 Discussion

In this section we first compare and contrast the computational costs of our
approach and then consider some observations that could lead to opportunities
for future research.

Computational Complexity

We introduced in this chapter simple but effective models to tackle the light
polysemy problem. Existing context-based word embedding algorithms utilize
more complicated algorithms to search and generate all possible embeddings
per word regardless of the future application task. For example, Huang et al.
adopted K-means to cluster all the contexts in which the target word appears.
By solving the light polysemy problem instead, we avoid the complex computa-
tion in this step by taking advantage of the linear compositionality property.
The linear compositionality property in our approaches require only vector
addition. Similarly, Huang et al. pre-defined k as the number of embeddings
(clusters) per word; the time complexity of k-means is O(nkdi), where n is the
number of d-dimensional vectors (in our case the number of contexts a word
has in the corpus), k is the number of clusters and i the number of iterations
needed until convergence [61]. Huang et al. need to perform k-means on every
word in the vocabulary. Thus the computational complexity for Huang et al.’s
approach is O(|V |nkdi), where |V | is the vocabulary size of the corpus. When
the corpus is large, Huang et al.’s approach is hard to scale. In contrast, we
do not need to iteratively re-compute the centroids across the whole corpus for
every single word. To generate a word embedding per class, the computation
for our work only needs the addition operation, which takes linear time O(d).
For space complexity, vectors representing the contexts and the centroids in
Huang et al.’s approach need to be stored. Specifically, the storage required
is O(|V |(n + k)d). Our approaches need O(bd) since we only store the vector
representation of class, where b is the number of the classes in the corpus.
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The Selection of Polarity Words

To choose “good” and “bad” as the polarity words is risky. We found in the
Twitter dataset that people describe positive and negative emotion using lex-
icons with great variety, such as “Gas by my house hit $3.99!! I’am going to
Chapel Hill on Sat!”, “Twitition Mcfly come back to Argentina but this time we
want to come to mar del plata!!!” and “Never start working on your dreams
and goals tomorrow......tomorrow never comes....if it means anything to U,
ACT NOW! #getafterit”3. These three tweets have no lexicon that are asso-
ciated with “good” or “bad”. Thus how to choose or generate polarity words
to produce a vector representation of the class is still an open question.

Another observation is that summation is best suited for elementary words
such as “water”. When an elementary word is added to a complex-meaning
word, such as “massacre”, we found the meaning of the elementary word is of-
ten overwhelmed by the complex-meaning word. This problem is best demon-
strated by finding the most n similar words from the vocabulary using cosine
similarity. When we add vector(water) to vector(massacre), the top ranked
words are “massacres”, “killings” and “murders”. The semantic of word “water”
seems to have disappeared, which introduces another research problem.

This work should also be extensible into a multi-class text classification
setting. Note that it would become non-trivial to decide manually the polarity
words for each class in a multi-class text classification scenario. One possible
solution could be a topic-model-based approach to automatically define the
polarity words for each class. Then word embeddings could be trained to
represent the top words. The number of the top words would also be a hyper-
parameter.

7.5 Summary

In this chapter, we used the linear compositionality property to improve the
learning of class-specific word embeddings for a text classification task. We
explored four models to learn class-specific word embeddings. We devised a
classification framework to take multiple sets of class-specific word embeddings

3These three tweets are extracted from SemEval 2013 training data.
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as input. We tested our methods on two Twitter datasets. Our results showed
that for text classification tasks with clear polarity words, our proposed ap-
proaches can increase performance.
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Chapter 8

Exploiting Authorship to

Recognize Biased Text

Thanks to easy access and open editing, online collaborative information re-
sources such as Wikipedia have grown to be essential references for information-
seeking and fact-checking activities. Unfortunately, editor bias can violate the
expected neutrality of such resources and is easily introduced by voluntary
editors due to their own ideologies and perspectives. To keep general-purpose
online information resources neutral, researchers make efforts to detect various
kinds of bias, such as gender bias, racial bias and political bias. Although bias
types might be interwoven and inconsistent across sentences, paragraphs and
articles, according to Lecky’s self-consistency theory (1961), the authors whose
bias is reflected in that content remain consistent. With this in mind, we pro-
pose to model collective editing behaviors, aiming to reveal groups of editors
that are likely to share similarly biased viewpoints. We present a novel implicit
bias detection approach that leverages such clusters of editors and is built upon
a state-of-the-art word embedding method. We focus on Wikipedia data, and
we observe several biased editor groups in certain categories of Wikipedia by
investigating what and how they edit. Experimental results on benchmark
datasets demonstrate the superiority of the proposed approach over several
competitive bias detection baselines.
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8.1 Introduction

Online information resources have transformed the way people acquire knowl-
edge. Traditionally people acquire knowledge from writings of certified peo-
ple with special expertise such as an expert-compiled dictionary or textbook.
With the advance of social media and the usage of “the wisdom of crowds”,
knowledge now can be created and shared with everyone and by everyone.
Such new style of knowledge acquisition can benefit people from its unique at-
tributes such as easy-access, open edit and broad range of topics. But this new
trend also brings the dark side: the easy accessibility enables the introduction
of errors, misinformation and various biases into the content. Another side ef-
fect with online information resources is that the rapid growth of information
volume makes manual checking unrealistic. Thus an automatic bias-checking
algorithm becomes crucial for online information resources.

Examples of online information resources include online collaborative en-
cyclopedias such as Wikipedia1 or user-generated special-interest community
websites such as Yelp2 and TripAdvisor3. With over 27 billion words in 40
million articles in 293 languages4, Wikipedia attracts more than 240 million
visits daily5. Because of its easy-access and openly-editable nature, online
information resources are prone to errors and corruptions. Though previous
research efforts have studied the quality of online information resources, in
this chapter we focus on the more implicit and subtle bias that is hidden in
the text.

As a general-purpose information reference and resource, neutrality is one
of Wikipedia’s key policies, which has been formally defined as the requirement
of a Neutral Point of View (NPOV)6. However, contributors of Wikipedia are
only bound by ethics to keep it neutral. By taking advantage of the easy access
and open editing, various bias and violations of the NPOV policy occur.

Researchers tend to solve one particular bias at a time. For example,

1https://www.wikipedia.org/
2https://www.yelp.com/
3https://www.tripadvisor.com/
4https://en.wikipedia.org/wiki/Wikipedia:Size_comparisons
5As of December 2017. See http://stats.wikimedia.org
6https://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
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Before Form String After Form String
Some Red Sox fans and
columnists believe that
this poor decision by
Little led to his firing
the following offseason.

Some Red Sox fans and
columnists believe that
this contentious deci-
sion by Little led to his
firing the following off-
season.

War between Yu-
goslavia and the North
Atlantic Treaty Or-
ganisation between
March 24 and June
10 1999, during which
NATO heavily bombed
Yugoslav targets,
Albanian terrorists
continued attacks.

War between Yu-
goslavia and the North
Atlantic Treaty Or-
ganisation between
March 24 and June
10 1999, during which
NATO heavily bombed
Yugoslav targets, Al-
banian insurgents
continued attacks.

Table 8.1: Examples of the labeled dataset

Greenstein and Zhu [57] study political bias in Wikipedia against its NPOV
rule; Wagner et al. [165] analyze gender bias in the content of Wikipedia;
Otterbacher [124] explores stereotypes in the biography articles in Wikipedia.
However, it is inefficient and impossible to have a single algorithm to detect
each of the kinds of bias that violate NPOV. Biases are inconsistent across
sentences, paragraphs and even articles. For example, one biography Wiki
article might contain gender bias and racial bias while a political campaign
Wiki article might contain political bias. Although the biases captured by
NPOV are inconsistent, research conducted by Lecky [94] in the 1920s shows
that individual’s ideas and behaviors remain consistent. The basis of Lecky’s
Self-Consistency Theory states that consistency of ideas and representation
of the self are integral in humans; individuals can function normally only by
regulating their self-concept and maintaining consistency in ideologies and
behaviors within their mental functions. Thus the authorship information
about a given piece of text becomes an important source to identify the bias
that violate NPOV. We model an author’s bias tendencies based on the their
editing histories. Most existing research only identifies one explicit bias such
as gender bias or racial bias. Instead of detecting an explicit pre-defined bias,
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in this work we automatically derive implicit bias groups based on author’s
editing histories. For popular explicit biases, using a pre-compiled word list
for detection is feasible, because the researcher’s goal is clear to tackle a single
type of bias. But when we are unaware of the types of bias existing in the
corpus, we cannot decide which bias to tackle let alone form a static word list.

In this work, we solve two problems: first we automatically discover author
groups that have similar bias against NPOV using a clustering algorithm;
instead of compiling a fixed word list, we use the author’s grouping information
and their editing histories to learn words’ vector representations. We also
explore the use of Wikipedia’s default taxonomy, the categories that we observe
the author’s biased editings belong to categorize authors into different groups.

Previous researchers only focus on the linguistic characteristics when de-
tecting bias in the reference work [142]. They rely on the presence of certain
adjectives and keywords as indicators for bias from pre-compiled lexicons. Such
a method could be problematic in many ways: first, humans are good at in-
venting new words and phrases, making a fixed lexicon incomplete. Second,
many words in a lexicon will have multiple senses, and not all senses will re-
flect bias. Senses are hard to determine from only the form of the word; they
also depend on the context. Third, by only focusing on linguistics, previous
research ignores the authorship of the edits. We find that it is difficult to
compile an accurate word list for some biases, such as a political ideology.

Instead of using a fixed word list, we encode information about bias into
word vector representation by learning weighted word embeddings. These
vector representations will serve as features in the later classification task.

Based on our work in Chapter 5, we learn weighted word embeddings based
on their relative importance and indicativeness in the bias classification task.
The intuition here is that such learned weights place more emphasis on words
that have comparatively more to contribute to the bias detection task. We
utilize the χ2 statistics [64] for each word in the corpus as weights in the state-
of-art continuous bag-of-words (CBOW) model [116]. Thus we emphasize
words that would benefit the bias detection task and de-emphasize words that
are usually independent of class labels.

Our research focuses on implicit bias, a term referring to attitudes or stereo-
types that both might shape or affect our decision, behavior, action and even

116



culture and people’s psychological process. We ground our research from a
psychological perspective [17]. That is, we focus on detecting implicit bias
in general-purpose online information sources that should have delivered a
neutral perspective on information but instead a disguised prejudice or mis-
conceived one-sided view is presented in a possibly subtle manner. A more
challenging situation is that the author did not know that his or her view is
biased compared to the neutral perspective. Thus it is hard to assemble word
lists to identify such bias, since there are many controversial topics. With
the evolution of controversial events and the increasing amount of edits and
webpages created it is hard to maintain a word list to identify implicit bias.
Although there exist many types of bias that violate NPOV, our work fea-
turing authorship information to build bias-aware word embedding is able to
tackle against implicit bias. That is, we can better find such authors who may
be unaware of the bias existing in their ideologies until their editing has been
tagged and labeled by others.

The main contributions of this work can be summarized as follows.

• Tackling NPOV bias and violations inside Wikipedia, we are the first
to use editing histories that have been marked as NPOV violations to
automatically discover subtle bias types.

• As an alternative approach, we also use Wikipedia categories to which
the author’s biased editing belongs, to find author groups that have
similar bias inclinations.

• Using the group information, we train bias-aware word embeddings by
emphasizing words that should be important to the bias detection task
and de-emphasizing words that are usually independent of class label.

• Our work tackles the implicit bias of authors who are unaware of the
bias existing in their writings until their editing has been tagged and
labeled by others. Through automated clustering, we discover authors
that have similar bias interest.
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8.2 Related Research using Wikipedia

Category

The user-generated Wikipedia category hierarchy is noisy. Boldi and Monti
proposed a method to cleanse and prune the category hierarchy [14]. They pro-
posed the centrality metric to measure each category’s significance. Wikipedia
category is a rough classification of topics of the articles. Many research mines
knowledge from Wikipedia using Wikipedia category hierarchy. YAGO, a
large semantic knowledge base derived from Wikipedia, WordNet and other
data sources, combines the taxonomy of WordNet [43] with Wikipedia cate-
gory hierarchy [154]. DBpedia is a knowledge graph that extracts structured
contents from Wikipedia [11]. DBpedia develops its own processing strategies
to cleanse and prune the Wikipedia category hierarchy. After cleansing and
pruning, the meaningful Wikipedia categories are used to cover DBpedia in-
stances. Capocci et al. studied the two possible classifications of Wikipedia
articles [23]. The first one used Wikipedia category for classification. The
second one used a partition algorithm on the network formed by Wikipedia
articles and hyperlinks between them.

8.3 Approach

In this section we describe how to find author groups in Wikipedia that have
similar bias interests and encode such information into word vector represen-
tation as features for a subsequent bias detection task.

8.3.1 Discover Bias Groups

Our approach introduces authorship information to automatically find author
groups that have similar bias types. We explore two sources: Wikipedia cate-
gory labels and each editor’s editing history. First we look at the Wikipedia’s
taxonomy, consisting of Wikipedia categories, organized and constructed by
Wikipedia volunteers. If the Wikipedia articles to which the authors’ biased
editing belong fall in the same Wikipedia categories, it indicates these authors
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Wikipedia Categories
9/11 conspiracy theories
All accuracy disputes
All articles that may contain original research
All articles with dead external links
Conspiracy theories in the United States
Conspiracy theories involving aviation incidents
Articles with disputed statements from December 2009
Denialism
Urban legends

Table 8.2: A sample of 37 Wikipedia categories of Wikipedia article “9/11 conspir-
acy theories”.

have similar bias interest at the topic level. Editing histories reflect the au-
thor’s perspective. For a specific editor’s editing history, we extract the words
and phrases which have been identified as biased by other editors and also the
article titles to which the words or phrases belong. We regard these words,
phrases and the article titles as important clues to identify the editors’ group.

Discover Bias Group by Wikipedia Category.

Our goal is to discover the group of editors with a common implicit bias by us-
ing Wikipedia categories. Wikipedia forms its own taxonomy: each Wikipedia
article is tagged with one or more categories by volunteers that are struc-
tured into a hierarchical framework. Thus Wikipedia articles are classified
by human-generated categories. In fact, many researchers rely on Wikipedia
categories to extract and mine information [5, 119, 141]. Under this point of
view, our intuition is that if two editors’ editing have been tagged as NPOV,
we trace the two Wikipedia articles that the editing belong to; if the Wikipedia
articles belong to the same Wikipedia category, then it provides evidence that
the editors for those articles are interested in the same topic and thus should
be put in the same group.

However, Wikipedia categories are chaotic and problematic: the Wikipedia
category hierarchy does not form a nice tree structure. The main reason is that
Wikipedia does not enforce a consistent policy of one category being a child
of one other. Like the content of Wikipedia articles, Wikipedia categories are
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also edited by volunteers and contributors. Different contributors categorize
Wikipedia articles based on different perspectives. For example, in Table 8.2
we show a sample of the altogether 37 immediate parent Wikipedia categories
that Wikipedia article “9/11 conspiracy theories” is in. We can see the cate-
gories of Wikipedia article can be fuzzy and noisy. The resulting Wikipedia
hierarchy is not a tree structure, not a forest structure, not even a directed
acyclic graph [79]. Thus instead of traversing the Wikipedia article’s category
to something more abstract, we use the category directly as an indication of
the topic in which the editor is interested.

For the editors that have at least one NPOV violation tagged by other
editors, we extract the Wikipedia categories from the Wikipedia article in
which the editor has an NPOV violation. We represent the editors as a editor-
category matrix, i.e., the rows correspond to editors, and the columns corre-
spond to the categories to which the author’s biased editing belongs. According
to Wieting et al. [169] and Kenter et al. [76], simply averaging words in the
sentence or phrase to get sentence embedding or phrase embedding is compet-
itive with systems tuned for the particular tasks while extremely efficient and
easy to use. We adopt the averaging model to generate vector representation
for each category. The editor’s vector representation is obtained by averaging
all the categories he/she has.

Author =
1

p

p∑
j=1

Categoryj (8.1)

Categoryj =
1

q

q∑
i=1

Wordi (8.2)

Suppose the author’s biased editing is located in p categories and Categoryj
consists of q words. Equation 8.2 shows the averaging model to calculate the
vector representation of category. Equation 8.1 shows how to use the same
model to calculate the vector representation of author. Thus for each biased
author, we generate a vector representation. We use vector representation of
author as features and use the k-means clustering algorithm [3] to discover
author groups that have similar bias interest.
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Discover Bias Group by Editing History.

We can understand an individual’s thoughts, ideology and behaviors from
his/her writing. The editing history should be able to reveal the author’s bias
interest and intention.

Our assumption is that there exist different groups among authors. The
group they belong to represents the same kind of bias that the authors have
been loyal to. For a specific editor, we extract the words and phrases which
have been identified as biased by other authors and also the article titles to
which the words or phrases belong. We regard the biased words, phrases and
article titles as important clues to identify the authors’ group. We split the
phrases and article titles into tokens. We generate an author-editing history
matrix: each row corresponds to an author; each column represents a token
in the editing history. We also use the averaging model as shown in 8.3 to
generate the vector representation for each author.

Author =
1

m

m∑
i=1

Tokeni (8.3)

After we generate the vector representation for each author, we also use k-
means to cluster the editors into groups.

8.3.2 Learning Bias-aware Word Embedding

After we discover bias groups of authors, we try to encode this information
by training bias-aware embeddings. After editor clustering is complete, each
editor has been associated with a bias group. Since we know the editor’s biased
text insertions and we have obtained the group information for each editor, we
can link the word in the biased text to the biased group. We directly follow the
methodology in Chapter 5 to learn word embeddings with chi-square weights.

χ2(D, t, c) =
∑

et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)2

Eetec
(8.4)

Formula 8.4 is used to rank the terms that appear in the corpus [110], where
et and ec are binary variables defined in a contingency table; et = 1 means the
document contains term t and et = 0 means the document does not contain
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term t; ec = 1 means the the document is in class c and ec = 0 means the
the document is not in class c; N is the observed frequency in D and E is the
expected frequency. We compute the chi-square (χ2) statistical test given the
biased word and the group that the author belongs to as shown in Formula
8.4. Besides the biased groups, we construct one more group to represent the
unbiased group by selecting unbiased text from the same source. Since higher
χ2 values of term t indicate higher likelihood of co-occurrence with the class c,
we use χ2 to weight the context words in the cbow model. Words with higher
χ2 statistics tend to be keywords useful for class identification. Thus we use
the chi-square statistical test to select the lexicon that particularly caters to
the specific class identification task of short sentences, in our case biased word
detection task in the Wikipedia sentences dataset.

We use the chi-square statistical test to measure how indicative each word
is for its associated group. Compared to the pre-compiled word list, we auto-
matically find words that are most indicative to the biased group. We aim to
encode the group information into words’ vector representations by using the
chi-square statistics as the weights in the cbow model training. Instead of
treating the words equally as in the original cbow model, we emphasize words
that would later benefit the bias detection task and de-emphasize words that
are usually independent of class label by applying the χ2 statistics as weights.
Since we are learning word vector representation only on the sentences that
contain biased text, we need to handle the out-of-vocabulary (OOV) tokens at
test time. We follow the approach to handling OOV investigated by Dhingra
et al. [38]. We use pre-trained Glove embeddings [133] with dimension size 100;
we update all the biased words in the learning process. For all OOV tokens
that are out of the Glove vocabulary coverage, we assign them untrained but
unique random vectors.

8.4 Experiment and Analysis

Here we explore the effectiveness of using authorship information to discover
biased author groups. We train weighted word embedding to emphasize words
according to their indicativeness to the bias.
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Figure 8.1: Histogram of NPOV violation distribution. X-axis shows the number
of NPOV violations; y-axis shows the number of authors.

Figure 8.2: Histogram of Biased Wikipedia article distribution. X-axis shows the
number of biased Wikipedia article; y-axis shows the number of au-
thors.

8.4.1 Dataset

We have introduced the datasets we used to evaluate our approaches in Chap-
ter 3. We use the Wikipedia dataset to evaluate our approaches in this work.

The dataset extracted from Recasens et al. [142] is formed with articles
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Number of authors 4,094
Number of articles 6,850

Number of NPOV violations 19,311

Table 8.3: Dataset characteristics

Data Train Test
Number of sentences 1,779 207
Number of words 28,638 3,249

Table 8.4: Statistics of the training and test sets

from Wikipedia in 2013. The dataset consists of sentences extracted from
Wikipedia. For each sentence, there is one word in the sentence is labeled as
biased.

Our work focuses on using authorship information to assist in the bias
detection task. Table 8.3 shows the characteristics of the derived dataset,
which includes the number of Wikipedia articles that have NPOV violation in
them, the total number of NPOV violations among the articles, and the total
number of authors who created those NPOV violations. All the authorship
information is extracted from the training set. The statistics shown in Table
8.3 is what we used for discovering biased author groups and later training
bias-aware word embeddings. Figure 8.1 shows the author-NPOV violation
distribution. We can see most authors have only one NPOV violation. Figure
8.2 shows the author-biased article distribution. Most of the authors have
few NPOV violations. It shows that most authors are consistent compared to
authors deliberately spreading bias or misinformation in comparatively large
amount.

Table 8.4 shows the statistics of the Wikipedia sentences that we use for
bias classification task. Since some details of their data preparation are not
revealed and included in their paper, our statistics of the dataset after pro-
cessing and cleaning (shown in Table 8.4) are slightly different from theirs.
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Category Frequency
Living people 898
Nationalism 92
Islam-related contro-
versies

86

Christian terms 76
Hatred 68
Christianity-related
controversies

67

Core issues in ethics 66
Current national lead-
ers

66

Political neologisms 64
Forced migration 64
Racism 60

Table 8.5: Most frequent 10 categories in author’s category record

8.4.2 Baselines

We compare the proposed bias detection approach using authorship informa-
tion to the following baselines:

1. Recasens et al. [142]: we use their 32 manually generated features for
bias classification task using the same dataset. Most are binary features
generated from pre-compiled word lists. Some of the features are nominal
such as “word” and “POS”, where “word” is the original word form as
appears in the sentence; “POS” is the part-of-speech of the “word”. They
trained a logistic regression model to perform bias detection.

2. Glove [133]: we use Glove’s pre-trained embedding to compare with the
bias-aware embedding by adding the Glove embedding to Recasens et
al.’s features.

3. Word2Vec [116]: we use a Word2Vec pre-trained embedding to compare
with the bias-aware embedding by adding the Word2Vec embedding to
Recasens et al.’s features.
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8.4.3 Discover Bias Group by Wikipedia Category

Wikipedia categories can reveal the topics that the article is about [149]. If
two authors edit Wikipedia articles belonging to the same category and both
labeled as biased, we assume the two authors have the same bias interest. We
do not use categories as tokens directly. Instead, we use the state-of-art pre-
trained word embeddings to represent each category. Authors are represented
as the vector representation of categories to which their articles belong.

Our first step is to use authorship information as shown in Table 8.3
to discover biased author groups. From the training set, we generate a bi-
ased author-article matrix with size 4094 × 6850 (The maximum number of
Wikipedia articles that the same author has NPOV violations in is 686). Each
row corresponds to an author and each column corresponds to a Wikipedia
article title that this author has NPOV violations in. For each article in the
matrix, we extract its Wikipedia categories. We remove all the punctuation,
stopwords and duplicates from each category; we also lowercase before gener-
ating the vector representation of the category. Table 8.5 shows the top 10
most frequent categories in which NPOV-biased articles fall. We can see cat-
egory “Living people” with 898 frequent visits tops the chart. About one fifth
of Wikipedia articles are about people [47]. Apparently, many biased editors
are interested in biographies. We use the 100-dimensional pre-trained word
embedding from Glove [133] and the Formulas 8.2 and 8.1 we introduced to
calculate the vector representation of the category for each author. Finally we
obtain an author-embedding matrix with size 4094 × 100. Namely each row
represents an author and each cell in the column is an element in the category
embedding. We apply the k-means clustering algorithm from sklearn [19] on
the author-embedding matrix to generate clusters of different biased group of
authors. The number of clusters is 20. We conduct experiments to select the
number of clusters. Different numbers of clusters are tried, such as 3, 5 and 8.
We manually check the quality of the cluster to see if the author’s violations
are consistent in a cluster to represent a bias type. We also check if the au-
thors are evenly distributed in the clusters. We found that when the best case
happens when the cluster number is 20.
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Word Frequency
war 263

state 164
united 123

movement 83
history 78
many 72
right 69
south 67
people 66
party 66

Table 8.6: Most frequent 10 words in author’s editing history

8.4.4 Discover Bias Group by Editing history

Although we adopt some pre-processing steps to clean the Wikipedia cate-
gories, using Wikipedia’s default taxonomy without filtering the noisy and
unrelated category as an example shown in Table 8.2 can be problematic [14].
Nonetheless an author’s thoughts, ideology and thus bias interest can be re-
vealed and reflected by his/her editing histories that have been labeled as
biased by other editors. In this experiment, we use editing history to discover
biased author groups. For each author, we extract his/her biased editing his-
tory, which consists of words or phrases that violate NPOV. Since the title of
the Wikipedia article is the key words/phrases that caught the author’s atten-
tion, we also include the title of the article. Thus each author is represented by
his/her editing history plus the Wikipedia article title from which this editing
history is extracted. For pre-processing, we split the editing history and title
into tokens and strip the punctuation and stopwords. We generate the author-
editing history matrix. Table 8.6 shows the top 10 most frequently used words
in author’s editing history. We also use the 100-dimension pre-trained word
embedding from Glove [133] to represent each word in the editing history. We
apply Formula 8.3 to calculate the vector representation for each author. We
then apply k-means to cluster the authors into groups.
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editing history
(training set)

expanded edit-
ing history
(training set)

expanded editing history
(training + test)

# token 29,786 210,445 231,771
# vocab 11,698 35,993 38,410

Table 8.7: Statistics of editing history after expanded for word embedding learning

Recasens GloVe word2vec Wiki Category Editing History
precision 0.245 0.284 0.304 0.322 0.331
recall 0.228 0.316 0.282 0.282 0.291
F1 score 0.236 0.299 0.292 0.301 0.310

Table 8.8: Evaluation results of the two proposed bias-aware embedding learning
approaches on the test set

8.4.5 Unbiased Group of Authors

Since our ultimate task is to distinguish unbiased from biased at word level in
sentences extracted fromWikipedia, we need to add an extra group of unbiased
authors. Our method is straightforward: after we clustered the biased authors
into groups using k-means, we obtain the average (mean) number of authors
across all the groups, nave. Then we assemble all the authors who have no
NPOV violations from the training set. We randomly sample nave unbiased
authors to form the unbiased group of authors. Thus we have altogether 21
groups of authors including implicit groups of biased authors and one group
of unbiased authors.

8.4.6 Learning Bias-aware Embedding

After finding the implicit groups of authors that have similar bias in their
ideology, we encode such information into word embeddings by weighing the
words that indicate the biased group of authors more. We have already discov-
ered groups of authors. Thus each author is associated with a label of his/her
group. To calculate χ2 statistics for each word, we need to associate each word
with its author’s label. We generate words’ label by passing the author’s label
to the words in the author’s editing history. Since word embedding algorithms
are based on context information, isolated biased words and phrases in the
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previous author’s editing history are not useful. Instead, we re-assemble each
author’s editing history by including the Wikipedia sentences in which their
biased words/phrases exist. Table 8.7 shows the statistics of the expanded
editing history. We learn χ2 statistics using Formula 8.4. The χ2 statistics
serve as weights in the cbow model: words in the context window surround-
ing the target word are weighted according to their χ2 statistics. We use the
χ2-weighted cbow model to train 100-dimensional word embeddings.

8.4.7 Bias Detection Task at Word Level

We trained two sets of bias-aware embeddings: one using Wikipedia categories
and the other using editing history. Our task is to identify the biased word
within a Wikipedia sentence. We use precision, recall and F1 score as metrics
to measure the performance of our bias-aware embedding using authorship
information approach as well as three other baselines. We train a logistic re-
gression model on the training set and evaluate the model on the test set.
For each word, the trained word embedding serves as features for the bias
detection task. To compare with Recasens et al.’s approach, we also added
their manually compiled features to the word embedding feature. Table 8.8
shows the results of the three baselines and the two proposed approaches. Af-
ter adding word embedding features, the performance improves for all three
metrics. Bias detection using editing history information performs better than
using Wikipedia categories. The result using Glove is strong, indicating state-
of-art word embeddings generally perform well and can provide useful and
effective semantic meaning in the classification task. The Glove F1 base-
line outperforms the Word2Vec baseline; the two baselines comparison result
matches Dhingra et al.’s [38]’s observation in their empirical study on word
embedding. The result based on our proposed editing history shows a 7.4%
absolute increase in the F1 score compared to Recasens et al.’s approach (31%
relative increase) for the bias detection classification task.

8.4.8 Discussion and Limitation

Our proposed approaches can be applied to any general-purpose reference work
that needs to detect non-neutral point of view. When an author’s editing
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history is given, we can assign him/her to the group of which authors share
similar bias interest.

Several hyper-parameters exist in the proposed approaches: the number of
clusters and the dimension of word embedding. We use the k-means clustering
algorithm, which needs to pre-set the number of clusters. We experiment on
multiple choices on the number of clusters, such as 3, 5, 8, 10 and 20. We
found the number of authors in each group is more “even” in the choice of 20
compared to the other choices. Evenly distributed clusters do not guarantee
effectiveness. We choose the word embedding dimension to be 100 according
to Dhingra et al.’s empirical study on the word embedding [38], which shows
that Glove embedding with size 100 outperforms Word2Vec embedding with
larger dimension.

We apply hard group assignment for all authors in the dataset; that is,
every author is only associated with one group. Although from Figures 8.1
and 8.2 it seems most authors only have one NPOV violation; there could exist
authors who have more than one bias interest. Thus a soft clustering may be
more suitable for the problem.

8.5 Summary

In this work we explored the use of authorship information, either theWikipedia
categories or the author’s editing history, to discover implicit groups of biased
authors. We use the χ2 statistical test to measure as how indicative each
word was in each biased group. The χ2 value is later applied as weight in the
context representation of the cbow model. By doing so, it emphasizes words
that would later benefit the bias detection task. Experimental result shows
the bias-aware embedding using author’s editing history can increase the per-
formance of the bias detection task by 7.4% compared to previous work on the
same task.
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Chapter 9

Conclusion

9.1 Introduction

To conclude this dissertation, we survey our two research areas of focus: text
representation and bias detection. The goal of this survey is to point out the
position of our research and possible future research directions.

9.2 Text Representation

Text representation has gone through huge progress in recent years and achieved
state-of-the-art results in various NLP tasks such as machine translation and
question answering [37, 104, 140]. Machine learning models that involve train-
ing text representations in the NLP field have also developed fast. In this
section, we introduce the current trends in text representation and the ma-
chine learning models that produce such text representation.

9.2.1 Contextual Embedding

We started our discussions on the word embedding algorithms where one word
type is matched to a single vector representation no matter what kind of
context it has. In real scenarios, words might have different meanings in
different contexts. WordNet [43] has assembled many words’ senses into a
fixed database. With the rapid speed and substantial increase in the number
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of entries, it is difficult to maintain a fixed database. To manually select
a word sense also becomes difficult and impractical. Recent efforts replacing
static word embeddings with contextual embeddings such as ELMo and BERT
has led to significant improvements on many NLP tasks [40]. We link our work
in the dissertation with the recent progress in contextual embedding and elicit
potential future research questions.

Previous word embedding algorithms update a lookup table whenever the
model encounters the same word type within a limited context window. Recent
development in neural language models values the context information. The
surrounding words, namely context, are considered equal contribution in the
prediction of the center word in cbow. In Chapter 5 we weigh words in the
context according to its relative importance using Chi-square statistics. We
automatically find the words that contribute more not only to the prediction
of the target words but also to later classification tasks.

Other researchers have also found the disadvantages in the averaging model
in the fixed context window. Context2vec is also based on cbow [114]. Con-
text2vec replaces the naive averaging model of the context with a neural model
using bidirectional long-short term memory (LSTM). Feeding one LSTM net-
work with the sentence words from left to right, and another from right to left,
the two separated sets of left-to-right and right-to-left context word embed-
dings are learned. The two sets context word embeddings are concatenated
and fed into a multi-layer perceptron (MLP) to capture the dependencies be-
tween the two sides of the context. The output of the MLP will represent the
context around the target word. The description above is the only difference
between the context2vec model and the cbow model.

Different from traditional word embedding with a fixed-size context win-
dow, ELMo [134] learns a vector representation that is a function of the entire
input sentence. ELMo derives vectors from a bidirectional LSTM coupled
with a language model objective. The bidirectional LSTM combines both a
forward and a backward language model (LM) with character convolutions.
Most supervised NLP models share a common architecture at the lowest lay-
ers. Pre-trained on vast amount of corpus, ELMo can serve as the lowest
common architecture to provide context-independent token representation. To
train context-dependent embeddings, usually the weights of the bidirectional
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LSTM are frozen and the ELMo vectors are sent to the task RNN. ELMo
produces context-dependent embeddings. Same words with different context
can result in different vector representations. It is beneficial for the words
with multiple senses. In Chapter 7 we have used label information to tackle
polysemy problem. Our solution utilizes the labeled dataset. Usually the size
of the dataset is not large. When new words with multiple senses emerge and
the size of the dataset becomes huge, the contextual embeddings learned from
unlabeled dataset could be a better option.

Another model that produce contextual embedding is BERT [37]. BERT
stands for bidirectional encoder representations from transformer. BERT
model is trained on two tasks, masked language model and next sentence
prediction. Previous word embedding algorithms only predict the word at the
center. BERT masks 15% of the words that are randomly chosen from the
sentence. It is a more effective approach to train the model’s prediction abil-
ity. In terms of infrastructure, Devlin et al. find that using a left-to-right or
right-to-left unidirectional model limits the choice of architectures that can
be used during pre-training. For example, in a left-to-right architecture, the
target word only utilizes the words precedes it. The masked language model
uses both context preceding and succeeding it. The contextual embeddings
trained from BERT model can be integrated with task-specific architectures
for many NLP tasks, such as question answering and language inference and
achieves state-of-the-art results.

Due to the rapid development of deep learning and the lack of labeled
dataset, the pre-trained contextual embeddings trained on large dataset be-
come popular. There are challenging research problems that worth investigat-
ing. There is no scrutinizing of the corpus the models trained on. The corpus
could have bias and the trained embeddings can also inherit such bias. For
example, Bolukbasi et al. show that word embeddings trained on Google News
articles exhibit gender bias such as man is to computer programmer as woman
is to homemaker [16]. In the prediction of the masked word, the model predicts
the most common word shown in the corpus, regardless of it being biased or
not. Gonen and Goldberg have proven that existing bias removal techniques
are insufficient and should not be trusted for providing gender-neutral embed-
dings [53]. The outside knowledge base or knowledge source can be used to
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supervise the masked word prediction task. Bias can be reduced in the process
of learning the contextual embeddings.

In Chapter 6, we provide a solution on how to incorporate quantity infor-
mation into vector representation. To deal with quantity information remains
to be a challenging problem over the years [31, 166]. There are only few re-
lated work close to this research problem as we shown in Chapter 2. We found
that numbers in the text are highly domain-specific. A general name entity
recognition model (NER) can recognize dates, times and telephone numbers.
But to recognize the quantity needs specific domain knowledge and fundamen-
tal NLP work. For example, “The patient returned to Europe at 28 weeks of
gestation.” In the sentence, the quantity is “28”. The unit is “weeks”. The
subject of the quantity is “gestation”. The other related information includes
“patient” and “Europe”. Another example would be “A solution of 1.18 g (4.00
mmols) of the Compound a obtained in Reference Example 1”. There are
more quantity information in the example. The quantity “4.00” is paired with
a domain-specific unit. Beside the challenge of how to combine the quantity
information into a distributed dense vector representation, a difficult ques-
tion would be to identify such quantity information from the sentence. The
whole process includes the steps to identify and extract the quantity, the unit
of the quantity, the subject that corresponds to the quantity and normalize
the quantity. Researchers have already tried to build domain-specific quantity
measurement extractors, such as Marve1 [69] and Grobid2 [48].

9.2.2 Learning Model

Recent progress in the architecture that either learns text representations as
features or can be adapted and fine-tuned for specific NLP tasks, has drawn
our attention. We discuss the architectures and potential future work that can
be extended from our work.

In the recent development in the NLP field, the achievement in machine
translation made by GPT-2 and BERT’s transformer-based language model
makes it a replacement to ELMo’s LSTM-based language model [37, 140].

1https://github.com/khundman/marve
2https://github.com/kermitt2/grobid-quantities
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LSTM-based language model has difficulty with long-term dependencies [86].
OpenAI’s GPT-2 [140] is a large transformer-based language model trained
on eight million web pages. It shows great ability in text generation3. Both
GPT-2 and the BERT model are based on a multi-layer transformer model
[163].

A sequential model such as LSTM inputs every token as a long term se-
quence when producing vector representations. This will largely limit the
contribution of the useful semantic words which have not yet been traversed
by the model. It is difficult to remember long sentences [156]. It can also bring
noisy or irrelevant words into the learning process. The solution is to bring
the attention mechanism to the model [156]. Attention allows the system to
identify the relationship of the target word with all the other words in the
sentence, preceding or succeeding it.

Transformer utilizes the self-attention mechanism to extract and weight
the context. A transformer consists two parts, encoder and decoder. Trans-
formers can have multiple identical layers in both encoder and decoder. Each
encoder layer is comprised of two sub-layers, a multi-head self-attention and
a position-wise fully connected feed-forward network. In addition to the two
sub-layers, each decoder has a third sub-layer, another multi-head attention
over the output of the encoder [163]. Transformer relies heavily on the self-
attention mechanism. The goal of self-attention is to find the relevant words
that can explain the relevant context of the target words in the same sen-
tence. In previous word embedding algorithms, researchers manually define a
small range of the relevant words, namely the context window. Self-attention
achieves the goal by assigning scores to each word in the input sentences how
relevant each word is to the target word. The score is usually calculated by
scaled dot product.

Even before the emergence of the attention mechanism, we realized the
importance of distinguishing the varying degree of significance in the context
when predicting the target word. In Chapter 5 we bring the solution to weight
words in the context according to its relative importance using Chi-square
statistics. Different from the attention mechanism, we automatically find the

3https://openai.com/blog/better-language-models/
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words that contribute more not only to the prediction of the target words but
also to later classification tasks.

Attention mechanism is first introduced as an addition to neural networks
[56]. Without sophisticated manually crafted feature engineering, the unsu-
pervised attention can learn the weights corresponding to different parts of the
input sentence [6, 7]. This works especially well in machine translation. Its
various success in NLP tasks, such as machine translation, question answer-
ing, sentiment analysis, part-of-speech tagging and dialogue generation, makes
attention a major trend in NLP [172].

The transformer model is a fully attention-based architecture. With the
success in attention and its parallel processing nature, transformer has become
a state-of-the-art model in NLP [25]. It is worth investigating the transformer
model in our proposed tasks in this dissertation, such as bias detection and
healthcare-related tweet classification. One can train the transformer model
to our tasks and compare the learned attention weights with χ2 weights. Re-
cent studies have already tried to retrieve the attention weights and treat
the transformer model as a blackbox [164, 170]. A future research direction
can investigate whether the two weighting mechanisms can be combined or
improved.

9.3 Bias Detection

Research has been conducted to evaluate the extent of the bias in language
corpora, and usually it is gender bias or political bias [21, 105]. In the bias
research domain, gender bias and political bias are the two hot research topic.
There is also research focusing on debiasing after the vector representation
has been learned [53, 75, 155, 177]. Most of these efforts are conducted in
gender bias and political bias. NPOV bias as we described in Chapter 2 is less
studied. In this section, we summarize the emerging trends in bias detection
task and propose potential research directions.

Using a pre-trained model (PTM) such as ELMo and BERT has become a
major trend in natural language processing [139]. Trained on a large corpus,
PTM shows advantages for NLP either as embedding features or as fine-tuned
architectures. We have taken the first step to use various embeddings as
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features for NPOV bias detection in Chapter 4. With the recent trends it is
worth trying using embeddings trained from newer PTM as features or building
a pipeline directly on top of PTM for bias detection. But we also point out the
limitations in PTM. First, PTM are trained on a large volume of unscrutinized
documents. Without any supervision, the corpus inevitably contains bias; a
PTM trained on the corpus will inherit such bias [18, 113]. The problem has
been studied in gender bias and political bias [144, 177]. There is no work
found as to what extent NPOV bias existed in the corpus and how this will
affect the embeddings learned but is an area open for future work.

We have defined in Chapter 2 the sub-bias types that comprise NPOV bias.
After we manually labeled the 300-sample NPOV dataset, it shows that the
real scenario may be more complicated than initially considered. There are
more noise and other sub-bias types although accounting for low percentage.
That can somehow explain the low value in the evaluation metric in the bias
detection task experiments. Conducting a scientific analysis of the constitution
of the NPOV bias on a large corpus is necessary. Unlike gender bias and
political bias, which are very clear in definition and are clear for human to
classify and label, NPOV bias are comprised of many sub-bias types. In the
future it may be worthwhile trying to target each small sub-bias, which are
purer and simpler.

We have introduced the related work in NPOV bias detection in Chapter 2.
In the previous works, using a pre-compiled lexicon for NPOV bias detection
is obsolete since new words are invented rapidly and because of the impact of
context on bias judgements. But we admit that for the bias detection task a
pre-compiled lexicon has its merit. We observe the biased words and most of
them are not new, at least in our reported Wikipedia dataset in Chapter 3. It
is worth exploring to combine the pre-compiled lexicon with PTM.

In Chapter 8 we propose a lexicon-free approach to detect NPOV bias
by using the characteristics of the biased editors. Another characteristic of
bias is its domain. Bias is found to be very domain specific as we show the
topic distribution of the biased sentences in the 300-item Wikipedia dataset in
Chapter 3. Most of the sentences come from the topic of politics and religion.
Using domain knowledge to detect bias in a domain-specific dataset can further
decompose this difficult task.
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We have conducted word-level NPOV bias detection in Chapter 4 and
Chapter 8. In reality, bias can come as phrases, sentences and paragraphs. It
becomes more important to understand the semantic meaning that the sen-
tences or paragraphs deliver rather than remembering the word form.

In the dissertation we have defined the word-level NPOV bias detection
problem as a binary classification problem. But there are more options to
define this research problem, such as text generation [137] and question an-
swering. For example, the NPOV bias detection can be formulated as a text
generation problem. After the problematic word that causes NPOV bias in
the sentence has been detected, an encoder-decoder model can be adopted to
generate debiased text. The encoder component would learn an embedding
of the sentence with a debiasing technique. The decoder component would
generate a new debiased sentence based on the embedding.
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