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Abstract

Social Network research has attracted the interests of many researchers, not

only in analyzing the online social networking applications, such as Facebook and

Twitter, but also in providing comprehensive services in scientific research domain.

We define an Academic Network as a social network which integrates scientific fac-

tors, such as authors, papers, affiliations, publishing venues, and their relationships,

such as co-authorship among authors and citations among papers. By mining and

analyzing the academic network, we can provide users comprehensive services as

searching for research experts, published papers, conferences, as well as detecting

research communities or the evolutions hot research topics. We can also provide

recommendations to users on with whom to collaborate, whom to cite and where to

submit.

In this dissertation, we investigate two main tasks that have fundamental ap-

plications in the academic network research. In the first, we address the problem

of expertise retrieval, also known as expert finding or ranking, in which we iden-

tify and return a ranked list of researchers, based upon their estimated expertise

or reputation, to user-specified queries. In the second, we address the problem of

research action recommendation (prediction), specifically, the tasks of publishing

venue recommendation, citation recommendation and coauthor recommendation.

For both tasks, to effectively mine and integrate heterogeneous information and

therefore develop well-functioning ranking or recommender systems is our principal

goal. For the task of expertise retrieval, we first proposed or applied three mod-

ified versions of PageRank-like algorithms into citation network analysis; we then

proposed an enhanced author-topic model by simultaneously modeling citation and

publishing venue information; we finally incorporated the pair-wise learning-to-rank

algorithm into traditional topic modeling process, and further improved the model

by integrating groups of author-specific features. For the task of research action

recommendation, we first proposed an improved neighborhood-based collaborative

filtering approach for publishing venue recommendation; we then applied our pro-

posed enhanced author-topic model and demonstrated its effectiveness in both cited

1



author prediction and publishing venue prediction; finally we proposed an extended

latent factor model that can jointly model several relations in an academic environ-

ment in a unified way and verified its performance in four recommendation tasks:

the recommendation on author-co-authorship, author-paper citation, paper-paper

citation and paper-venue submission. Extensive experiments conducted on large-

scale real-world data sets demonstrated the superiority of our proposed models over

other existing state-of-the-art methods.
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Chapter 1

Introduction

1.1 Overview

A social network [183] is a social structure consisting of individual entities (repre-

sented as nodes), which are connected via relationships (represented as links). With

the rapid growth of social media, especially online networking applications such as

sharing sites (e.g., YouTube [199], Flickr [53]), instant message applications (e.g.,

MSN, Skype), microblogs (e.g., Twitter [176], Weibo [161]), social communication

networks (e.g., Facebook [48], Myspace, RenRen [143]) and professional networks

(Linkedin [103]), people are more closely linked with each other, and are more likely

to exchange information, share messages, opinions, and (or) personal experience

or status over online social networking. Social network has greatly reshaped the

pattern of people’s lives.

The academic network, according to our definition, is a social network, par-

ticularly constructed for the academic research environment to model academic en-

tities as well as their mutual relationships. In an academic network, nodes are

often associated with academic (scientific) factors, such as authors (researchers), pa-

pers, publishing venues, and affiliations, and links are representing the relationships

among academic factors, such as the co-authorships among authors and citation-

ships among papers.

3



The research in mining and analyzing the academic network has attracted much

attention these years due to many applications arising in the academic environment.

For example, one of the information needs of many academic/research committees

or organizations is to evaluate the expertise of a researcher in a specific domain, as

it plays an important role in determining people’s job promotion, funding support

application, scientific awards assignments as well as paper reviewing assignments.

This information need can be satisfied by the research task known as expert search

or expertise ranking, where given a query representing a research domain, we can

identify and generate a ranked list of researchers based on their estimated expertise.

For another example, researchers are often in need of finding the most relevant or the

most recent publications related to their own research, even though people can fulfill

this task manually by themselves, a well-developed automatic recommender system

can largely relieve the burden of users and provide more accurate and complete

list of papers for the researchers to refer. This kind of application and information

need has stimulated the research task as citation recommendation and prediction.

Other important applications in academic research domain include recommending

or predicting future co-authors to collaborate, recommending publishing venues for

a paper to consider to submit, detecting research communities, predicting future

research hot topics, and etc. All these applications have motivated the research in

mining and analyzing the academic network.

On the other hand, with the rapid development of online digital libraries, the

proliferation of large quantities of scientific literature provides us abundant oppor-

tunities to extract the textual content of scientific factors (i.e., publishing papers) as

well as their mutual relationships (citation, co-authorship), and therefore makes the

research in mining and analyzing academic network workable and applicable. Several

widely-deployed search engines, such as Microsoft Academic Search1, ArnetMiner2,

have been particularly developed for academic search purpose, and demonstrated

their success.

There are several properties that are associated with the academic network.

1http://academic.research.microsoft.com/
2http://www.arnetminer.org
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Figure 1.1 shows an example of a subset of a typical academic network with it

properties.

• Heterogeneous First of all, it is often a heterogeneous network, composed

of multiple types of academic entities (authors, papers, venues) and academic

relationships, for example, the bidirectional co-author relationships, and direc-

tional citation relationships. To better model and integrate this heterogeneous

information, and to evaluate their individual importance remains one of the

challenges in academic network research;

• Community-based Secondly, within the network, we can discover commu-

nities, and these communities (clusters) are often related with specific topics.

For example, as shown in the illustrated figure, researchers can form different

communities: IR-based community, Networking-based, AI-based or Business-

based, determined by the main research domains the researchers focus on.

Papers can construct such communities in a similar way. Entities with one

community (either researchers or papers) would have more and closer inter-

actions among themselves and thus form a community than other researchers

from outside of this community.

• Temporal dynamic Thirdly, the academic network remains dynamically

changing over time. For example, researchers transfer to different institutions,

papers keep on attracting new citations, and researchers gradually accumulate

their research experience by publishing new papers and attracting new cita-

tions and therefore gaining reputation and growing to researchers with higher

expertise, all of which emphasize the importance of temporal information in

academic network analysis.

To provide effective models that can represent all these properties remains chal-

lenging.

In this dissertation, we pay particular attention and focus on two main tasks

that have fundamental applications in academic network research: the task of mod-

eling expertise retrieval, also known as expert search, expertise ranking, and the
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Figure 1.1: Academic Network and its properties

task of research action prediction and recommendation. To be more specific, we

focus on prediction and recommendation over three research actions: publishing

venue prediction/recommendation, coauthorship prediction/recommendation, and

citation prediction and recommendation. For both tasks, properly mining and

effectively integrating heterogeneous information and therefore develop-

ing well-functioning ranking or recommendation systems is the principal

and targeted goal.

1.1.1 Modeling Expertise Retrieval

Modeling expertise retrieval, also known as expert (people) search or expertise rank-

ing, has been a promising research topic due to the ever-growing trend of users’

information needs to identify and interact with other people with relevant expertise

(knowledge).

Resorting back to the development history of IR technology, much of the re-

search has been focused on traditional document (textual) retrieval in the 1970s

and 1980s, whose main task is to efficiently identify documents that are relevant

to some information need. With the advent of Web, which has generated a large
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and ever-increasing volume of online documents (web pages), identifying relevant

documents becomes difficult by manual browsing. Various web search engines have

therefore been developed to facilitate users browsing and searching over the Internet.

With a web search engine, people often represent their information need as a query,

and the search engine would then return a ranked list of documents with regards

to their estimated relevance to that query. More recently, the rapid increase in the

amount of information available online has led to people’s information needs going

beyond the traditional plain document retrieval. Instead, they begin to search for

other kinds of entities, such as books, movies, music, and restaurants. ‘People’, is

one particular kind of such entity.

Searching for people with relevant expertise is of great importance not only

to employees in an organization, but also to online social media users, as well as

to researchers in the academic domain. In the enterprise organization settings, it

is believed that finding the right person with an appropriate skill or knowledge

is often crucial to the success of a project being undertaken [125]. In an online

social media environment, users are often interested in finding other users who

share similar interests (e.g., Flickr, Twitter), or identifying users who can provide

the most valuable answers to a proposed question (e.g., Yahoo! Answers). In the

academic environment, it is also of great importance to evaluate the expertise of a

researcher in a specific domain, as it can offer help in determining the job promotion

and funding assignment.

Initial research in evaluating people’s expertise is mainly focused on unifying dis-

parate databases of the organization [193] or simply counting bibliographic records

of researchers [58]. With the advent of TREC enterprise track initiated in 2005 [34],

which provides an open platform with two standard data sets and evaluation bench-

mark, much more research efforts in the computer science and information retrieval

community have been devoted into expertise ranking research. Several groups of

new models have been proposed and developed ever since. The TREC data sets,

however, are more enterprise oriented. Later on, with the rapid development of on-

line digital library, one group of research focus has been paid on identifying experts

within a pure academic environment. Generally speaking, there exists two main
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methodologies for expertise ranking: the content-based approach, where the exper-

tise of a research is often characterized by examining the documents associated with

them, and the graph-based based approach [39, 171, 207, 30, 57], where researchers’

expertise are more widely investigated via exploring their interactions with other

academic entities. The content-based approach can be further divided into lan-

guage model based approaches [8, 108, 50, 40] and topic model based approaches

[148, 174, 169].

In this dissertation, one of the principle challenges (objectives) of our work is to

develop an effective and efficient expert search system, to further extend and enhance

previous works. We first focus on a random-walk based approach, for which we

propose several new models, including a heterogeneous PageRank algorithm and a

modified PageRank algorithm incorporated with temporal information. We further

effectively integrate topic-based link analysis, which has demonstrated its success

in web search domain, into citation network analysis. We construct our academic

network as a multi-type heterogeneous network which integrates several academic

factors, by which we can evaluate an author’s expertise in a more complete and

thus more accurate way. We then focus on a topic modeling based approach for

which, we propose a joint topic modeling approach, which extends the original topic

models by integrating more supportive factors; we then propose a supervised topic

modeling approach by incorporating the pair-wise learning-to-rank mechanism into

the generative process. Extensive experiments have been carried out on real world

data sets, which demonstrate the superiority of each of our endeavors over several

state-of-the-art algorithms.

1.1.2 Research Action Recommendation and Prediction

In an academic environment, we can take many ‘research actions’, such as writing

papers, citing other papers, or collaborating with other researchers. When modeled

as an academic network, these actions will be represented as ‘links’ between scientific

factors. Therefore, the problem of research action prediction and recommendation
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is equivalent to the problem of link prediction and recommendation. In this disser-

tation, we are particularly interested in three kinds of research action prediction:

(1) publishing venue prediction/recommendation, where we aim to predict the real

publishing venue of a given paper or provide recommendations as to where to sub-

mit for given a paper; (2) citation prediction/recommendation, in which we would

provide a ranked list of papers (authors) for a given paper (author) to cite; (3) and

coauthorship prediction/recommendation, which aims to generate a ranked list of

authors for a given author to consider to collaborate with in the future.

We made contributions in the following three directions. In recommending pub-

lishing venues, we adopt the memory-based collaborative-filtering framework and

provide two extensions to the original model by incorporating stylometric features

into computing the similarity between pairs of papers, and differentiating the im-

portance of different types of neighboring papers by tuning and optimizing their

associated weights.

We further demonstrate the joint topic model, as mentioned in the work on

modeling expertise retrieval, to be an effective method not only in evaluating re-

searchers’ expertise, but also in predicting both publishing venues and cited authors

for a given author. Experiments based on real world data sets indicate that we can

make improved predictions on these two tasks as compared to previous topic model

based approaches which integrate fewer informative factors.

Finally, we extend the tensor factorization model maximizing MAP to model

coupled higher order data in an academic environment, and demonstrated its capa-

bility in multiple types of research actions prediction and recommendation, includ-

ing predicting co-authorship among authors, citation-ships among papers, citations

between authors and papers, as well as publishing venue prediction.
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Table 1.1: Several developed models within the framework

Model Heterogeneous Data Techniques

Topic-drive multi-type authors, papers, venues, affiliations Link Analysis
citation network analysis multiple relations, temporal factor

Joint topic models authors, papers, citation, venues Topic Models

Learning-to-rank with authors, papers Learning-to-Rank;
topic models author-specific features Topic Models

Venue classification venues, papers, stylometric features Classification;
and recommendation Collaborative Filtering

Joint multi-relational model authors, papers, venues, words Matrix factorization
author-specific features, citation Tensor factorization
coauthor-ship, publication
temporal factor

1.2 The Unified framework and its contributions

This dissertation aims to develop effective models for two main applications in aca-

demic network mining and analysis: modeling expertise retrieval and research ac-

tions prediction and recommendation. Although there are many differences between

these two applications, a key common point is that in order to better fulfill the task,

to effectively mine and extract useful heterogeneous information and develop effi-

cient algorithms to integrate these heterogeneous information will play an important

role in determining the performance of the application. Motivated by this observa-

tion, this dissertation proposes a general framework to take into account multiple

heterogeneous information, and combines information retrieval models, link anal-

ysis algorithms and machine learning techniques in a unified way to improve the

performance of these applications.

Based on this framework, challenges for each application are addressed and in-

dividual specific models are proposed to solve them respectively. We summarize in

Table 1.1 the models we developed, which illustrates the relationships between the

models, the used data, and the utilized techniques.

Basically, for modeling expertise retrieval, we follow the main stream of how to

effectively model topics into ranking process. We first integrate topical information
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into link analysis by applying the Topical PageRank algorithm into citation net-

work analysis; we then directly model authors’ interests by an extended author-topic

model, based upon which authors are ranked by their learned topic distributions;

we finally integrate pair-wise learning-to-rank into topic modeling process, which

makes it easy to incorporate other supporting features related to authors’ expertise.

For research action recommendation task, we focus on adapting and modifying the

collaborative filtering approach, which is the state-of-the-art approach for recom-

mender systems.

We then discuss the main contribution of each of our proposed models.

1. An enhanced topic-driven multi-type citation network analysis ap-

proach for expertise ranking

In this work, we develop enhanced random-walk based algorithms for evalu-

ating researchers’ expertise. Particularly, we construct a multi-type heteroge-

neous academic network by incorporating more instructive scientific factors as

compared to previous work which limit themselves to a subset of all the avail-

able informative knowledge. For example, we integrate scientific factors, such

as authors, papers, affiliations, as well as publishing venues, and their mutual

relationships, such as coauthorip among authors, citation among papers, to

form a multi-type academic network. Based on this network, several investi-

gations have been made. Firstly, we investigate the performance on different

academic network structure design. We propose two versions of the academic

network construction, and test via experiments the importance of introducing

additional scientific factors as well as additional relationships (links).Secondly,

we introduce a topic-based link analysis approach into academic network anal-

ysis to distinguish the different endorsement of academic links on different

topics, and therefore, we can better model the different reputations of a re-

searcher on different topics; Thirdly, we propose a heterogeneous PageRank

algorithm to differentiate the importance and contribution of scientific factors

in providing supportive evidence to the reputation of a researcher; Fourthly,

11



we incorporate temporal information into consideration, not only by consider-

ing some temporal characteristics related with individual researchers, but also

considering the influence between researchers that would be affected by time.

We incorporate such temporal information into the PageRank algorithm, to

better model researchers’ expertise that changes over time. The importance

of temporal information is evaluated for the task on predicting future award

winners in the SIG community, one specific application of expertise ranking.

Extensive experiments have been carried out on real world data sets on each

different settings and demonstrate the superiority of our proposed approaches

over several state-of-the-art algorithms.

2. A novel learning-to-rank topic modeling approach for expertise rank-

ing

In this work, we propose a supervised machine learning mechanism by distin-

guishing the importance with regards to their estimated expertise over pairs

of authors into the topic modeling process, which to our best knowledge, re-

sults in the first work integrating pair-wise learning-to-rank into topic models.

We choose to make use of topic modeling as the basic methodology for exper-

tise ranking in this work since it can effectively overcome the data sparsity

problem as compared to other bag-of-words approaches, and well discover the

underlying semantic meanings of word tokens. We incorporate the pair-wise

learning-to-rank scheme into topic modeling under the hypothesis that with

the guidance and support of prior knowledge, we can underneath the latent

topics within author profiles more accurately, and thus can better model and

estimate an author’s expertise. Moreover, we extend the original proposed

model by incorporating additional features, each of which measures the ex-

pertise of an author from a different aspect. We apply these two models into

two expert search related applications: predicting future award winners and

PC members. Experiments have been conducted over real world data sets to

demonstrate its effectiveness as compared with several other state-of-the-art
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algorithms.x

3. An enhanced collaborative-filtering model for publishing venue pre-

diction and recommendation

In this work, we focus on the prediction and recommendation for one particular

kind of research action: choosing a proper publishing venue to submit given

any target paper.

Before developing models, we first carry out empirical studies on determining

whether writing styles can play an important role in correctly classifying pub-

lishing venues. This study is initiated by the observations that today we have

many different kinds of publications covering different topics and requiring dif-

ferent writing formats. Even though the research on authorship identification

has well be developed, no prior work has been carried out on investigating the

different writing styles of publishing venues. By approaching the task using

the traditional classification method, we extract three types of writing style-

based features, and conduct detailed experiments in examining the different

impacts among features, classification techniques, as well as the influence of

venue content, topics and genres. Experiments on real data from real-world

digital libraries demonstrate that publishing venues are indeed distinguishable

by their writing styles.

We then approach the task of publishing venue prediction and recommenda-

tion by a memory-based collaborative-filtering (CF) methods, in which other

neighboring papers with known venues will be utilized to predict or recom-

mend venues for the target paper. Moreover, we propose two extensions to the

original CF model: one is to incorporate stylometric features to better mea-

sure the similarity between papers. We introduce this extension based on the

observations from venue classification results. For the second extension, we

divide all the neighboring papers of the target paper into four categories, and

differentiate the importance of each category of neighboring papers via tun-

ing and optimizing their associated weights. Experiments based on real world
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data set demonstrate that our approach provide effective recommendations,

and that both of the extensions can bring improved performance.

4. An extended joint topic modeling approach for academic network

analysis

In this work, we propose a novel probabilistic topic model that jointly models

authors, documents, cited authors, and venues simultaneously in one inte-

grated framework, as compared to previous work which embeds fewer com-

ponents. We show the wide applicability of this model, as it can be adopted

for three typical applications in academic network analysis: expertise ranking,

cited author prediction and venue prediction. For fulfilling expertise ranking,

we introduce the method on how to integrate the topic distributions computed

from topic modeling results to represent the expertise of an author for a spe-

cific query. We further combine the topic modeling results with the traditional

language model based approach and random-walk based approach to further

improve the ranking performance. Experiments based on two real world data

sets demonstrate the model to be effective, and it outperforms several state-

of-the-art algorithms in all three applications.

5. A joint multi-relational model for several recommendation tasks in

academic environment

In this work, we target four specific recommendation tasks in the academic

environment: the recommendation for author coauthorships, paper citation

recommendation for authors, paper citation recommendation for papers, and

publishing venue recommendation for author-paper pairs. Different from pre-

vious work which tackles each of these tasks separately while neglecting their

mutual effect and connection, we propose a joint multi-relational model that

can exploit the latent correlation between relations and solve several tasks

in a unified way. Moreover, for better ranking purpose, we extend the work

maximizing MAP over one single tensor, and make it applicable to maximize
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MAP over multiple matrices and tensors. Experiments conducted over two

real world data sets demonstrate the effectiveness of our model: 1) improved

performance can be achieved with joint modeling over multiple relations; 2)

our model can outperform three state-of-the art algorithms for several tasks.

1.3 Dissertation Organization

In this dissertation, we focus on research in mining and analyzing the academic

network. Particularly, we address new problems and propose several novel models

for two main applications in academic network analysis: modeling expertise retrieval

and research actions prediction and recommendation. The remainder of the thesis

is organized as follows.

Chapter 2: We review the background knowledge on expertise retrieval and

recommender systems in this chapter. For the task of expertise retrieval, we first

introduce its problem statement, the research development history and discuss the

main research challenges in modeling expertise retrieval. Special focus has been

paid on introducing the current state-of-the-art methodologies for expertise retrieval.

Evaluation methods, metrics and experimental data sets used in these related mod-

els are also discussed. For recommender systems, we concentrate on introducing

the state-of-the-art approach for recommender systems design: the Collaborative

Filtering (CF) approach. Both the neighborhood memory-based CF methods, and

one representative model-based CF method: the Matrix Factorization method are

addressed.

Chapter 3: We present our topic-driven multi-type citation network analysis

approach for expert search. Network structure design is introduced first, followed

by the introduction on how to integrate the topic-based link analysis into citation

network analysis. We then present the heterogeneous PageRank algorithm and a

modified PageRank algorithm with temporal information incorporated. Extensive

experiments based on the ACM data set are presented and discussed.
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Chapter 4: We present a novel learning-to-rank topic modeling approach for

expert search. Model design is introduced, followed by theoretical derivations to

solve the model using variational inference. We further present an extended version

of this model by incorporating additional supportive features with regards to au-

thors’ expertise. We apply the model into two expert search related applications,

and conduct empirical studies in evaluating models’ performance as compared to

other state-of-the-art algorithms.

Chapter 5: We introduce and discuss our empirical study on venue classification

in which three groups of stylometric features of publishing venues are identified, with

their contribution to venue classification results being examined and reported. We

then apply a memory-based collaborative filtering method for venue prediction and

recommendation, and propose two extensions to the original model. We report on

experiments conducted on two real world data sets to demonstrate the effectiveness

of our model.

Chapter 6: We present an extended joint topic model for academic network

analysis in this chapter by simultaneously modeling cited author and publishing

venue information, and show its applications in expert search, publishing venue

prediction and cited author prediction. We report and discuss the experiments

results over two real world data sets.

Chapter 7: We propose a joint multi-relational model that can exploit the latent

correlation between relations and solve several tasks in a unified way. This model is

especially designed for four recommendation tasks: the author-author coauthorship

recommendation, author-paper citation recommendation, paper-paper citation rec-

ommendation and paper-publishing venue recommendation. Moreover, for better

ranking purpose, we extend the work maximizing MAP over one single tensor, and

make it applicable to maximize MAP over multiple matrices and tensors. Experi-

ments conducted over two real world data sets demonstrate the effectiveness of our

model.

Chapter 8: We summarize the dissertation in this chapter and provide some

directions to be explored in future work.
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Chapter 2

Background

2.1 Expertise Retrieval: Introduction

As ‘people’ have become one important source of information, there has been in-

creasing demand and interest for people to find each other as a source of inquiring

questions, seeking help, making friends, or building social communities. Finding

and ranking people with regard to their estimated expertise over a topic has a wide

range of applications in people’s lives, as it can help to facilitate finding experts in

research or industry organizations, facilitate making decisions on job recruitment or

promotions and more.

In this chapter, we give an overall summary of the task and current state-of-the-

art approaches for expertise retrieval.

Problem Identification: What is Expertise Retrieval?

Expertise retrieval addresses the task of identifying and ranking a list of people

with their estimated relevant expertise for a given query. In a typical expert finding

process, given a query, the participating system will return in response a ranked list

of candidate persons with respect to their predicted expertise. Figure 2.1 illustrates
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Figure 2.1: One Sample for Expertise Retrieval (results from ArnetMiner expert search
engine)

one such example: the returned ranking results as we issue the query ‘information

retrieval’ to a typical expert search engine (ArnetMiner1) indicating that we are

looking for the experts on ‘information retrieval’. As shown in the figure, several

well-known researchers have been identified with their photos and basic information

provided.

Why to retrieve people’s expertise?

Expertise retrieval emerges as an important research topic as the result of the

vast development of world wide web and information retrieval technology. People

are currently regarded as one important source of information. Identifying experts

is beneficial for multiple reasons.

On one hand, expertise retrieval is an effective supplement to traditional document-

centric retrieval. Since not all the information can be possibly documented, much

important information can only be transferred through experience and informal con-

versations, and therefore many information-gathering tasks would be better handled

1http://arnetminer.org/
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by finding a referral to a human expert rather than by simply interacting with online

documentary information sources. Besides, as compared to spending lots of time

and effort in accumulating experience and finding a piece of information from the

very beginning, individual users will sometimes find it more convenient and effective

to directly find an expert and leverage on their expertise to tackle problems. These

advantages make finding experts a better way to solve problems than searching

documents in some occasions.

On the other hand, the wide range of real-world applications of expertise retrieval

stimulates research work in this area. Here we illustrate several such examples.

• Finding experts in organizations

Knowledge in an organization is contained in the skill, experience and exper-

tise of its people [25]. These organizations can either be industry enterprises or

academic institutes. Finding the right person in the organization with appro-

priate skills and knowledge is often crucial to the success of problem solving or

projects being undertaken [8]. In a research organization, for example, people

often need to find specialists or professors to answer questions with whom to

collaborate. or to collaborate with; in an enterprise, the organizers usually

hope to assign tasks to those who have obtained enough skills and experience

to fulfill that task. Identifying the appropriate person is of great importance

to these organizations. Much of the recent work in expert finding has been to

address this need in such organizations.

• Finding experts in online social media communities

Web-based communities have become important places for people to seek and

share expertise [204]. Typical communities include the help-seeking question-

answering systems [105], online discussion forums [205], Blogs [8] and Twitter.

Identifying the most influential experts in such communities can help us choose

the best one to answer our questions, or to follow those learned people for

updated information over certain topics.

• Facilitating automatic reviewer assignment
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Peer-review is an important practice for quality control in scholarly publica-

tions [15]. It is the duty of journal editors, funding program managers (e.g.,

at NSF), conference program chairs and research councils to assign submitted

papers to reviewers with appropriate knowledge and experience. Traditionally,

this complicated job is manually handled by a few people, which turns out to

be labor-intensive. An expert finding system which can automatically extract

and identify the expertise of each reviewer can largely relieve the burden of

journal/conference editors.

• Facilitating job recruitment, promotion and award assignment

In modern society, the most common practice for people finding a job is via

submitting personal resumes and other supporting documents. Employers

need to find out proper candidates with related skills and work experience by

reviewing hundreds of thousands of such documents. Developing automated

job recruitment system which can evaluate applicants’ expertise and identify

proper candidates can greatly relieve the work of employers and improve both

efficiency and accuracy. The same process can benefit people who are respon-

sible for making decisions on who needs a promotion. Expert finding can

also help in facilitating the identification of nominees and award winners for

scientific awards.

Research Development Outline

People have had such information needs for experts even before the invention of

computers. With the development of computer and information technology, people

started to concentrate on developing automatic computer-supported expert finding

systems. Ever since then, the development history of the research on expertise

retrieval can be divided into three periods: 1) historical work; 2) focused atttension

because of the TREC Enterprise track, and 3) modern work.

Before the TREC Enterprise Track: In the initial stage, the traditional
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approach for expertise retrieval relies on creating, organizing and controlling ex-

pertise information in a database [135], which is often constructed by individual

users manually inputting their personal information and using keywords to describe

their own expertise. This method is labor-intensive, and is inconvenient for in-time

update. With the development on information knowledge, more efforts have been

taken into developing automatic expert finding systems which utilize modern infor-

mation retrieval technology. However, during this period of time, different systems

focus on different specific document types, for example, organizational technical

reports, software source codes, emails, and more. Without standard working data

collections and queries, the proposed algorithms and approaches are hard to be eval-

uated and compared. Besides, no unified models have been provided that can tackle

heterogeneous data collections.

The TREC Enterprise Track: from 2005 to 2008, the task on expertise re-

trieval was launched as part of the Enterprise Track in Text REtrieval Conference

(TREC) which provided two standard data collections with queries and labeled

ground truth and therefore generated a common platform for researchers to em-

pirically evaluate their proposed methods and techniques for expert finding. Ever

since then, expertise retrieval has received a substantial boost in attention from

information retrieval, data mining and machine learning communities.

After the TREC Enterprise Track: after the advent of TREC Enterprise

Track, much more work has been developed and evaluated based upon other data test

beds rather than those provided by TREC Track. These test beds more focused on

scientific literature within academic environments. Typical such data sets include

the UvT data collections, DBLP, CiteSeer, ACM and ArnetMiner data sets, for

which we will introduce in more detail in the following sections. Compared to

the models proposed for expertise retrieval task in TREC Track, which emphasize

their research on mining candidate-document pairs associations and extracting the

expertise mainly from related documents, more research efforts have been made

on mining other supporting expertise, i.e., the social interactions among expert

candidates. Our work developed in this dissertation falls into this group of research.
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Figure 2.2: Expert Finding System Architecture

2.2 Expertise Retrieval Systems

2.2.1 A Typical System Framework

In an automated expert finding system, users can input as queries the particular

kind of expert they are seeking, and the system will return a list of experts in the

order of their relevancy to the query (topic). Figure 2.2 shows the typical framework

of an expert finding system.

Two components are of special importance to an expert finding system: the pro-

cess of how to collect and well represent the expertise of a candidate; and the process

of how to evaluate the relevancy of candidates’ expertise to the query. Generally

speaking, two types of expertise evidence have been explored in previous research

work: the supporting documents associated with expert candidates and the social

interactions among expert candidates. Several models and algorithms have been
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proposed with the goal to accurately and efficiently estimate the relevance of the

identified evidence of expertise to the query, which we will discuss in the following

sections.

2.2.2 Expert Search Engine

With the rapid development of world wide web and information retrieval technology,

document-centric search engines have shown great success and re-shaped people’s

daily life. Under this background, the ever increasing information needs for people

search stimulates the emergence and development of search engines particularly

designed for expertise retrieval. ArnetMiner and Microsoft Academic Search are

two representatives of them, both of which focus on the academic domain, and their

main functionality is to provide ranking for academic related entities, i.e. authors,

papers, conferences and organization, as well as mine and analyze their mutual

interactions.

ArnetMiner system2 is developed by Tsinghua University of China, which aims

to ‘provide comprehensive search and mining services for researcher social networks’,

particularly in the computer science domain. The main search and analysis functions

in ArnetMiner include profile search, expert finding, conference analysis, course

search, sub-graph search, topic browser, academic ranks, and user management.

They provide visualization tools to represent their ranking or analysis results for

better users’ experience. Figure shows one example for their expert finding results for

query ‘information retrieval’. Microsoft Academic Search3 developed by Microsoft

Research Asia is another well-known public expert finding system. Compared to

ArnetMiner which focuses on computer science domain, Microsoft Academic Search

supports expertise retrieval for 15 different research disciplines, and further divides

each discipline into finer-grained sub-disciplines. In computer science domain, for

example, they identify 23 sub-categories which cover the main research topics for

computer science. Similar to ArnetMiner, Microsoft Academic Search also visualizes

2http://arnetminer.org/
3http://academic.research.microsoft.com/
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Figure 2.3: Microsoft Academic Search Engine search example: Coauthor-graph

the results. One prominent instance is that they provide graph visualization over

several types of relationships for each researcher, for example, his/her co-authors or

citations. Figure 2.3 shows such an example for Prof. Brian D. Davison.

2.3 Main Challenges in Expert Search

Finding an expert is a non-trivial task and it bring new challenges to those associated

with traditional document retrieval. We list here several key challenges.

Identify and extract proper sources of evidence to represent the expertise

of experts

Since ‘expertise’ is an abstract concept without concrete definition, one of the

most challenging components for expert finding is to identify proper sources to rep-

resent the ‘expertise’ of expert candidates. Generally speaking, two main categories
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of expertise have been identified: 1) the documents associated with the expert can-

didates, which include their published papers, project reports, emails, posts, blogs,

tweets, product reviews or any other content. The principal intuition behind taking

use of such source of expertise is that if an expert can generate more documents

that are highly relevant to a query, then this expert would also have a higher prob-

ability to be an expert for that query. 2) the interaction or relationships with other

candidates or other types of entities. For example, there is greater probability for a

researcher to have high expertise for a query topic if he can collaborate with many

other experts on this topic or be cited more often by other experts. These two types

of expertise evidence can be combined.

Estimate the relevancy of an expert candidate to the query

Given the identified expertise evidence, the key component of expert finding is to

develop proper approaches to mine information from such evidences and estimate

the relevancy of the expert candidate to the query. This is the part that most

research endeavors emphasize. Multiple approaches have been provided to solve

this task, which we will introduce in more detail in the following sections.

Name Disambiguation

People’s names are often ambiguous: they can be written in various formats, for

example, some people put their given name first while others put the family name

first. There are many abbreviations, multilingual issues, and that some identical

names belong to different people. These will have a large effect on the process of

accurately extracting the associated documents with a specific expert or build his

connections with others. Name disambiguation is a separate research topic in IR

community, however, is not the research focus in this dissertation.

Heterogeneous data integration

As pointed out, there are many kinds of evidence to represent an expert’s exper-

tise, and these evidences often come from heterogeneous sources, whose importance

in determining the expertise of an expert may vary. To find approaches to effectively
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integrate these heterogeneous sources is also a challenging and interesting research

task.

Expertise evolution

People’s expertise will change over time. A new researcher in a specific research

domain will gradually accumulate his reputation and become a respected scientist

in this area in the future. Examining the pattern of growth is interesting and may

offer help in predicting some events, such as scientific award assignments.

Evaluation Problem

In order to evaluate the performance of proposed algorithms, we need to have

standard data collections, queries and labeled ground truth. Before the advent of

TREC Enterprise Track, we lacked such information for quite a long time. The

data collections provided by TREC Enterprise Track, however, are very limited to

the data sources within the W3C or CISRO organizations, and have much noise.

With the rapid development of online digital libraries, scientific literatures provide

us plenty of excellent data sources for evaluating people’s expertise, especially the

research scientists. However, we still lack proper queries, and the ground truths

often need to be manually labeled.

In the following sections, we will first introduce some standard or widely used

data collections, and then focus on introducing the main existing approaches for

expertise retrieval.

2.4 Experimental Data Collections

To evaluate the performance over different expertise retrieval algorithms, standard

test data collections as well as queries and their associated ground truths are of great

importance. In this section, we briefly review several such data collections developed

in previous research, two of which are provided by the Enterprise Track of TREC,

focusing on the enterprise domain, and three of which focus on the academic domain.
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The W3C Collection4: the W3C data collection is the first standard data col-

lection provided by the Enterprise Track in TREC, whose appearance has initiated

the rapid development in expert finding research in the IR community. It was used

as the working data set for the Enterprise Track in 2005 and 2006. The collection is

composed of the internal documentation of the World Wide Web Consortium (W3C)

crawled in June 2004. It contains 331,037 documents from the following six sub-

collections: email discussion forum (lists), source code documentation (dev), web

pages (www), wiki (esw), miscellaneous (other), and personal homepages (people).

In total, 1,092 expert candidates represented by their full names and email addresses

have been identified, In 2005, 50 queries have been provided using the titles of the

working groups in W3C, and that all members of each group are considered as the

relevant experts for that query. In 2006, 49 queries have been provided by the TREC

participants, and their associated ground truths also manually generated by those

participants based on assessing the supporting documents of each candidate.

The CERC Collection5: the CSIRO Enterprise Research Collection (abbreviated

as the CERC data collection) was used at the Enterprise Track of TREC in 2007

and 2008. It is the result of crawling the publicly available pages on the official

web set of CSIRO, which contains 370,715 documents. There is no explicit expert

candidates list provided but a list of email address used by CSIRO employees. In

total, 127 queries and their associated relevant experts list were developed by several

science communicators invited by the TREC organizers.

The UvT Expert Collection6: the UvT collection concentrates on the academic

domain. It was developed by using the public data about employees of Tilburg

University in Netherlands. The collection contains for each expert candidate a page

in both English and Dutch which includes the expert’s contact information, research

and course description and publication records. There are 1,880 expert candidates

4http://research.microsoft.com/en-us/um/people/nickcr/w3c-summary.html
5http://es.csiro.au/cerc
6http://ilk.uvt.nl/uvt-expert-collection
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in total. 981 queries have been provided, and their associated ground truths are

generated by the university’s employees themselves.

The DBLP Collection [40]: the DBLP data collection is a subset of the DBLP

database which contains records of 953,774 papers. It is often used in combination

with data from other digital libraries to retrieve detailed information of each paper.

For example, in the research work carried out by H. Deng, they further incorporate

for each paper in the DBLP records its abstract by downloading from Google Scholar.

Assessments for expert candidates were conducted manually, and a four-grade score

is assigned to each candidate indicating his/her different levels of expertise. In

work, DBLP data records are combined with CiteSeer data set to retrieve papers’

abstracts.

The INDURE Expert Collection [50]: the Indiana Database of University

Research Expertise (INDURE for short) is a collection mainly containing data for

faculty in PURDUE university. The data information comes from four sources: (1)

a profile filled by each faculty member indicating his or her main research areas; (2)

faculty homepages; (3) faculty’s NSF funded projects descriptions; and (4) faculty’s

own publications and their PhD students’ dissertations.

We will further introduce three other academic-centric data collections used in

our own research work. The data sets are from 1) ACM Digital Library 2) Cite-

Seer Digital Library and 3) ArnetMiner Search Engines. We choose to use

these three data sets as our working data sets because of the following three reasons.

First of all, they are academic-centric data sets, and are therefore appropriate for

our research in mining academic networks. Secondly, they are more general, as they

are not limited to data source from with one particular organization, as compared

to the UvT and INDURE data collections. Thirdly, they are in plain text of XML

format and are self-contained, from which we can not only retrieve the content-based

information of papers, such as their titles, abstracts, authors and publishing venues,

but also can retrieve the social interactions among those academic factors, such the

co-authorship among authors, and citations among papers. This bring benefits as
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Table 2.1: Data Collections Summary

Data Collection CandidatesNo. DocumentsNo. QueriesNo. Total Relevant
Judgments

W3C 1092 331037 99 9860
CERC 3500 370715 127 2862
UvT 1168 36699 1491 4318
DBLP + 574369 953774 17 244
Google Scholar
INDURE 12535 NA 100 6482

compared to the DBLP data set, which only include paper titles, authors and by

itself, and has to be integrated with other supporting data sets, such as Google

Scholar or CiteSeer.

Table 2.1 shows a summary over these data collections mentioned above.

2.5 Evaluation Metrics

To evaluate the performance of different approaches, several metrics have been

adopted. The most representative ones include: 1) P@k; 2) MAP; 3) MRR; and 4)

NDCG@k.

MRR, MAP, and P@k are suitable metrics for binary relevance ranking per-

formance evaluation, where entities (documents, people or other entities) are ei-

ther relevant (relevance=1) to a query or non-relevant to a query (relevance=0).

MRR works for the situation when there is only one relevant entity in the data

corpus. NDCG@K works for multiple levels of relevance, both the relevance scores

for retrieved entities and their ranking positions are important to the final ranking

performance.

• P@k (abbreviated for Precision at rank k): P@k measures the fraction of the

top-k retrieved entities (either documents or authors) that are relevant for a

given query, which can represented as:

P@k =
#(relevant entities in top k results)

k
(2.1)
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• MAP (abbreviated for Mean Average Precision): Average Precision (AP)

emphasizes returning more relevant documents earlier (to rank them at higher

positions). Given one singule query, AP is defined to be the average of the

P@k values for all relevant entities:

AP =

∑K

k=1(P@n× rel(k))

R
(2.2)

where, k is the rank, K is the total number of entities retrieved, and R is the

total number of entities that are relevant to the given query. rel(n) is a binary

indicator function satisfying rel(n) = 1 if the document at rank n is relevant

to the query, or 0 otherwise. MAP is the mean value of the AP computed

across all queries. The computing process for MAP can be described as: 1)

first mark the position of all relevant entities k1, k2, . . . , kR, where R is the

total number of all relevant entities; 2) compute the P@k scores at all places

in k1, k2, . . . , kR; 3) average over P@k; 4) average across all queries.

• MRR (abbreviated for Mean Reciprocal Rank): MRR measures the ranking

performance when there is only one relevant entity for any given query in the

ranking system. Suppose for a given query q, the only relevant entity is ranked

at position k, then the Reciprocal rank for query q is 1
k
. MRR is then the mean

reciprocal rank across all queries.

• NDCG@k (abbreviated for Normalized Discounted Cumulative Gain at rank

k) is a traditional metric for a ranking system when there are multiple levels of

relevance for entities over queries. The computation process can be described

as follows.

Suppose we have a collection of n queries denoted as Q = q1, . . . , qn. For each

query qk, we have a collection of mk relevant documents (assume the entity

is document here) D = dk
i , i = 1, . . . , mk, whose relevance to qk is given by a

vector rk = (rk
1 , . . . , r

k
mk ∈ Z

mk). Suppose we have a ranking function denoted

as F (d, q) that outputs a computed relevance score in a real number for every

document-query pair (d, q), and suppose document dk
i is ranked as position jk

i
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within the collection set Dk for query qk, then the NDCG value for ranking

function F (d, q) can be computed as:

L(Q,F ) =
1

n

n
∑

k=1

1

Zk

mk
∑

i=1

2rk
i − 1

log(1 + jk
i )

(2.3)

where Zk is the normalization factor, and it is computed as the DCG score

when all documents are ideally ranked in descending order of their relevance

scores. NDCG@k is the NDCG score for the fraction of the top-k returned

documents.

2.6 Existing Approaches

In this section, we briefly review the main approaches developed for expertise re-

trieval. We divide the approaches into two main categories: the Content-based

approach, in which the expertise evidence of candidates is mainly extracted from

the textual documents associated with them, and that the relevance of a candidate

expert to a query is computed via the relevance of those supporting documents

to a query; and the Graph-based approach, in which candidates’ expertise can

also be represented via their social interactions with other academic entities. The

content-based approach can be further divided into generative probabilistic models,

discriminative probabilistic models, voting models, and topic modeling based mod-

els; Categorized like this, however, it is worth mentioning that many existing models

actually combine the content-based and graph-based approaches, and benefit from

the advantages of both of them.

2.6.1 Generative Probabilistic Models

As we have mentioned in section, mathematically interpreted, the task of expert

finding can be represented as computing the probability of an expert candidate e

being an expert given the query topic q, i.e., P (e|q), which based on Bayes’ Theorem,

can be factored as:

P (e|q) =
P (q|e)P (e)

Pq
≈ P (q|e)P (e) (2.4)
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Equation 2.4 successfully transfers the computation of P (e|q) into the approx-

imated P (q|e), which represents the fundamental idea of generative probabilistic

model, i.e., the relevance of a given query to a candidate expert can be estimated

as the probabilistic likelihood that the query topic is generated by the given can-

didate. Several generative probabilistic models have been developed. Two of them

proposed by Balog et al. [8] are the most representative ones, as they often serve as

the comparison baseline algorithms in subsequent research efforts.

In [8], Balog et al. developed two different versions of computing the likelihood

P (q|e), both of which are essentially based upon the standard statistical language

model. In the first version which is referred as the Candidate Model, all docu-

ments related to a candidate can be utilized to generate a textual representation of

this expert’s expertise, and that the relevance of the query to the candidate can be

computed via estimating the relevance of the query to the textual representation

using the traditional language models. This process can be presented as:

P (q|θe) =
∏

t∈q

(1− λ)(
∑

d

P (t|d)P (d|e)) + λP (t)
n(t,q)

(2.5)

where λ is the parameter for smoothing, θe denotes the candidate language model

for candidate e and n(t, q) is the term frequency of term t in query q.

In the second version which is referred to as the Document Model, all docu-

ments relevant to the query are retrieved and estimated first, and then the expert

candidates that are associated with these relevant documents will be regarded as

the experts for the given query. Under this scheme, the probability of Pq|e can be

computed as:

P (q|e) =
∑

d

∏

t∈q

P (t|θd)
n(t,q)P (d|e) (2.6)

where θd indicated the document-centric language model.

Both of the candidate model and document model are built upon the assumption

that the query prior P (q) and candidate prior P (e) are uniform and therefore can

be ignored, and that the appearance of terms and candidates are independent given

a document.
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A similar model to the Candidate Model was proposed by Fang and Zhai [49], and

Petkova and Croft [135] provided an extension of the candidate model by combining

multiple sources of document collections. H. Deng et al. made two important

improvements over the Document Model [40, 41]. In [40], they proposed a weighted

language model that takes into consideration not only the relevance of supporting

documents to the query P (q|d) but also the importance of individual document, i.e.,

the prior probability P (d), which is often regarded as uniform and therefore ignored

in previous research. In [41], Deng et al. investigated a new smoothing method by

using community context instead of the whole collection to enhance the Document

Model.

2.6.2 Voting Models

The Voting model [108] is inspired by the data fusion techniques which attempt to

effectively combinie supporting evidences from different sources. Using data fusion

for expert finding, as introduced in the voting model, each document associated

with the candidate expert and relevant to the given query will represent one ‘vote’

for determining the relevance of the document to the query. However, the weight

on the votes can be varied; for example, it can be a binary vote, the reciprocal

rank of the document for the query, or the specific relevancy score of the document

to the query. In [108], the authors identified 12 different data fusion techniques in

representing the ‘weight’ of such votes, and they further enhanced the original model

by utilizing query expansion [109]. Experiments indicate that the voting model can

retrieve competitive results as the probabilistic generative model proposed in [8].

2.6.3 Discriminative Probabilistic Models

As a counterpart to the generative probabilistic model, the discriminative proba-

bilistic model directly estimates the probability that a candidate is an expert for

given a query. One representative work in applying the discriminative probabilistic

model into solving the task on expert finding is the work conducted by Fang and
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Zhai et. al [50], in which they cast the expert finding task into a classification prob-

lem where the relevant query-candidate pairs are treated as positive samples and

the irrelevant query-candidate pairs are regarded as negative samples. Under this

scheme, the probability likelihood over the training data set can be presented as:

L =
M
∏

m

K
∏

k

Pθ(r = 1|ek, qm)rmkPθ(r = 0|ek, qm)(1−rmk) (2.7)

where θ indicates the set of model parameters.

The authors proposed two specific models to measure the relevancy probability

for expert-query pair: Pθ(r = 1|ek, qm), both of which take the associated documents

as the connecting bridge. In the ‘Arithmetic Mean Discriminative’ model, this

probability can be computed as: Pθ(r = 1|e, q) =
∑n

t=1 P (r1 = 1|q, dt)P (r2 =

1|e, dt)P (dt), and in the ‘Geometric Mean Discriminative’ model, the probability

can be computed as Pθ(r = 1|e, q) =
∏n

t=1 P (r1 = 1|q, dt)P (r2 = 1|e, dt)P (dt).

Here, r1 and r2 are binary indicators, representing the relevance of document dt to

query q, and the relevance of candidate expert e to document dt respectively. To

further compute the relevancy for query-document pairs and expert-document pairs,

a group of features can be directly incorporated; for example, the probability over

query-document pair can be computed as P (r1 = 1|q, dt) = ω(
∑Nf

i=1 αif)i(q, dt)),

where fi are the query-document related features.

The ability to directly incorporate features is the most prominent property and

advantage of the discriminative probabilistic model as compared to the generative

probabilistic model.

Two other representative works in applying discriminative probabilistic models

to solve the task of expert finding include Moreira et al. [127] and Macdonald and

Ounis [110]. Both directly utilize several existing learning-to-rank [104] algorithms

into expert finding, where learning-to-rank is a prominent research area in recent IR

research, and has shown great success for documents’ ad hoc retrieval. In the work

[127], seven learning-to-rank algorithms: AdaRank [187], Coordinate Ascent [121],

RankNet [23], RankBoost [55], Additive Groves [165], SVMmap [201] and RankSVM

[82] have been used over a set of self-identified features; In work [110], they applied
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two learning-to-rank algorithms: AdaRank [187] and Automatic Feature Selection

(AFS) [122] on the features derived from their voting models.

2.6.4 Topic-Modeling-based Models

Topic modeling has emerged as a popular unsupervised learning technique for con-

tent representation in large document collections. This kind of generative model

was first envisioned for pure contextual analysis while ignoring the linkage structure

among text data. Representative models of this type of analysis (e.g., the LDA

model [18] and pLSA model [73]) exploit the co-occurrence patterns of words in

documents and unearth the semantically meaningful clusters of words (as topics).

Researchers have since added extensions to model authors’ interests in their pro-

posed author-topic model [148], and therefore makes the topic modeling available

for expert finding. Several following models have been proposed to further overcome

the limitations of the author-topic model [148] and improve the expert ranking per-

formance, including the author-conference-topic model [169], citation-author-topic

model [174], author-conference topic-connection model [181], and context sensitive

topic models [88].

2.6.5 Graph-based Models

The principal idea of the content-based approach is to evaluate the relationship

between the expert candidate and the query topic via supporting documents; how-

ever, candidates’ expertise can also be represented via their interaction between

other candidates or other types of entities. This idea stimulates another direction of

research which centers on generating an expertise graph (or called an expert social

network) in which the expert candidates or other types of entities are represented

as nodes and their interactions (relationships) as links, and applying graph-based

algorithms or link analysis approaches into expert finding. We refer to this group

of models as graph-based models.

One intuitive link analysis approach is to utilize simple statistical measurement

which indicates estimating the expertise of candidates by simply counting the their
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in-degree, out-degrees, or other measurements such as centrality, closeness and be-

tweenness. Typical research work in this category include the work of Zhang et al.

[?] which identified the experts in a Java Forum by counting the number of others

users they replied, and the work of Kolla and Vechtomova [96] which builds an ex-

pertise graph from W3C email lists, and ranks the experts by either the number of

their in-coming emails or out-going emails.

PageRank [133] is a popular link analysis approach which has demonstrated its

great success in World Wide Web in determining the authority of a web page.

The fundamental idea behind PageRank is that a web page will have a higher

authority if it is pointed to by more other web pages with high authority. This

basic assumption is appropriate to be applied into determining the expertise of

people, since people tend to have higher expertise (authority) if they have more

valued interactions with others, for example, a researcher more often collaborating

with or being cited by other researchers with high expertise. Due to this similarity, a

number of PageRank-like algorithms have been proposed in expert finding. Typical

work includes [30, 57, 19].

HITS [93] is another popular link analysis algorithm widely used in the World

Wide Web. It assigns two scores to each web page: a hub score and an authority

score, which can be iteratively updated by looking at the hub and authority scores of

other web pages pointing to and being pointed from the current web page. Inspired

by this algorithm, a group of HITS-like models have been proposed including [25,

180] for expertise retrieval.

Pure graph-based models which ignore the relevancy derived from associated doc-

uments are often query-independent models, and the background expertise graph

they rely on only include one type of node: the expert candidate nodes. Several

models have been proposed providing extensions by building a bipartite graph which

incorporates both expert candidate nodes and the supporting nodes. Two represen-

tative models following this line include the work proposed by Serdyukov et al.

[154] which provided three versions of random-walk algorithms: a finite, infinite

and a specialized parameter-free absorbing models over a bipartite graph consisting

of expert candidate and top retrieved documents. Another example is Zhou et al.
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[207] who proposed a query-specific co-ranking algorithm over bipartite graphs to

integrate an author-coauthor relationship network and the paper citation network.

PopRank [132] provides further development by integrating one more factor: the

conferences and journal factor in addition to authors and papers.

Hong et al. [39] proposed a new graph-based model which introduced the graph

regularization techniques into expert ranking based upon the assumption that simi-

lar documents in content are likely to have similar relevance scores with respect to a

query. In their following work [41], they defined community-sensitive authorities for

authors, and proposed a query-sensitive AuthorRank algorithm to model author’s

authority based on a co-authorship network.

2.7 Relation with our work

Our research work reported in this dissertation can be regarded as further develop-

ment over existing topic-modeling-based models and graph-based models; however,

it also incorporates the strengths of both generative probabilistic and discrimina-

tive probabilistic models; for example, we determine the final rank of an expert

candidate by combining the rank obtained from both a content-based method and

a graph-based method, and that we integrate the learning-to-rank scheme into the

topic modeling process. Endeavors are made in four directions, and are presented in

five proposed algorithms: 1) defined topic-level expertise and brought topical link

analysis into graph-based expert finding; 2) proposed a heterogeneous PageRank al-

gorithm to distinguish the importance over different sources; 3) incorporated simple

temporal information into graph-based link analysis; 4) developed a modified topic

modeling based approach for expert finding; and 5) developed an expert ranking

scheme by combing learning-to-rank with topic modeling.
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2.8 Recommender Systems: Introduction

Recommender systems [146] has increasingly demonstrated its success in online per-

sonalized businesses, by which various commercial items including retailing prod-

ucts, movies, books, musics, advertisements, etc. can be suggested to individual

users to suit their tastes. This largely stimulates the rapid development of e-

commerce webshops like Amazon, eBay and Netflix. Recommender systems then

gradually became a promising technology in social media and social networking

applications, where it can provide tag recommendations in social sharing or book-

marking systems (like Flickr7 or del.icio.us8), and generate link predictions in social

media networks, for example, suggesting the ‘friends you may also want to know

or follow or connect’ on Facebook, Twitter and LinkedIn, or the blogs/tweets/news

articles that you may feel interested on Blog, Twitter or online news websites. Rec-

ommender systems has become an indispensable technology that dramatically affects

people’s daily life.

We also need recommendation in academic environments. There are hundreds

of thousands researchers in the academic community, producing millions of research

papers to date, and the number of new papers has kept on increasing with time.

Statistics have shown that based on the DBLP scientific data set, computer scientists

published 3 times more papers in 2010 than 2000. On the other hand, the rapid

development of online digital libraries have made these published papers as well as

their associated information, such as their authors, publishing venues much easier

to get access. These often result in the information overload problem for individual

researchers when they want to identify the proper papers to cite, or choose a proper

conference/journal to which to submit. Recommender systems can offer help in

solving these problems, and therefore is another research focus in this dissertation.

Collaborative Filtering approach (CF for short) [61] is the current widely adopted

and state-of-the-art technique in recommender systems whose fundamental idea is

to establish the connections between users and other entities via analyzing their

7http://flickr.com
8http://del.icio.us
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historical interactions. To take the most widely used application scenario for CF,

the user-item-rating recommendation as an example, the underlying assumption is

that an individual user will prefer the items which other similar users prefer, or the

items that are more similar to those items that the user has originally rated (liked).

CF can be further divided into neighborhood memory-based approaches and model-

based approaches due to the different mechanism on how to analyze the historical

interaction or how to establish the current connection.

Due to the wide range of applications of recommender systems, and the varied

specific algorithms developed to tackle the problems in each individual application,

we concentrate in this chapter on the introduction of the fundamental technique for

recommender systems: the CF method. We will introduce in detail the neighbor-

hood memory-based models, and we choose to introduce the current state-of-the-art

model-based approach, the matrix factorization model[97].

2.9 Collaborative Filtering

2.9.1 Neighborhood memory based CF

Neighborhood memory-based CF is widely used in the user-item-rating prediction

scenario due to its simple intuition and easy implementation. It can be further

categorized into user-based CF and item-based CF.

User-based CF

In the user-based CF method, predictions are made by first identifying other users

who are similar to the target user (similar in user profiles or historical rating pat-

terns) and then takes a weighted combination of their ratings to the target item.

More formally speaking, let us suppose a be the target user and i be the item which

is not rated by a yet, then the predicted rating of a to i: pai can be computed as:

Pai = ra +

∑N

u=1(rui − ru)ωau
∑N

u=1 ωau

(2.8)
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where rui is the real rating of user u to item i. ra and ru are the mean ratings of

user a and u respectively, and ωau is the similarity score between user a and u. N

here indicates the number of users that are similar to the target user u.

Item-based CF

In the item-based CF method, predictions are made by first finding similar items to

the target item and then calculating a weighted combination of their ratings by the

target user u. It can be formally represented as:

Pai = ri +

∑M

k=1(rak − rk)ωik
∑M

k=1 ωik

(2.9)

where ri and rk are now the mean rating of item i of item k based on all previous

ratings. ωik is the similarity weight of item i and k. M indicates the number of all

similar items to the target item.

Compute the Similarity

As we can see from both the user-based and item-based CF models, one key function

is to compute the similarity between either users or items. Traditionally, there are

two widely used similarity computation algorithms; one is based on the Pearson

Correlation [144] score and the other is based on Cosine Similarity.

Pearson Correlation Score

Pearson correlation measures the extent to which two variables linearly relate to

each other [144]. Suppose we are calculating the similarity between user a and u,

then based on Pearson Correlation, it can be computed as:

ωau =

∑M

i (rai − ra)(rui − ru)

σaσu

(2.10)

where M indicates the total number of items that have been rated by both users a

and u. σa is the standard deviation of all ratings of user a.

Cosine Similarity
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Cosine similarity [151] is a measure of similarity between two vectors of an inner

product space that measures the cosine of the angle between them. Suppose we have

two users a and u in a user-item-rating system, each of which can be represented

as N dimensional feature vector, i.e. s and t respectively, then the cosine similarity

between these two users can be presented as:

ωik =
i · k

‖ i· ‖‖ k ‖
=

∑

n=1N sn × tn
√

∑N

n=1(sn)2

√

∑N

n=1(tn)2

(2.11)

2.9.2 Latent factor model-based CF: Matrix Factorization

Latent factor model based CF is an alternative approach for the neighborhood mem-

ory based approach whose principal idea is to uncover the latent features of each

participating entity in a recommendation system that can explain the observed data.

Under this scheme, each entity will be represented as a feature vector whose values

are unobserved. There exist a bunch of latent factor models, such as the pLSA [73]

model, LDA [18] model, neural networks [150], singular value decomposition (SVD

for short) [38] model, matrix factorization (MF for short) [97] and tensor factoriza-

tion (TF for short) [141], among which, the MF method has shown to be the most

state-of-the-art approach in recommendation.

Basic Matrix Factorization

The fundamental mechanism of MF is to represent the relationships between two

types of entities in a recommender system as a matrix, and that this matrix can

be factorized into two lower dimensional matrices. Figure 2.4 shows an illustration

over the traditional user-item rating recommender system.

As we can see, the left big matrix indicates the real interactions between users

and items. Suppose we have M users and N items, the big matrix is of dimension

M × N , and each entry of the matrix rui represents the observed rating of user u

to item i. In the right part, the big matrix is factorized into two lower dimensional

matrices, each of which represents the latent factor space for users and items with
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Figure 2.4: Matrix Factorization example

dimensions M ×D and N ×D respectively, where D is the latent vector dimension

and is normally much smaller than either M or N . Accordingly, each user u will be

associated with a vector pu ∈ R
D and each item i will be associated with a vector

qi ∈ R
D. The resulting inner product of qT

i pu captures the interaction between user

u and i, and therefore approximates the observed rating of user u on i: rui. We can

denote this predicted value as:

r̂ui = qT
i pu (2.12)

We refer equation 2.12 as the basic MF model. The major challenge is now to

infer the mapping of each item and user to their associated latent vectors. Due to the

data sparsity problem of the user-item rating matrix, addressing only the relatively

few observed entries is prone to overfitting. In order to avoid that, regularization

mechanism is introduced. To learn the latent factor vectors (pu and qi), the objective

function is to minimize the regularized squared error on the set of known ratings,

which can be presented as:

min
p∗,q∗

∑

(u,i)∈S

(rui − q
T
i pu)

2 + λ(‖ qi ‖
2 + ‖ pu ‖

2) (2.13)

where, S is the set of the (u, i) pairs for which their values rui are known. We refer

this model as the regularized MF model.
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Biased MF model

The basic MF model provides an open and flexible learning framework where various

data aspects and application-specific requirements can be well accommodated. For

example, in the user-item rating system, different users or items may have their own

bias independent of any interactions. Empirical studies have shown that some users

always tend to give higher ratings and that some items more easily to receive higher

ratings; therefore it would be inaccurate to just model the interaction between user

u to item i as qT
i pu —their individual bias should also be considered. Accordingly,

this leads to the biased version of the MF model, which is denoted as:

r̂ui = µ+ bi + bu + qT
i pu (2.14)

where µ is the average ratings across all users and items in a particular user-item-

rating system. bi is the bias for item i, and bu is the bias for user u.

Adding the regularization scheme to avoid overfitting, the regularized MF model

with bias can be represented as:

min
p∗,q∗,b∗

∑

(u,i)∈S

(rui − µ− bi − bu − q
T
i pu)

2 + λ(‖ qi ‖
2 + ‖ pu ‖

2) + b2u + b2i (2.15)

where latent factor vectors q∗ and p∗ and all the biases are the parameters that we

need to learn from the training set with observed ratings. Once these parameters

are inferred, the predicted rating over any unknown user and item pairs r̂ui can be

computed via following equation 2.14.

2.9.3 Solving Matrix Factorization model

To solve the MF model, we need to estimate the value for parameters. Generally,

there are two main optimization techniques that are widely used in recommender

systems: the Stochastic Gradient Descent (SGD for short) [20] and the Alternating

Least Squares (ALS for short) [5].

Stochastic Gradient Descent (SGD)
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Stochastic gradient descent is a dramatic simplification of gradient descent [20]

which is an iterative optimization technique. To better understand both the gradient

descent and stochastic gradient descent, let us consider the following example.

Suppose we consider a simple supervised learning setup in which each sample in

the training set z is a pair of (x, y) composed of an arbitrary input x and a scalar

output y. ω is the associated weight for x in each data pair (x, y). We choose to

use a function fω(x) to predict the value of y where ω is the parameter and denote

the loss function as l(ŷ), y which measures the error between the predicted value of

ŷ and the real value of y. In order to compute the parameters ω and therefore the

function fω(x), we need to minimize the loss Q(z, ω) = l(fω(x), y) averaged on all

samples in the training set.

Using the gradient descent method to compute ω (the weight vector of all ωs

associated with all xs), we can first randomly set the initial value of ω, and then

iteratively update its value until it finally converges. In each update iteration, ω

can be updated on the basis of its gradient in the descending direction:

ωt+1 = ωt − γ
1

n

n
∑

i=1

▽ωQ(zi, ωt) (2.16)

where, γ is called the step-size or learning factor.

Stochastic gradient descent simplifies the computing procedure. Instead of com-

puting the errors across all training samples and then get the gradients based on

them, in SGD, each iteration estimates the gradient only on the basis of a single

randomly picked example in the last iteration zt, and ω can be updated as:

ωt+1 = ωt − γt▽ω Q(zt, ωt) (2.17)

The stochastic process ωt, t = 1, 2, . . . therefore depends on the individual ex-

amples randomly picked at each iteration. Since the stochastic gradient descent

algorithm does not need to remember all examples selected during previous iter-

ations, it can improve computational efficiency enough to be part of a deployed

system.
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When applying SGD to solve the regularized basic MF model defined on the

user-item rating system, each rating in the training set will be looped through, and

in each such loop, both the user and item latent factor vector will be modified in

the opposite direction of the gradient computed from the objective function. Based

on equation 2.18, we can achieve the updating rules for qi and pu as:

qi ← qi + γ(eui · pu − λ · qi)pu ← pu + γ(eui · qi − λ · pu) (2.18)

where eui = rui − q
T
i pu is the prediction error. γ is the learning rate.

The advantage of SGD is that it is efficient, easy to implementation, and is

applicable over large-scale and sparse machine learning problem. However, it is

sensitive to feature scaling.

Alternating least squares (ALS)

Alternating least squares [5] is a block-coordinate descent algorithm whose fun-

damental idea is to minimize the objective function by updating one specific type of

parameter while fixing all others and repeats the same process for each learned pa-

rameter sequentially, ensuring that each step would decreases the objective function

until it finally converges.

When applying ALS to a regularized basic MF model for user-item ratings, since

both pu and qi are unknown, equation 2.12 is therefore not convex. However, if one

parameter is fixed, then the problem would become quadratic and there would exist

a closed form for the optimization. Following this idea, the ALS algorithm will

iteratively rotate between fixing pus and qis. When all pus are fixed, the algorithm

will recompute the value for qis by minimizing the squared error. The same process

will be done by fixing qi while updating pu. This entire procedure will be recursively

executed with each iteration decreasing the squared error until finally converged.
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2.10 Evaluation metrics

We introduce several measurements that have been widely used in recommender sys-

tems to evaluate recommendation/prediction performance. These include Precision,

Recall, Accuracy, F1 measure, RMSE, and AUC.

Precision, recall, accuracy and F1 measure are all defined in terms of a set

of retrieved entities (web documents, people, papers, or other entities) and a set

of relevant entities. They can also be defined by using four traditional terms in

classification task: true positive tp, true negative tn, false positive fp, and false

negative fn. tp indicates the number of positive (relevant) entities that are also

predicted as positive samples; fp is the number of entities that are actually negative

(non-relevant) entities but are predicted as positive entities; fn indicates the number

of entities that are actually positive but predicted as negative, and tn indicates the

number of actually negative entities that are also correctly predicted as negative.

• precision: in traditional IR system, precision is the fraction of retrieved en-

tities that are relevant to the search:

precision =
‖relevant entities ∩ retrieved entities‖

‖retrieved entities‖
(2.19)

or

precision =
tp

tp+ fp
(2.20)

• recall: recall indicates the fraction of entities that are relevant to a query that

are successfully retrieved.

recall =
‖relevant entities ∩ retrieved entities‖

‖relevant entities‖
(2.21)

or

recall =
tp

tp+ fn
(2.22)

• F1 measure: F-measure (or F-score) is the harmonic mean of precision and

recall. In a general case, it can be computed as:

Fβ = (1 + β2)
precision · recall

β2 · precision + recall
(2.23)
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The most widely adopted F-score is the the F1 measure where β is set to be

1, indicating that precision and recall are evenly weighted. We have:

F1 = 2 ·
precision · recall

precision + recall
(2.24)

• Accuracy: Accuracy can be computed as: Accuracy = tp+tn

tp+tn+fp+fn

Precision@k, Recall@k and Accuracy@k are also adopted for computing the

corresponding Precision, Recall and Accuracy values for the top-k returned

entities.

• RMSE (abbreviated for Root Mean Squared Error): RMSE is widely used

for rating-related recommendations, such as user-item ratings or user-movie

ratings prediction. It amplifies the contributions of the absolute error between

the predicted values and real values. Suppose for a given user-item pair, the

real rating for user i to item j is rij, and the predicted value is r̂ij, then the

overall RMSE value for the recommender system is:

RMSE =

√

1

‖ T ‖

∑

(i,j)∈T

(r̂ij − rij)2 (2.25)

where T is the set of all user-item pairs whose ratings are predicted.

• AUC abbreviated for Area Under the ROC Curve: ROC curve is a two-

dimensional depiction of a classifier’s performance, on which the true positive

rate ( tp

tp+fn
) is plotted on the Y-axis and false positive rate ( fp

fp+tn
) is plotted

on the X-axis. AUC indicates the actual area under the ROC curve, which

can be computed as:

AUC =
S0 − n0(n0 + 1)/2

n0n1
(2.26)

where n0 is the number of positive samples, n1 is the number of negative

samples, and S0 =
∑N

i=1 ri, ri is the rank of the ith positive sample in the

ranking list, given that we have N positive samples in total.
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Other ranking based IR metrics such as MAP and NDCG can also be used as the

evaluation metrics for recommendation tasks whose definitions have been introduced

in detail for the task of expertise retrieval.
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Chapter 3

Expert Ranking: Topic-Driven

Multi-Type Citation Network

Analysis

In this chapter, we present an enhanced integrated probabilistic model which com-

bines both content-based and graph-based approaches for expert ranking in an aca-

demic environment. We construct a heterogeneous academic network which con-

sists of multiple types of academic entities. We introduce the application of Topical

PageRank into link analysis over the academic network and propose a heteroge-

neous PageRank-like algorithm into exploring the impact of weighting various fac-

tors. Comparative experimental results based on data extracted from the ACM

digital library show that 1) the multi-type academic network works better than the

graphs integrating fewer types of entities, 2) the use of Topical PageRank can fur-

ther improve performance, and 3) Heterogeneous PageRank with parameter tuning

can work even better than Topical PageRank.
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3.1 Introduction

Estimating researchers’ contributions or reputations is of great importance since it

can offer support when making decisions about researchers’ job promotions, project

funding approvals, and scientific award assignments. With the rapid development

of academic digital libraries, the increasing volume of online scientific literature

provides abundant sources of reputation evidence in terms of researchers’ (authors’)

publications, as well as the citation relationships among these publications, both of

which can be taken advantage of in evaluating researchers’ reputations.

In order to evaluate the reputation of a researcher, especially within one scientific

domain, there are typically two basic approaches. One is called the content-based

approach, in which relevant documents representing expertise of a researcher can be

considered, and information retrieval models can be applied to evaluate the relevance

of these documents and thus authors to the query topic [8, 50, 108]. Researchers’

publications in the academic digital libraries provides such good expertise resources.

Another important approach, which is also our main focus in this chapter, is via

social network analysis [183]. The citation network is one form of social network in

which scientific factors, like authors and papers, can be represented as nodes, and

their mutual interactions, like co-authorship and citation, can be modeled as edges.

Citation network analysis has long been a popular mechanism to evaluate the

importance of publications and authors. Initially, citation analysis mainly focused

on counting the number of citations [58, 59]. Under this scheme, an author will have

higher reputation if he can be cited by many other authors.

With the recent success of graph-theoretic approaches in ranking network en-

tities, researchers have begun to introduce link analysis approaches like PageRank

[133] and HITS [93] into citation network analysis. Further attention has also been

paid to integrate different kinds of citation networks, including a coauthor network

for authors and a citation reference network for papers and take advantage of their

mutual reinforcement to improve reputation ranking performance. The assumption

in this group of approaches is that more influential authors are more likely to pro-

duce high quality and thus highly cited papers, and well-cited papers can bring
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greater prestige to their authors.

In spite of the constant improvement in citation network analysis, including

combinations with content-based approach, integration of different kinds of citation

works, there still remain some limitations. For example, current citation network

analysis seldom goes beyond that of the citation relationship among authors or

papers. PopRank [132] integrates conferences and journals, yet there are still some

other useful and easily available information in the scientific literature, such as

authors’ affiliations. In this chapter, we propose a novel probabilistic model which

can integrate the citation between authors, papers, affiliations and publishing venues

in a single model. Affiliation offers a good indication of authors’ expertise, since high

quality organizations tend to hire researchers (authors) with higher reputation.

In order to explore the different impact among factors, we propose a heteroge-

neous PageRank, permitting us to consider different propagation rates among fac-

tors. Furthermore, one distinguished contribution of our work is that we introduce

the topical link analysis, which has shown success in web page authority evaluation,

into citation network analysis. In summary, our main contributions include:

1. Proposing a novel probabilistic model which combines content-based analy-

sis with a multi-type citation network, integrating relationships of authors,

papers, affiliations and publishing venues in one model. This model can be

extended to include more types of social factors.

2. Proposing a heterogeneous PageRank random surfer model compared to the

original uniform PageRank model, to reflect the impact among different fac-

tors.

3. Introducing topical link analysis into citation network analysis. In particular,

Topical PageRank [131] is adopted for citation link analysis.

4. A comparative study using ACM digital library data on various PageRank

extensions as well as different complexity of citation networks.
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3.2 Multi-type Citation Network Framework

In this section, we introduce the definition of our multi-type citation network frame-

work. Two versions of the framework are considered, reflecting different relationships

among factors.

3.2.1 Notation and Preliminaries

In a multi-type citation network, different kinds of social factors, as well as their

mutual relationships are considered and integrated. The citation network can be

formally denoted as G = (V,E), where

• V is a set of nodes, representing social factors. In our current integrated

network, V is combination of four different types of social actors: authors,

papers, affiliations and venues.

• E is a set of directed edges, representing relationships among every pair of

social actors. All the possible relationships we may have are the relationships

between authors, papers, affiliations and venues.

Due to different relationships among the four types of social actors we can consider,

we construct two versions of the multi-type citation network, to which we refer as

4-T graph version-1 (4-T) and 4-T graph version-2 (4-TV2) respectively.

3.2.2 Framework version-1

In 4-T graph version-1, we consider the citation relationship among every pair of

social factor types. The graph (shown in Figure 3.1) is directed and can be viewed

as a combination of subgraphs, including those representing each of the types of

social factors:

1. Author Graph GAu. There would be one edge from author aui to author

auj and one edge from author auj to aui if they coauthored at least one

paper or if author aui cites author auj. We say that author aui cites author
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Figure 3.1: Multi-type (4-T) Citation Network version-1

author auj if and only if there is at least one publication of aui that cites

one of the publications of auj. We do not count the number of co-authorship

or citationship in this framework, and thus there would be only one edge

between two authors even though they coauthored more than once. The same

mechanism works for other subgraphs defined in the following.

2. Paper Graph GP . There would be one edge from paper pi to pj, if pi cites pj

in its references.

3. Affiliation Graph GAf . There would be one edge from afi to afj if two authors,

each of which comes from afi and afj respectively, coauthor in at least one

paper, or there is at least one paper produced in affiliation afi that cites one

of the publications from afj .

4. Venue Graph GV . One edge will be drawn from vi to vj if there is at least one

paper which is published in vi that cites one of the papers published in vj .

as well as graphs that relate one type of social actor to another:

1. Bipartite AuthorPaper Graph GAuP . There would be one edge from aui to pj ,

if aui is one of the authors of pj . Correspondingly, there would one edge from
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pj to aui, indicating that it is written by aui.

2. Bipartite AuthorAffiliation Graph GAuAf . One edge would be drawn from aui

to afj and afj to aui, if aui belongs to the affiliation of afi. One distinct

author may belong to different affiliations in different periods of time; thus it

is possible for one author node to point to several affiliation nodes.

3. Bipartite AuthorVenue Graph GAuV . If there is at least one paper written by

aui and published in vj , there would be a corresponding edge from aui to vj

and from vj to aui.

4. Bipartite PaperAffiliation Graph GPAf . One edge will go from paper pi to

affiliation afj if pi is written by an author that belongs to afj .

5. Bipartite PaperVenue Graph GPV . One edge will go from pi to vj and vj to

pi if pi is published in vj .

6. Bipartite AffiliationVenue Graph GAfV . If there is one paper belonging to

affiliation afi published in vj, there would be an edge from pi to vj and from

vj to pi.

3.2.3 Framework version-2

There may exist redundant information within edges in version-1, since most rela-

tionships are generally inferred from the citations among papers (some others are

generated via coauthor-ships). As a result, we introduce a simplified version of the

graph.

In this simplified version, we only consider the coauthor relationship between

authors, while ignoring the citation relationship between them. Affiliation nodes

will only be connected with author nodes, and venue nodes will only be connected

with paper nodes. There are no direct edges within the affiliation graph and venue

graph. The relationships between authors and venues can be related by firstly

relating authors to papers, and then papers to venues. A similar process works when
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Figure 3.2: Multi-type (4-TV2) Citation Network

representing the relationship between affiliations and papers. Figure 3.2 illustrates

the simplified version of the multi-type graph.

3.2.4 Heterogeneous PageRank

In the original homogeneous PageRank, each node evenly distributes its authority

score among its children. Using such an even propagation in the multi-type citation

network, author nodes will evenly distribute its authority to other authors, papers,

affiliations, and venues (under framework version-1), which may not well represent

the actual interaction possibilities among nodes of different entities. In order to bet-

ter represent the different impact among multiple types of social actors, we propose

a heterogeneous PageRank algorithm based on the assumption that where there

would be a different propagation probability for a node to follow different kinds of

out-going links (links to different types of nodes). (See Figure 3.3) This heteroge-

neous PageRank can be described as:

PR(i) = (1− d)
∑

j:j→i

βji

PR(j)

O(j)type(i)
+ d

1

N
(3.1)

where:
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Figure 3.3: Heterogeneous PageRank

• j and i are two nodes of any types, where j has out-going link to i.

• d: random jump.

• βji: is the parameter determining the propagation probability from node j to

i. βji is equal to βjk if node i and node k are of the same type.
∑

type(i) βji = 1,

where node j has an out-going link to i.

• O(j)type(i) is the number of outlinks j has to the nodes of the same type with

i.

• N : total number of nodes in the network.

3.3 Topical Link Analysis in citation networks

In our description so far, all social factors in the citation network are given one single

global score, which represents their authority for all topics. However, a researcher

who is an expert in information retrieval may not be an expert in computer archi-

tecture. Under such circumstances, it is more reasonable to give authority score for

researchers in terms of their reputation for different topics. In Web domain, some
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ranking schemes are designed to take topical information into account (e.g., as in

[67, 131]). In this section, we first review Topical PageRank [131], one successful

ranking scheme, and show how it can be adapted into citation network analysis.

3.3.1 Topical PageRank

The basic idea of Topical PageRank [131] is to incorporate a topic distribution

into the representation of each web page as well as the importance score of each

page. Therefore, there are at least two vectors associated with each page: the

content vector Cu : [C(u1), C(u2), ..., C(uT )], which is a probability distribution

used to represent the content of u across T topics, and the authority vector, Au :

[A(u1), A(u2), ..., A(uT )], which is used to measure the importance of the page, where

A(uK) is the importance score on topic K.

Topical PageRank is also a random surfer model. On each page, the surfer may

either follow the outgoing links of the page with probability 1 − d or jump to a

random page with probability d. When following links, the surfer may either stay

on the same topic to maintain topic continuity with probability α (“Follow-Stay”)

or jump to any topic i on target page with probability 1−α (“Follow-Jump”). The

probability of jumping to topic i is determined by C(ui). When jumping to a random

page, the surfer is always assumed to jump to a random topic i (“Jump-Jump”).

Thus, the surfer’s behavior can be modeled by a set of conditional probabilities:

P (Follow − Stay|vk) = (1− d)α

P (Follow − Jump|vk) = (1− d)(1− α)

P (Jump− Jump|vk) = d

(3.2)

And the probability to arrive at topic i in target page u by the above actions can

be described as:

P (ui|vi, F ollow − Stay) =
1

O(v)

P (ui|vk, F ollow − Jump) =
1

O(v)
C(vi)

P (ui|vk, Jump− Jump) =
1

N
C(vi)

(3.3)
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where O(v) represents the out-degree of page v. Therefore, the authority score A(i)

on page u is calculated as follows:

A(ui) = (1− d)
∑

v:v→u

αA(vi) + (1− α)C(vi)A(v)

O(v)

+
d

N
C(ui)

(3.4)

where A(v) =
∑

A(vi). Note that authors in [131] also proposed a Topical version

of the HITS algorithm, which we leave for future work.

3.3.2 Topical Citation Analysis

Inspired by the principal idea and demonstrated success of Topical PageRank in

ranking web pages, we want to introduce such a topical link analysis approach into

authors’ reputation ranking. Similar to web pages, publications may also cover dif-

ferent topics, and thus when paper a cites paper b, it may do so because paper a

finds one specific topic t in paper b to be interesting and useful. The same is true

for authors’ authority propagation. Believing in the prestige of a person on one

aspect (say, for example, on data mining) does not mean that this person also owns

a high reputation on other aspects (e.g., networking). When authors choose to col-

laborate and coauthor with each other, they may have mutual trust and interests on

some certain aspect (topic). Publishing venues are normally more focused on certain

research areas than others. SIGIR, for example, has a high prestige in the informa-

tion retrieval research field, while SIGCOMM is well-established in the networking

domain. Compared to papers, authors or venues, affiliations have less obvious topic-

specific differentiation; however, we can still imagine that one affiliation is better

known for doing certain kinds of research than others.
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Table 3.1: Queries

algorithms and theory security and privacy

hardware and architecture software engineering

and programming language

artificial intelligence machine learning

and pattern recognition

data mining information retrieval

natural language and speech graphics

computer vision human computer interaction

multimedia networks and communications

world wide web distributed and

parallel computing

operating systems databases

real time and embedded systems simulation

bioinformatics and scientific computing

computational biology computer education

3.4 Experimental Work

3.4.1 Data Collection

We used information about papers in the ACM digital library1 as our experimental

dataset and crawled one descriptive web page for each published paper. There are

172,891 distinct web pages within the crawled dataset that appear to have both title

and abstract information which we used as our dataset.

For each publication, we extracted and recorded the information of its publishing

venue, authors, affiliation of each author, and citation references. Due to possible

name ambiguity, we used exact name match to merge author names and conferences,

and Jaccard similarity to match affiliations. We extracted 191,386 distinct authors,

45,965 affiliations and 2,197 venues.

In extracting citation references, the title is the representative of each paper, and

we only considered those cited papers for which we also crawled the corresponding

web page for it. After extracting these factors (paper, authors, affiliations, venues,

1http://dl.acm.org/
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and the citation relationship among papers), we built two versions of the multi-type

citation network as we introduced in Section 3.2.

3.4.2 Evaluation

In the portal website of Microsoft Academic Search (abbreviated as MAS)2, which

is a free computer science bibliography search engine, we found 23 categories (listed

in Table 3.1) covering the main 23 disciplines of computer science research. We used

these 23 categories as testing queries, as they represent reasonable topics on which

searchers might look for papers, authors, or conferences.

While the link-based citation network analysis is our research focus, we did not

use it exclusively for retrieval. Instead, we combine it with the use of a content-

based approach. For each author, a profile is constructed by concatenating all of

the author’s publications in terms of title, abstract and ACM categories. The Okapi

BM25 [147] weighting function is used to evaluate the relevance of the authors’

profile to the queries. As a result, for each author, there would be two ranking

results: one from using BM25, and the other from a link-analysis approach. These

two rankings can then be combined as follows:

λ ∗ rankBM25(a) + (1− λ) ∗ rankCitationNetwork(a) (3.5)

Since we lack a standard evaluation benchmark for the dataset, we developed

three different approaches to measure the performance of expert ranking algorithms.

In the first approach, we collected all the PC members in the related conferences

for each research area during 2008 and 2009. Microsoft Academic Search (previously

known as Libra) provides a ranked list of conferences for each of its 23 categories.

We retrieved the top 10 conferences for each category and collected their 2008 and

2009 PC members. For those conferences which have no 2008 or 2009 conference,

we simply collected the PC members of its two most recently held conferences.

To be qualified to participate as a PC member is a reasonable indication of the

academic reputation of a researcher. To assign different “relevance” scores for those

2http://academic.research.microsoft.com/
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PC members, we normalized across the number of years (two at the most) and the

number of different conferences in which one performs as a PC member.

In the second approach, we collected all the ACM fellows, ACM distinguished

and senior members provided from the ACM website. Since there are not research

area descriptions for ACM distinguished and senior members, we manually labelled

the members into different categories and thus we only used a subset of ACM distin-

guished and senior members to generate our relevant lists. The subset we retrieved

is determined by the mixed group of top 60 ranked authors from all ranking algo-

rithms. Since we focus on top-ranked results in our evaluation metrics, we believe

this subset can provide us enough evidence to judge authors. To differentiate the

relevance score, we gave a relevance score of 3 to ACM fellows, 2 to distinguished

ACM members and 1 for ACM senior members.

We utilized human judgements to generate relevant lists in the third approach. In

our evaluation system, the top ten and twenty returned authors by various ranking

algorithms were retrieved and mixed together. We then manually but blindly judged

the relevance for each author in the mixed ranking list with the corresponding query.

Four judges were asked to search using Google Scholar (or other web search engines)

using the author name as query, and go through returned webpages (homepages in

most cases) related to the author to make a judgment on his professional prestige.

After generating the relevant lists, we can compute and compare the retrieval

and ranking performance of different ranking algorithms. We took the well-known

metric, the Normalized Discounted Cumulated Gain (NDCG) as our main metric.

We tested on NDCG@10 and NDCG@20 respectively.

3.4.3 Experimental Results

We made several groups of comparisons to test the performance of different algo-

rithms in their abilities of finding the most influential authors in 23 different research

fields (represented as queries).
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Figure 3.4: Comparison among different levels of citation network (NDCG@10 for ACM
members) as the BM25 weight (λ) is varied.
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Figure 3.5: Comparison among different levels of citation network (NDCG@20 for ACM
members) as the BM25 weight (λ) is varied.

Multi-type Citation Network

Figures 3.4 to 3.7 indicate the NDCG results for different kinds of citation network

analysis approaches using original uniform PageRank as propagation mechanism

and using ACM members and PC members as evaluation dataset respectively. Ta-

ble 3.2 shows the results from human judgements. To reduce the amount of manual
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Figure 3.6: Comparison among different levels of citation network (NDCG@10 for PC
members) as the BM25 weight (λ) is varied.
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Figure 3.7: Comparison among different levels of citation network (NDCG@20 for PC
members) as the BM25 weight (λ) is varied.

labelling, we only gave to judges the results when combined with BM25 with pa-

rameter λ set to 0.5. We also introduced the ranking method of in-domain citation

count as one of our compared approach. We took the 23 categories provided by

MAS as domains, and regarded it as in-domain citation if two papers are within one

domain and there is a citationship between them.
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Table 3.2: NDCG Results from human judgements (λ=0.5)

citation graph NDCG@10 NDCG@20
in-domain citationNo 0.6820 0.6748
author 0.6390 0.6025
atuhorpaper 0.6455 0.6167
authorpaperV2 0.6899 0.6614
4-T 0.6545 0.6401
4-TV2 0.6988 0.6889
Topical 4-T 0.7004 0.6848
Topical 4-TV2 0.7490 0.7231

Several conclusions can be drawn from these results. First, there is a notice-

able consistency with regard to the performance of ranking algorithms for the three

different evaluation methods. 4-TV2 always works the best in all scenarios. This

demonstrates our initial intuition that affiliations and conference venues can provide

useful information and thus make them important and unignorable social factors in

determining authors’ reputations, and that the mutual reinforcement among differ-

ent factors can improve ranking performance.

Secondly, we also noticed that different versions of the citation graph do have

different impact on the overall performance. From the above figures, we find that

version2 always work better than version1. This may be caused by the fact that

removal of possible duplicate citation relationships can avoid authority being scat-

tered over duplicate links. The results give us an indication that we should not only

consider increasing the number of social factors to explore, but also need to pay

attentin to how to effectively find the relationships among them and thus properly

organize them.

We note that the absolute NDCG values for ACM members and PC members are

comparatively low, but this may be caused by the incomplete collection of papers

from the ACM digital library, and the incomplete citation relationships we collected.

As we mentioned before, we only took those citations for which we have also crawled

the corresponding web page into account. Besides, some distinguished researchers
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Table 3.3: Top-level topics from the ACM Digital Library.

computer applications computer systems organization

computer aided engineering computing methodologies

computing milieux data

general literature hardware

information systems mathematics of computing

software theory of computation

may have published in many journals or other papers which are not normally col-

lected by the ACM digital library. However, since there is a high consistency among

all the different evaluation approaches, and the NDCG value of using human judge-

ment is pretty high, we can have confidence in the evaluation using ACM members

and PC members.

Topical PageRank

A key issue in Topical PageRank is to generate the static per-document content

vector. We made use of the hierarchically-organized ACM categories provided by

authors of each paper for topic distribution generation. We extracted the top level

primary category and additional category for all the papers in the dataset and thus

get 12 categories in total (listed in Table 3.3). We regard these categories as topics.

With category information provided, computing topic distributions for papers is

straightforward.

Since each author is represented by a profile which is a concatenation of all

the papers he has written, we can accumulate all the topics mentioned by each

published paper, and then compute the topic distribution. The same mechanism

works for computing the topic distribution of venues, for which we collected all the

papers published in that venue, accumulated papers’ topics, and then computed

the corresponding distribution. We did the same thing for generating affiliations’

topic distribution by collecting the papers written by authors from that affiliation,

and taking use of the papers’ topic distribution to compute the affiliations’ topic

distribution.
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Figure 3.8: Topical PageRank Performance (NDCG@10 and NDCG@20 for ACM mem-
bers) as the BM25 weight (λ) is varied.

Since we take the categories provided by MAS as experimental queries, and

Microsoft Academic Search also lists group of papers for each category, we randomly

chose five papers from each category and take use of papers’ topic distribution to

compute the topic distribution for queries.

See figs. 3.8 and 3.9 for the results of topical experiments.

We set the α value to be 0.85 in all experiments. We found once again a high

consistency among the results from different approaches , and that introducing Top-

ical PageRank can improve the performance indeed. The improvement of the best

performance of Topical 4-TV2 over that of 4-TV2 is 12.9% (NDCG@10) and 14.2%

(NDCG@20) for ACM members, 12.7% (NDCG@10) and 9.7% (NDCG@20) for PC

members, and 6.8% (NDCG@10) and 5.1% for human labelling results.

Comparison with two baselines

One of the main characteristics of our multi-type citation network analysis approach

lies in its combination of both content-based approach and graph-based approach.

We took two other approaches as our comparison baselines, one is BM25, a purely
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Figure 3.9: Topical PageRank Performance (NDCG@10 and NDCG@20 for PC mem-
bers) as the BM25 weight (λ) is varied.

content-based approach, and the other is the CoRank approach proposed in [207].

The results of incorporating BM25 has been shown in all the above figures, since

it is equivalent to pure BM25 when λ is set to be 1. As we can see, our multi-type

citation network outperforms BM25 in all different scenarios.

The CoRank algorithm generates author and paper rankings by taking propaga-

tion between authors and papers into account. It is a graph-based approach. Instead

of building a big graph for all the authors and papers in the dataset, they first rank

authors in terms of their topic weights in a certain domain, retrieve the top 500

authors, and build the graph based on these authors and their publications. The

graph they build is thus query-specific. We have implemented this algorithm (we

determined the topic weight by counting the number of papers belonging to a topic

(query)), and Table 3.4 compares the results between CoRank and our TopicalV2

at its best performance. As we can see, TopicalV2 outperforms CoRank. We used

PC members for evalution in this experiment.

Heterogeneous PageRank

We propose a heterogenous PageRank algorithm with the intention of exploring the

different impact among social factors. The parameter βij indicates the authority
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Table 3.4: TopicalV2 vs CoRank (on PC members)

Citation graph NDCG@10 NDCG@20
Topical 4-TV2 0.0497 0.0611
CoRank 0.0219 0.0308

Table 3.5: NDCG@20 for Heterogenous PageRank

Best Perf. Parameter settings Perf.
on Training p1 p2 p3 p4 p5 p6 p7 on Test
0.0944 0.4 0.1 0.5 0.2 0.3 0.5 0.6 0.0905
0.0868 0.6 0.1 0.3 0.4 0.1 0.5 0.5 0.1262
0.1108 0.6 0.1 0.3 0.4 0.1 0.5 0.4 0.0040
0.0957 0.4 0.3 0.3 0.4 0.1 0.5 0.2 0.0929
0.1045 0.6 0.1 0.3 0.4 0.1 0.5 0.4 0.0465

Average performance on Test 0.0720

propagation probability among factors i and j. It is actually a parameter optimiza-

tion problem if we want to get the best performance by tuning the parameters.

We work on 4-TV2, and thus there are seven parameters in total: the propagation

probability between authors to authors (p1), authors to papers (p2), authors to

affiliations (p3), papers to authors (p4), papers to papers (p5), papers to venues

(p6), and the combination parameter with BM25 (p7). We perform greedy search,

testing on the possible combinations of the parameters with a stepsize of 0.2 (the

combination parameter p7 with BM25 has a stepsize of 0.1 ). In order to test the

system performance on unseen data, we further group the 23 queries into 5 groups,

and use five-fold cross validation approach to evaluate system performance. We

evaluate on PC member-based evaluation.

The algorithm under different parameter scenarios converges within 8-17 it-

erations. As indicated in Table 3.5, the average performance using heterogeous

PageRank is even better than the best performance of topical 4-TV2 (0.0611, which

is the best performnace in all the previous experiments). This improvement is

around 17.8%. This demonstrates our initial intuition that considering different

effect among factors can improve performance.
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3.5 Bibiliographic Notes

Citation analysis has a long history in assessing the research performance of individ-

ual scholars, publishing journals or papers, as well as research groups. Originally,

citation analysis focused on counting the number of citations. Journal impact fac-

tor [58, 59], the most classical citation indicator, is defined as the average number

of citations per article a journal receives over a two-year period. Hirsch number

(h-index) [72], another famous citation indicator, is also defined in terms of citation

counts.

Inspired by the success of graph-theoretic approaches in ranking network entities,

scientists gradually realized that simply counting the number of citations cannot rep-

resent well the true prestige. Without distinguishing between citations, the citation

from a good paper with high impact will have the same weight as citations with lower

impact. Pinski [138] was the first person who realized this problem and proposed

an improved recursive approach. With the great success of link analysis approaches,

like PageRank and HITS in ranking web pages’ authorities, much recent research

work, such as that by Chen et al. [31], has introduced the PageRank algorithm into

citation network analysis replacing hyperlinks with citation references.

Further research work has been carried out in combining the content-based ap-

proach with citation network for reputation evaluation. P. Glenisson et al. [60]

combined full text and bibliometric information in mapping scientific disciplines,

and Bogers et al. [19] made the first investigation into combining and comparing

the citation analysis with content-based approach for finding academic experts.

Research work has been carried beyond the citation network analysis domain in

integrating different types of entities. Davison [36] proposed a unified approach to

analyze multiple term and document relationships. With similar idea, a so-called

link-fusion [186] unified link analysis framework has been proposed which considered

both the intra- and inter- type link structure among multiple-type inter-related data

objects. Most recently, Guan [64] proposed a multi-type framework integrating

users, documents and tags for tag recommendation. In [182], Wang et al. proposed

a more general and fundamental method for analyzing semantic relations among
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any multiple type of data. Compared to these works mentioned above,our emphasis

in this chapter is using multi-type factors integration for citation network analysis.

Similar to those work in web or data management research domains, researchers

have already started to pay attention to the integration of different kinds of citation

networks. The assumption is that different citation relationships can mutually re-

inforce each other, and thus can improve ranking performance. Zhou et al. [207] is

a representative work in this direction in which they proposed a query-specific co-

ranking framework which can integrate an author-coauthor relationship network and

the paper citation network. Compared to their work, our multi-type network pro-

vides a more comprehensive framework, and our proposed citation network frame-

work is a global, query-independent one.

PopRank [132] is another representative work whose main idea has been im-

plemented in Microsoft Academic Search3, a free academic search engine. One

advantage of PopRank is that it integrates conferences and journals in addition to

authors and papers into consideration. Our framework integrates one additional

factor: author affiliation and we combine content-based analysis and link structure

analysis in our framework.

One distinguished contribution of our work, compared to all others discussed

above, is that we introduce topical link analysis into consideration. In web re-

search domain, many improvements to PageRank have been proposed, including

Topic-Sensitive PageRank [67] in which a separate PageRank score calculation is

performed for each topic. With that influence, Nie et al. [131] proposed a Topical

PageRank and Topical HITS model which embed topical information into author-

ity propagation and demonstrated better performance over original PageRank and

HITS. Even though there has been research work showing use of topical information

in analyzing authors’ publications content (e.g., [123, 111]), no research work, to

the best of our knowledge, has introduced topical information into citation network

link analysis. We remedy this situation.

3http://academic.research.microsoft.com/
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3.6 Summary

Previous work has investigated the value of integrating author and paper informa-

tion in citation networks in ranking authors’ reputations. PopRank is a work we

have identified which integrated conference venues into consideration. We further

observed that there are yet more useful information we can extract and take use of,

for example, affiliations. To test this idea, we proposed in this chapter a multi-type

citation network framework which integrates citations among authors, papers, affili-

ations and publishing venues into one model, and uses a PageRank-based algorithm

to rank authors’ authority. In order to test the different impact among factors, we

further proposed a heterogeneous PageRank algorithm in which social factors may

propagate authority to neighboring factors with different probabilities. Moreover,

in order to better evaluate the prestige of an author in different kinds of research

topics, we incorporated topical link analysis into the citation network. We conclude

from experimental results that:

• Multi-type citation networks can effectively improve ranking performance. Af-

filiation and publishing venues provide additional useful information in evalu-

ating authors’ reputations.

• Topical link analysis shows positive improvement in ranking authors’ authority.

• Heterogeneous PageRank, with parameter tuning, can work even better than

Topical PageRank.
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Chapter 4

Expert Ranking: Integrating

Learning-to-Rank with Topic

Modeling

In previous chapter, we present an integrated model which combines both content-

based and enhanced PageRank-like graph-based approaches into expert finding. Par-

ticularly, the traditional BM25 approach is used for retrieving the content-based

relevancy for authors over queries. However, due to the data sparsity problem,

the bag-of-words based approach (i.e.: BM25) cannot accurately discover the latent

semantics of authors’ supporting documents and therefore may deteriorate the per-

formance in evaluating authors’ expertise. Generative topic modeling offers a good

solution in capturing the underlying meanings. We therefore focus on providing im-

proved topic modeling based approach into expert finding. On the other hand, even

though both probabilistic discriminative models and generative models have been

proposed to tackle the problem of expert ranking, the combination of them is sel-

dom explored. In this chapter, we introduce a pairwise learning-to-rank framework

into topic modeling, making the traditional unsupervised topic modeling process a

supervised one. Such a combination can help us solve the data sparsity problem,

and provides a platform to integrate additional features of authors.
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4.1 Introduction

Generative topic modeling has become a popular machine learning technique and

has shown remarkable success not only in text mining, but also in modeling authors’

interests and influence, and predicting linkage among documents (authors). Ever

since the success of the original two representative topic models, the pLSA and LDA,

which focus on pure content analysis by discovering the latent topics from large doc-

ument collections, a large body of literature on topic models has been established,

mostly by incorporating additional contextual information, such as time, geograph-

ical locations, or integrating linkage or social network information. Authorship is

one important contextual feature, which when incorporated into topic modeling, can

be used to derive the topic distribution over authors rather than documents, and

therefore can be used to model authors’ interests and influence.

Most of the existing topic models, however, are unsupervised. Documents or

authors are treated equally, while no prior-knowledge of their different importance

over topics has been explored or investigated. However, this is not the real situation.

Sometimes, we can know in advance that some document is more about a certain

topic than other documents, and that one author (researcher) is more prestigious

in one research domain than other authors. By exploring this prior-knowledge and

applying a supervised learning scheme into the topic modeling process, we hypoth-

esize that we can achieve more accurate and cohesive topic modeling results, which

can in turn help in better distinguishing the different importance (ranking) of new

documents (authors) in terms of their relevance or authority over topics.

In this paper, we concentrate on the ability of topic models in modeling au-

thors’ authority (interests or influence) in a research domain1, a typical task known

as expert ranking (expertise ranking or expert finding). In spite of many recent

developments fulfilling this task, several challenges still remain. First of all, the

sparseness problem in document content would prevent the ‘bag-of-words’-based

algorithms (term frequency, TFIDF, language model) from being accurate. It is

1in the paper, we use research domain, community and its associated query as interchangeable

concepts
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well-acknowledged that documents related to an author provide strong evidence in

evaluating authors’ expertise; however, such document content (especially consider-

ing the paper abstract) is normally very sparse, and therefore, a ‘bag-of-words’ based

algorithm cannot effectively capture the underlying semantics. The topic modeling

approach, however, is believed to provide a better solution in this aspect. Secondly,

few existing topic modeling based approaches, however, incorporate additional fea-

tures such as network based features and temporal features into the topic modeling

process to represent an author’s authority. Thirdly, most of the existing work on

expert ranking rely on carefully designed ranking models based on heuristics or tra-

ditional probabilistic principles, rather than applying machine learning techniques

to learn ranking functions automatically.

To fulfill the challenges mentioned above, we propose in this paper a supervised

learning scheme by incorporating the prior knowledge of the different importance

over topics between pairs of authors into the topic modeling process, which results in

a framework integrating the pair-wise learning-to-rank algorithm into topic model-

ing. We name this novel model as LtoR topic modeling (abbreviated as LtoRTM).

In the training process, we can not only infer the authors’ distribution over topics

and topics’ distribution over words, but also the coefficient representing the differ-

ent weights of topics. In the testing process, we can infer the topic proportion of

new authors. Furthermore, based on the new authors’ topic distributions, and the

learned coefficient in the training process, we can generate a ranked list of authors

in terms of their different importance (authority) across topics.

We go beyond pure contextual information by incorporating additional features

into the LtoRTM model, such as the number of publications or citations of authors.

To evaluate the effectiveness of our proposed model, we apply the model to two

expert ranking related applications: the task of predicting community-based future

award winners and predicting future PC members of several significant conferences

in computer science disciplines. To sum up, our paper has made the following con-

tributions: We propose a supervised learning scheme by distinguishing the different

importance of pairs of authors into author topic modeling process. To our best

knowledge, this results in the first framework integrating pair-wise learning-to-rank
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into topic modeling. We identify additional features besides the pure contextual

information, and integrate them into the proposed model framework. We evaluate

the effectiveness of our model by applying it to two applications measuring author

authorities: the tasks of predicting future award winners and future PC members.

Experiments have been conducted on real-world data sets to test the performance

of the proposed model and compare it with several other state-of-the-art topic mod-

eling or learning-to-rank algorithms.

4.2 Model Design

This novel topic model we develop is a hierarchical probabilistic model, where each

document is associated with attribute information. In this section, before introduc-

ing the two models (LtoRTM and LtoRTMF) we proposed, we provide a brief

overview of the basic Latent Dirichlet Allocation (LDA [18]); we then introduce the

LtoRTM model where only pure contextual attributes, i.e., the words of the docu-

ments, are considered, and finally the LtoRTMF model where additional features

with regards to authors’ expertise are incorporated.

LDA considers each document di in the data collection to be a mixture of T

topics, each of which is a mixutre of W words, where W here is the total number

of distinct words in the entire data collection. Each document di of length Ndi
is

modeled by the following generative process:

• draw θdi
|α ∼ Dir(α), a multinomial distribution over T topics;

• for each word position k in document di:

– draw a topic zdi,k ∼Multi(θdi
)

– draw a word wdi,k ∼ Multi(βzdi,k
)

Using the original LDA, documents’ topic proportion θdi
indicating documents’

relevance to topics is only learned from their individual content. This may not well

represent the real situation when we have prior knowledge that document di is more
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Figure 4.1: Graphical Model for LtoRTM

relevant than document dj to topic k. We hythposize that by integrating this prior

knowedge into topic modeling process, more accurate topic proportion is likely to be

achieved. This basic idea stimulates the proposal of the LtoRTM model, which can

be further extended into LtoRTMF model by incorporating additional features.

4.2.1 Model Description and Generative Process

The LtoRTM model builds upon the previous works, including [28, 46], which

extend the original LDA model by incorporating linkage between pairs of documents

into topic modeling process. However, two characteristics distinguish our model

from previous work. Firstly, we focus on modeling author interests and influence,

Therefore, instead of modeling individual documents, we construct a virtual profile

to represent each author (researcher) by concatenating all his/her publications. As

a result, the topic proportion we derive for each virtual profile represent authors’

distribution (authority) over topics. In the following part of the paper, we use

document and virtual profile interchangeably. Secondly, we model the difference

between pairs of author virtual profiles in terms of their topic distribution rather

than the linkage information which measures the similarity between two connected

documents.

We depict the graphical model of LtoRTM in Figure 4.2, which is a segment of
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Table 4.1: Notation

Symbol Size Description

W scalar size of word vocabulary
D scalar number of papers
T scalar number of latent topics
Nd scalar the number of words in paper d

N scalar the number of words in corpus

Observed Data

wd |wd| the words lists of paper d

w N the set of word tokens in corpus
yc

didj binary indicator

Hyper-Parameters

α 1× T Dirichlet prior for θ

ηc 1× T coefficient

ηc
1 ηc

2 1× (T + |F |) coefficient

Random Variables

θ A× T distribution of authors over topics
β T × V distribution of topics over words
zdi 1× T topic assignments for ith word in paper d

the complete model consisting of only two connected virtual profiles. As indicated,

it is a concatenation of two original LDA graphical plates, each of which represent

one author virtual profile, connected by a binary variable indicator yc
didj , which

represents the authority preference between author di and dj in community c.

Similar to the original LDA, each author virtual profile is represented by a plate,

in which the shaded circle wd is the observed data, representing each position-based

word appearing in the profile, and the un-shaded circle z is the random variable

representing the topic assignment for one particular word. θd is a multinomial ran-

dom variable, indicating the distribution of author virtual profile d over topics. β

is global multinomial random variable, indicating the topic distribution over words

in the whole corpus. Suppose that W , D, T are the number of distinct word (word

vocabulary), the number of author virtual profiles and the number of topics respec-

tively. We can represent θ as a D × T matrix, where each row represents one θd.
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Similarity, β can be represented as a T ×W matrix. There also exists a T dimen-

sional Dirichlet prior hyper-parameter α, which determines θ. Since our model is

built upon the non-smoothed LDA, we do not introduce the Dirichlet prior for β.

Additional details of the model parameters are illustrated in Table 4.1.

Given a collection of author virtual profiles, one essential target of our topic

modeling is to discover the semantically coherent clusters of words (known as topics)

to represent the profiles. Until now, we have introduced the model that can fulfill

the task. Moreover, in order to model the authority preference over topics between

author profiles, we further introduce a binary variable indicator yc
didj

, named as the

binary preference indicator, to indicate the authority preference between author

di and dj. We have yc
didj

= 1 if author di is believed to be more prestigious than

author dj in domain (community) c. This binary indicator is distributed according

to a distribution that depends on the topic assignments for the two participating

author profiles, and a domain (community)-specific regression parameter ηc.

The generative process of this model is divided into two periods, and can be

described as follows:

• Stage 1: For each author virtual profile di:

– Draw the topic proportion θdi
|α ∼ Dir(α)

– For each word at position n in profile di: wdi,n

∗ Draw the topic assignment zdi,n|θdi
∼Multi(θdi

)

∗ Draw word wdi,n|zdi,n, β ∼Multi(βzdi,n
)

• Stage 2: For each pair of author profiles di and dj with known preference:

– Draw the binary preference indicator, satisfying:

yc
di,dj
|zdi

, zdj
∼ ψ(·|zdi

, zdj
, ηc) (4.1)

where, zdi
= zdi,1, zdi,2, . . . , zdi,n.
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Figure 4.2: Graphical Model for LtoRTM

To note that zdi
can be represented as a matrix, where each zdi,n is a vector with

only one element set to be 1 and the other elements set to be 0. It indicates the

specific topic assignment for the nth word wdi,n in author profile di.

ψ represents the distribution function that yc
didj

depends on. In order to model

the difference in terms of authors’ authority over topics, we assume that yc
didj

de-

pends on the difference between zdi
and zdj

. In addition, since it is a binary

indicator, we suppose that it follows the Bernoulli distribution, in which:

yc
di,dj|zdi

, zdj
, ηc, υc

∼ Bernoulli(σ(ηT
c (zdi

− zdj
) + υc))

in which, σ(·) is the sigmoid function. This function models each per-pair binary

variable yc
didj as a logistic regression with hidden co-variates, parametrized by coef-

ficient ηc and the intercept υc. We further represent the original matrix zdi
as a T

dimensional vector zdi
, where zdi

= 1
Ndi

∑n=Ndi

n=1 zdi,n.

4.2.2 Incorporating Features

In the model we introduced in Section 4.2.1, authors’ different preferences over topics

are only determined by their associated contextual information, i.e., the papers they

have published. As we can see from the generative process of the model, the binary
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preference indicator only depends on authors’ topic assignments which are derived

from author profiles. However, to measure an author’s authority is a complicated

process, as authors’ expertise is not only determined by the papers they have written,

but also by several other factors, such as their collaboration with other researchers,

the influence of their published works, and some temporal characteristics of the

authors, such as, how many years have they devoted into research, how frequently

do they publish, etc. To better model how authors’ authority is differentiated,

we extend the LtoRTM model by introducing an additional factor representing

features.

LtoRTM with features

We depict the extended graphical model of LtoRTM in Figure 4.4. We name it

as the LtoRTMF model. As indicated, we represent each author A by an oval,

in which, the author’s virtual profile generated by the concatenation of his/her

publications is still represented by a plate. In addition to that, we introduce a

shaded circle Fdi
to represent the features associated with this author. Features

are assumed to be observed data. Under this scheme, the authority preference

between author Ai and Aj is not only determined by the topic assignments of their

virtual contextual profiles, but jointly determined by both the content information

and additional features. Correspondingly, we introduce two coefficients: ηc
1, a T

dimensional vector, is the regression parameter for topic assignment z, and ηc
2 is

the regression parameter for feature set. The size of ηc
2 would be determined by the

number of features we identify. Now, the binary preference indicator yc
didj would be

determined by following the distribution as:

yc
di,dj|zdi

, zdj
,fdi

,fdj
, ηc

1, η
c
2

∼ Bernoulli(σ(ηT
c1(zdi

− zdj
) + ηT

c2(fdi
− fdj

) + υc))
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Figure 4.3: Graphical Model for LtoRTMF

Features

To represent authors (researchers)’ authority, we identify several groups of features,

each of which measures the expertise of an author from one aspect. Generally

speaking, the features we consider reflect the overall expertise of an author (e.g.,

the total number of publications of an author) as well as his/her expertise in a

specific domain or community (e.g., the author’s number of publications in one

domain). The whole feature set can be divided into four groups: 1) content profile

based features; 2) simple bibliographic based features; 3) network based features;

and 4) temporal features.

Content profile based features : Even though we directly model the contex-

tual virtual profile of an author by discovering its coherent clusters of words and

representing it by a distribution over topics, we are also interested in measuring

the content profiles by other widely-used IR metrics. Here we compute the tradi-

tional BM25 score of each author virtual profile, as well as the relevance score using

standard language models. Both of these features are domain-based.

Simple bibliographic based features : We adopt a set of simple bibliographic

features. These include:

total publication number (totalPubNo): which indicates the total number
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of publications of one author, across different research domains.

total citation number (totalCitNo): which indicates the total number of

citations an author received from other papers published in different domains.

H-index[71]: H-index is the most well-known measurement in evaluating a re-

searcher’s expertise. A researchers is said to have an H-index with size h if h of his or

her total papers have at least h citations each. This index is affected by the number

of citations that a researcher has and the citation distribution among a researcher’s

various papers.

G-index[47]: G-index is another popular instrument. The G-index value is the

highest integer (g) such that all the papers ranked in Position 1 to g in terms of

their citation number have a combined number of citations of at least g2.

Rational H-index distance (HD-index)[149]: this variant of H-index calcu-

lates the number of citations that are needed to increase the H-index by 1 point.

Rational H-index X (HX-index)[149]: the original H-index indicates the

largest number of papers an author has with at least h citations. However, a re-

searcher may have more than h papers, for example, n papers, that have at least h ci-

tations. If we define x = n−h, then the HX-index is calculated byHX = h+x(s−h),

where s is the total number of publications an author has.

E-index[203]: the original H-index only concentrates on the set of papers an

author published, each of which has at least h citations. This set of papers is often

referred to as the h-core papers of an author. By using this measurement, the only

citation information that can be retrieved is h2, i.e., at least h2 citations of an

author can be received. However, the additional citations for papers is the h− core

would be completely ignored. To complement the H-index for the ignored excess

citations, E − index is proposed, which can be computed by e2 =
∑h

j=1(citj − h) =
∑h

j=1 citj −h
2, where citj are the citations received by the jth paper in the h− core

set. We can further have E − index = sqrt(e2).

Individual H-index IH-index[13]: this measurement is proposed to reduce

the effects of co-authorship. It can be computed by dividing the standard H-index
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by the average number of authors in the h-core set: IH-index= h2/NT
a , NT

a is the

total number of authors in h-core set.

Normalized Individual H-index NIH-index[65]: this measurement is also

proposed to reduce the coauthor’s effect, but is much finer-grained than the previous

one. To compute it, we can firstly normalize the number of citations for each paper

in the h-core by dividing the number of its citation by its number of authors. Then

we compute the H-index score based on these normalized citation counts.

It is noticeable to mention that we calculate all the features mentioned above

from all its publications, as well as only those publications from a specific research

domain. For example, we can compute the overall H-index of an author, by doing

that, all the papers written by that author would be considered. However, when

computing the H-index of an author in a specific domain c, we would only consider

those papers published in that domain, and compute its citations only based on

other papers that are also from that domain.

Network based features : this group of features measures how well an author

collaborates with other authors, and how their publications influence other authors.

We construct two types of networks, and apply the PageRank algorithm to compute

the authors’ authority scores. The networks we considered are:

Coauthor Network: this network is generated by connecting authors by their

coauthor-relationships. For the sake of PageRank algorithm, we convert each undi-

rected edge into two directional edges. As a result, one non-weighted edge would

exist from author ai to author aj and from author aj to author ai if they have

written at least one paper together.

Citation Network: this directed network is generated by connecting authors

by their citations. One non-weighted edge would point from author ai to aj if at

least one publication of author ai cites one paper of author aj .

We also generate such two kinds of networks for each research community we

considered.

Temporal features : this group of features measures authors’ authority by some

temporal characteristics associated with them. These include:
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CareerTime: this measures how long a researcher has devoted into academic

research? We assume that the longer career time a researcher has, the higher au-

thority he may have.

LastRestTime: this indicates how many years have passed since the last pub-

lication of a researcher. We assume that a long time rest without academic output

will negatively affect a researcher’s academic reputation.

PubInterval: this measures how many years on average would a researcher

take between every two consecutive publications. We assume that more frequent

publication indicates more active academic participation.

Citation Influence ratio: we define and consider one other temporal factor

which tests the long time influence of a researcher’s publication, and thus indirectly

represents the influence of the researcher. We assume that if a paper continues to be

cited a long time after its publication, it brings higher prestige to its author (e.g., the

paper PageRank [133] is frequently and persistently cited by the following papers).

To model this temporal factor, we first introduce a decay function to differentiate

the weight between a pair of paper citations. If paper pj published in year yj cites

another paper pi published in year yi (yj − yi) ≥ 0, we define a probability as the

citation influence ratio of paper pj on pi as: CIR(pji) = β1(1 − β
yj−yi

2 ), where β2

(0 < β2 < 1) is the decay base. We now define the citation influence between a pair

of authors as: CI(aji) =
∑

CIR(pji), where pj is any paper of author aj, pi is any

paper of ai, and pj cites pi.

Contemporary h-index CH-index[159]: this index adds an age-related weight-

ing to each paper. The basic assumption is that the older the paper, the less the

weight. The new citation count for each paper of an author can be computed as

Sc(i) = γ × (Y (now)− Y (i) + 1)−δ × |C(i)|, where Y (i) is the year when paper i is

published, and |C(i)| is the set of paper citing paper i. In computation, δ is often

set to be 1, and γ is set to be 4. After computing this new citation count for each

paper, we can compute the H-index as the standard one based on the new citation

count of each paper.

AR-index[80]: it is also an age-weighted index. The citation count of each
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paper would be divided by the age of that paper, and then the AR-index is the

square root of the sum of all the papers in the h-core of an author.

AWCR-index[65]: This is the basically the same with the AR-index, but it

sums over the weighted citation count of all the papers of an author rather than

only the papers in the h-core set.

AvgPubNo: this is computed by dividing the total publication number of an

author by the CareerT ime of this author.

AvgCiteNo: this is computed by dividing the total number of citations of an

author by his/her CareerT ime.

These features are also computed either based on all publications across domains

or on those domain-specific publications. Overall, we have identified 42 distinct

features.

4.3 Model Estimation and Ranking Scheme

To solve the LtoRTM and LtoRTMF model, we need to conduct model inference

and estimation. This includes the model inference for 1) topic assignment (z), 2)

θ (virtual-profile-topic distribution), and 3) β (the topic-word distribution), as well

as the parameter estimations for 1) α (the Dirichlet prior) and 2) ηc (the regression

coefficient). Based on the variables and parameters learned from the training set,

we also introduce how to achieve the topic assignment and topic proportions for test

authors, and how to rank them.

4.3.1 Inference and Estimation

Given a collection of author virtual profiles D, in order to solve the topic model

as we proposed, we would like to find parameters α, β, ηc, that can maximize the
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(marginal) log likelihood of the data:

l(α, β, ηc)

= log(p(W ,Y |α, β, ηc))

= log([
∏

d:1→D

p(w|α, β)][
∏

(di,dj)∈E

p(yij|η
c)])

= log

(

D
∏

d=1

∫

p(θ|α)(
Nd
∏

n=1

∑

zdn

p(zdn|θd)p(wdn|zdn, β))dθ

×
∏

(di,dj)∈E

∑

zdi

∑

zdj

p(yij|zdi
, zdj

, ηc)





where, we denote E as the set of pairs of author profiles with known preferences. In

our model, we would only model those pairs of author profiles with explicitly known

preferences.

However, to maximize such log likelihood is intractable due to the problematic

coupling between θ and β, which is caused by the existing edges between θ, z and

β. Even though exact inference is intractable, there exist a wide variety of approxi-

mate inference algorithms, including including variational inference [?], expectation

propagation [124], and Markov chain Monte Carlo (MCMC) schemes. In our work,

we take use of the variational inference for approximating the posterior inference,

and apply this procedure in a variational EM algorithm for parameter estimation.

The basic idea of variational inference is to make use the Jensen’s inequality to

obtain an adjustable lower bound on the log likelihood. A simple way to obtain

a tractable family of lower bounds is to consider simple modifications of the orig-

inal graphical model in which some of the edges and nodes are removed, and the

resulting graphical model is endowed with free variational parameters as follows in

equation 4.2:

q(θ,z|γ, φ) = q(θ|γ)
N
∏

n=1

q(zn|φn) (4.2)

where, γ and φ are two free variational parameters. γ is a Dirichlet parameter,

which similar to θ, can be represented by a D × T matrix; and φ is a multinomial

parameter, which similar to z, can also be represented as of D×N×T tensor, where
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D is the number of author profiles in corpus, N is the number of position-based word

tokens, and T is the number of pre-defined topics. Note that, Eq[zd,n] = φd,n.

With γ and φ, and integrating over the two random variables θ and z, the log of

the marginal probability can be represented as:

log(p(w, y|α, β, ηc))

= log(

∫

∑

z

p(w, y, θ, z|α, β, ηc)dθ)

= log(

∫

∑

z

p(w, y, θ, z|α, β, ηc)q(θ, z)

q(θ, z)
dθ)

According to Jensen’s inequality log(E(a)) ≥ E(log(a)), we can further have:

log(Eq[
p(w, y, θ, z|α, β, ηc)

q(θ, z)
])

≥ Eq[log(
p(w, y, θ, z|α, β, η)

q(θ, z)
)]

= Eq[log(p(w, y, θ, z|α, β, ηc))]− Eq[log(q(θ, z))]

This is the lower bound of the original log likelihood, and is the goal probability

we need to maximize.

To denote Eq[log(p(w, y, θ, z|α, β, η))]−Eq[log(q(θ, z))] as L(γ, φ;α, β, η), we can

expand it as:

L(γ, φ;α, β, ηc)

=
∑

(di,dj)∈E

Eq[log(p(yij |zdi
, zdj

, ηc))]

+
∑

d

Eq[log(p(θd|α))] +
∑

d

∑

z

Eq[log(p(zdn|θd))]

+
∑

d

∑

z

Eq[log(p(wdn|zdn, β))]

− Eq[log(q(θ|γ))] −Eq[log(q(z|φ))]
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Each element on the right-hand side of the above equation can be further ex-

panded. Due to space limit, here we only present the expansion of the first element,

which represents the primary contribution of our model. The expansions of the

other elements are the same with the original LDA model.

In our LtoRTM model, yc
didj follows the Bernoulli distribution, taking ηc, zdi

,

zdj
as parameters. In the extended LtoRTMF model, it further depends on the

feature set of authors: fdi
, fdj

.

By representing Bernoulli distribution as a generalized linear model, we can have

in the LtoRTM model, the probability:

p(yij|zdi
,zdj

, ηc) = exp{yηT
c (zdi

− zdj
)− log(1 + exp(ηT

c (zdi
− zdj

)))} (4.3)

and in the LtoRTMF model:

p(yij|zdi
,zdj

,fdi
,fdj

, ηc1, ηc2)

= exp{y(ηT
c1(zdi

− zdj
) + ηT

c2(fdi
− fdj

))

− log(1 + exp(ηT
c1(zdi

− zdj
) + ηT

c2(fdi
− fdj

)))}

By taking log of the probability, and using first-order approximation to compute

their expectations, we can finally have:

in the LtoRTM model:

E[log(p(yij|zdi
,zdj

, ηc))] = yηT
c (φdi

− φdj
)− log(1 + exp(ηT

c (φdi
− φdj

))) (4.4)

and in the LtoRTMF model:

E[log(p(yij|zdi
,zdj

,f di
,fdj

, ηc1, ηc2))]

= y(ηT
c1(φdi

− φdj
) + ηT

c2(fdi
− fdj

))−

log(1 + exp(ηT
c1(φdi

− φdj
) + ηT

c2(fdi
− fdj

)))
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We have until now expanded L(γ, φ;α, β, ηc). We then show how to maximize L

with respect to φ, γ, α, β and ηc.

Inferring φ

To maximize L with respect to φ, we can collect the terms associated φ. Since

yc
didj depends on the difference between zdi

and zdj
, which have been represented

by φdi
and φdj

, we need to take derivatives with respect to φdi
and φdj

respectively.

In the LtoRTM model, we have

φdin

∝ log β·, wdn + Γ(γd)− 1Γ(1T γd)

+
∑

(di,dj)∈E

(
y

Ndi

ηT
c −

ηT
c

Ndi

exp{ηT
c (φdi

− φdj
)}

1 + exp{ηT
c (φdi

− φdj
)}

)

φdjn

∝ log β·, wdn + Γ(γd)− 1Γ(1T γd)

−
∑

(di,dj)∈E

(
y

Ndj

ηT
c +

ηT
c

Ndj

exp{ηT
c (φdi

− φdj
)}

1 + exp{ηT
c (φdi

− φdj
)}

)

where

φdi
=

1

Ndi

∑

n

φdn (4.5)

and in the LtoRTMF model with additional features, we have:

φdin

∝ log β·, wdn + Γ(γd)− 1Γ(1T γd) +
∑

(di,dj)∈E

(

y

Ndi

ηT
c1

−
ηT

c1

Ndi

exp{ηT
c1(φdi

− φdj
) + ηT

c2(fdi
− fdj

)}

1 + exp{ηT
c1(φdi

− φdj
) + ηT

c2(fdi
− fdj

)}
)

)
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φdjn

∝ log β·, wdn + Γ(γd)− 1Γ(1T γd)−
∑

(di,dj)∈E

(

y

Ndj

ηT
c1

+
ηT

c1

Ndj

exp{ηT
c1(φdi

− φdj
) + ηT

c2(fdi
− fdj

)}

1 + exp{ηT
c1(φdi

− φdj
) + ηT

c2(fdi
− fdj

)}
)

)

Inferring η In the LtoRTM model,

∂L

∂ηc

=
∑

(di,dj)∈E

(y(φdi
− φdj

)− (φdi
− φdj

)
exp{ηT

c (φdi
− φdj

)}

1 + exp{ηT
c (φdi

− φdj
)}

)

and in the LtoRTMF model, where we consider two coefficients ηc
1 and ηc

2, we

have:

∂L

∂ηc1

=
∑

(di,dj)∈E

(

y(φdi
− φdj

)−

(φdi
− φdj

)
exp{ηT

c1(φdi
− φdj

) + ηT
c2(fdi

− fdj
)}

1 + exp{ηT
c1(φdi

− φdj
) + ηT

c2(fdi
− fdj

)}

)

∂L

∂ηc2

=
∑

(di,dj)∈E

(

y(fdi
− fdj

)−

(fdi
− fdj

)
exp{ηT

c1(φdi
− φdj

) + ηT
c2(fdi

− fdj
)}

1 + exp{ηT
c1(φdi

− φdj
) + ηT

c2(fdi
− fdj

)}

)

We leave the updating rule for α, β and γ for readers’ reference, since they are

the same as the original LDA model[18].
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4.3.2 Ranking Scheme

In the training process, we have approximated the posterior distribution of γ (repre-

senting θ), φ (representing the the topic assignments zd ), β, as well as α and ηc. In

the testing phase, a set of new author virtual profiles would be given. The words in

those profiles are the observed data, but we would not know the preference between

every pair of the profiles. In the testing phase, the α, ηc and β variables would be

regarded as the known parameters, as their value have been estimated during the

training process. As a result, what we need to approximate for the new author pro-

files are 1) the topic assignments for their word tokens (θ or in variational inference,

the γ), and 2) the author-profile-topic distributions z or in variational inference, the

φ:

p(γ, φ|Dtest, α, β, ηc) (4.6)

We would leave the inference process as an excercise for the readers, as with-

out incorporating the pair-wise preference information between author profiles, our

model would retreat to the original LDA model [18].

After approximating the γ and the φ variables for author profiles in testing set,

we can compute the authority score of each author (represented by his/her author

profile di) and rank them by:

P (di|c) = ηT
c φdi

(4.7)

or, with additional features:

P (di|c) = ηT
c1φdi

+ ηT
c2fdi

(4.8)

4.4 Experimental Evaluation

To demonstrate the effectiveness of our LtoRTM and LtoRTMF model, we con-

ducted experimental studies comparing them with several state-of-the-art topic
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models and learning-to-rank algorithms. Particularly, we apply our model to two

applications, which evaluate the expertise of researchers from two aspects: the pre-

diction of SIG-community award winners and the prediction of PC members of the

main conference of several research communities.

4.4.1 Experiments Setup

Data Set The experiments were carried out over two real world data sets. The

first data set is a subset of the ACM Digital Library, from which we crawled one

descriptive web page for each 172,890 distinct papers having both title and abstract

information. For each published paper, we extracted the information about its

authors and references. While not eliminating the problem, to minimize ambiguity

in the use of author names, we concatenate the authors’ first and last name, and

remove the middle name (if present). We then use exact match to merge candidate

author names. Finally, we obtain 170,897 distinct authors, and 2097 venues.

The second data set we utilized is the data set ‘DBLP-Citation-network V5’

provided by Tsinghua University for their ArnetMiner academic search engine [171].

This data set is the crawling result from the ArnetMiner search engine on Feb 21st,

2011 and further combined with the citation information from DBLP2. We name

this data set as the ArnetMiner dataset. The original data set is reported to have

1,572,277 papers and to include 2,084,019 citation-relationships. After carrying out

the same data processing method as we did for the ACM data set, we find 1,572,277

papers, 795,385 authors and 6010 venues.

For papers in each data set, we filter out the stop words in paper content, and

collect the words that appear more than 10 times in the entire corpus. We finally

retrieve 43,748 and 107,576 distinct words for ACM and ArnetMiner data sets re-

spectively.

Research Domain Identification To identify a research community, we first

manually cluster papers into different domains, and further group their associated

authors. We choose six research communities as our targeting communities (see

2http://www.informatik.uni-trier.de/ ley/db/

92



Table 4.2: Community, Query and Award Winners ground truth. Numbers out side of
the parentheses or in the parentheses indicate the number of winners available
in ACM and ArnetMiner data set respectively

Community Corresponding Query SIG award winners

(1990-2009)

sigarch hardware architecture 27(27)

sigsoft software engineering 15(15)

sigkdd data mining 7(7)

sigir information retrieval 9(9)

sigcomm network communication 18(18)

sigmod database 18(18)

Table 4.2). For each such research community, we collected and merged the Top

20 venues identified by the MSRA academic search engine3 and ArnetMiner search

engine4 for that research community respectively. Papers that are published in

those venues are considered to be domain-specific papers of that community, and

the authors of these papers are considered to be the domain-specific authors of

that community. We collect the domain-specific features based on the domains we

identified.

4.4.2 Application

Task description and Ground Truth generation

Both LotRTM and LtoRTMF are especially designed for modeling author’s authority

(interests or influence).

In this paper, we focus on two applications that are closely related to expert

ranking: predicting future award winners of a specific research community (the

ACM SIG community), and predicting PC members of a main conference in research

domain. We choose these two applications for two reasons: 1) they evaluate the

expertise of a researcher from two different points of view; 2) we can retrieve excellent

3http://research.microsoft.com/en-us/projects/academic/
4http://arnetminer.org/
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objective ground truth for both of them, which can avoid human labeling, which is

assumed to be biased and subjective.

Award Winner Prediction: Each year, in many ACM SIG communities, some

outstanding researchers will be granted an award in honor of his or her profound

impact and numerous research contributions. For example, in 2012, Prof. Norbert

Fuhr was granted the ‘Salton Award’ in ‘SIGIR’ community for his ‘pioneering,

sustained, and continuing contributions to the theoretical foundations of information

retrieval and database systems’.

It would be an interesting research task to predict the future award winners given

historical information. To be more specific, the task of predicting award winners

can be described as: Given a specific research community c, and all its historical

award winners before year Y , can we successfully predict its award winner on year

Y ?. Normally, only one researcher would be granted the award each year.

From the ACM SIG official web site, we selected six SIG communities, and

collected their historical award winners from 1990 to 2009, out of which, 2000-2009

is the period of time that we intend to predict. We generate the corresponding

query for each community based on the main research area of that community; for

example, the query for SIGIR community is ‘information retrieval’. We also check

the generated queries with the 23 categories provided by Microsoft Academic search

engine, and make sure that each query corresponds to one category. We set the

number of topics to be 20 for this task.

Conference PC member Prediction: Working as a PC member of the main

conference in a research community is an important indicator of a researcher’s ex-

pertise. This task of PC member prediction can be described as Given a conference

(representing a research community c), and all its PC members before year Y , can

we successfully predict its PC members on year Y ?

For three SIG communities (SIGKDD, SIGIR, SIGMOD), we choose one main

conference for each of them as our targeting conference, and collected its PC mem-

bers from its official website between 2000 and 2009. 2005-2009 is the period of time

that we intend to predict. Table 4.3 shows the community, the chosen conferences,

94



Table 4.3: Community, Conference, and PC member ground truth

Cmnty. Years
(Conf.)

KDD
2000 2001 2002 2003 2004

(kdd)
55(57) 74(78) 73(78) 113(116) 124(127)
2005 2006 2007 2008 2009
129(130) 178(184) 210(219) 235(241) 230(247)

IR
2000 2001 2002 2003 2004

(sigir)
78(81) 41(43) 189(197) 38(38) 33(33)
2005 2006 2007 2008 2009
24(24) 114(114) 352(367) 365(381) 569(590)

MOD
2000 2001 2002 2003 2004

(sigmod)
14(14) 52(52) 65(65) 102(103) 136(136)
2005 2006 2007 2008 2009
135(140) 42(44) 4(4) 126(128) 126(129)

as well as the number of PC members (also in our data corpus) for that conference

between 2000-2009. For this task, we set the number of topics to be 10.

Training and Testing set generation

Both the training and testing sets are generated on per-community and per-year

basis. Since we have few positive samples, as compared to a much larger set of

negative samples, we pre-set a pos-neg ratio λ to randomly select negative samples.

The process of generating the training set is as follow: suppose we intend to predict

the award winner (or PC member) for community SIGKDD on year Yi, we retrieve

and regard all award winners (or PC members) of SIGKDD on year Yj (1990 ≤

Yj ≤ Yi − 1) as positive samples, and for each positive sample, we randomly choose

λ times other authors which are not SIGKDD award winners (or PC members) of on

year Yj. Such a process would be repeated 100 times, and all positive and negative

samples would then form the training set of community SIGKDD on year Yi. λ can

be a tuned parameter, and in our current experiments, we set it to be 2.

For generating the testing set, for each community c on year Yi, we retrieve the

Top 1000 authors in terms of their in-domain(c) publication number as the testing
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set. We have also tried to generate the testing set by retrieving the Top 1000

authors in terms of their BM25 scores or a pool list of the merged Top 200 authors

across all features, however, working on testing samples retrieved by their in-domain

publication number gives the best performance.

Baseline Algorithms

RankSVM (rSVM) [81] is a pair-wise learning-to-rank algorithm, which is designed

to maximize the margin between positively and negatively labeled documents in the

training set by minimizing the number of discordant pairs. Its learning task can be

defined as the following quadratic programming problem.

min
ω,ξq,i,j

1

2
‖ω‖2 + c

∑

q,i,j

ξq,i,j subject to

ωT X
q
i ≥ ωT X

q
j + 1− ξq,i,j,

∀Xq
i ≻ X

q
j , ξq,i,j ≥ 0

where Xq
i represents the query-document feature vectors for document i. Xq

i ≻

Xq
j implies that document i is ranked higher than document Xq

j with respect to

query q in the training set. ξq,i,j denotes the non-negative slack variable. c is the

parameter determining the trade-off between the training error and margin size.

‖ω‖2 represents the structural loss.

AdaRank [187] is a list-wise learning-to-rank algorithm. Instead of training ranking

models by minimizing the loss function loosely related to the performance measures

(e.g., minimizing classification error on instance pairs), AdaRank is proposed to

minimize the loss function directly defined on the performance measures (i.e., MAP,

MRR, NDCG) by repeatedly constructing ‘weak rankers’ on the basis of re-weighted

training data, and finally linearly combines the learned weak rankers to make pre-

dictions over testing data.

Supervised LDA[17] extends the original LDA model by adding a response variable

connected to each document. Its ultimate goal, correspondingly, is to infer the

latent topic structure of an unlabeled document, and then generate a prediction of
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its response. Supervised LDA is especially designed for applications like predicting

the ratings of movie reviews and the category of a document. Even though it is also

a supervised learning algorithm, it does not explore the difference between every

pair of documents. The response is only determined by the topic assignment of

individual document.

For all three baselines, we feed them the same training data and testing data

as we generated for running our LtoRTM and LtoRTMF model. We choose the

average rank (avgRank) and MAP as the evaluation metric for predicting award

winners and PC members respectively.

Prediction Results

???? show the results of predicting award winners, as compared with the baseline

algorithms, in both ACM and ArnetMiner data sets respectively. We show the

avgRank for each community as well as the overall average rank across communities.

Predicting Award winners We test on RankSVM with pure content as well as

additional features. For sLDA, we only work on word count features. AdaRank

applies a different learning mechanism, where we took each of the 42 distinct fea-

tures as one ‘weak learner’. There is no word count information used in AdaRank

algorithm. Several observations can be made from the results in Table2 4.4 and 4.5:

1) RankSVM still performs the best in terms of overall performance, however, this

is not always true looking at individual communities. For example, our LtoRTM

model can achieve better results than RankSVM for the ‘sigsoft’ community. 2)

LtoRTM works better than AdaRank and sLDA in terms of overall performance

under most circumstances (except the sigmod community on ArnetMiner data set,

where AdaRank works the best); 3) Incorporating additional features does not guar-

antee improved performance on individual communities. This is true not only for our

LtoRTM vs LtoRTMF model, but also for RankSVM. However, we always obtain

improved overall performance with additional features. 4) we can achieve similar

results on both data sets.
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Table 4.4: Award winner prediction: ACM avgRank

Algorithm arch soft kdd ir comm mod Overall

rSVM (C) 35.0 123.7 120.0 6.7 80.3 49.3 75.22

rSVM (C+F) 41.4 121.1 119.0 5.7 48.6 49.7 70.03

AdaRank 43.7 201.1 161.0 36.7 113.2 78.6 113.19

sLDA (C) 137.7 126.2 98.5 42.3 35.8 129.4 104.5

LtoRTM 108.2 95.7 82.6 22.3 109.8 136.0 97.05

LtoRTMF 120.0 101.0 81.7 24.8 98.2 87.4 90.86

Table 4.5: Award winner prediction: ArnetMiner avgRank

Algorithm arch soft kdd ir comm mod Overall

rSVM (C) 37.0 122 138.0 5.7 46.0 49.7 69.67

rSVM (C+F) 69.3 56.3 67.1 97.8 109.7 39.2 63.89

AdaRank 194.8 127.4 63.9 22.4 52.2 65.7 96.35

sLDA (C) 99.7 105.9 105.3 166.0 149.4 108.9 115.12

LtoRTM 141.9 76.2 47.8 117.3 91.4 128.4 103.31

LtoRTMF 118.5 74.9 48.2 138.9 204.4 34.0 91.21

Predicting PC members Results on predicting PC members are reported in Ta-

bles 4.6 and 4.7 for ACM data set and ArnetMiner data set respectively. For the

ACM data set, we can see that RankSVM still works the best; Our LtoRTM model

outperforms AdaRank and shows competitive results with sLDA. For the Arnet-

Miner data set, however, our LtoRTMF model can outperform that of RankSVM

Table 4.6: PC member prediction: ACM MAP

Algorithm sigkdd sigir sigmod Overall

RankSVM (C) 0.5966 0.5952 0.2303 0.4740

RankSVM (C+F) 0.6110 0.5942 0.2267 0.4773

AdaRank 0.5997 0.2168 0.0261 0.2808

sLDA (C) 0.3358 0.4150 0.1814 0.3107

LtoRTM 0.3201 0.5146 0.0958 0.3102

LtoRTMF 0.4909 0.3372 0.1738 0.3340
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Table 4.7: PC member prediction: ArnetMiner MAP

Algorithm sigkdd sigir sigmod Overall

RankSVM (C) 0.0692 0.0590 0.0479 0.0586

RankSVM (C+F) 0.0742 0.0632 0.0513 0.0629

AdaRank 0.1075 0.0411 0.0130 0.0539

sLDA (C) 0.0489 0.0809 0.0418 0.0571

LtoRTM 0.0496 0.0821 0.0424 0.0580

LtoRTMF 0.1200 0.0545 0.0393 0.0712

with additional features. We can also observe that performance varies across dif-

ferent communities, and that incorporating features does not provide performance

improvement for all communities.

Feature Analysis

In LtoRTMF model, ηc
2 is the coefficient vector associated with the feature vector.

By checking the coefficient value associated with each feature, we can determine its

contribution(importance) to the overall performance. Figures 4.4 and 4.5 illustrate

the results for predicting award winners and PC members of the SIGKDD com-

munity respectively. In both of these figures, we use different colors to represent

features’ importance. Compared with the right-side indicator bar, colors more closer

to ‘0’ indicate less important features. ‘Red’ colors indicate positive correlations,

and ‘Blue’ colors indicate ‘negative’ correlations.

We can observe that most of the features perform consistently across different

years. Some features (i.e., feature #4: overall average citation number) keep on

contributing positively, while others contribute (in-domain pub-interval (#40)) neg-

atively. in-domain avgPubNo (#24), in-domain avgCiteNo (#25), and in-domain

citation-network based PageRank (#26) are the three most important features in

award winner prediction. Similar trends can be observed in Figure ??, where fea-

tures show even more consistent performance than in award winner predictions.
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Figure 4.4: Feature Analysis (SIGKDD 2009) for award winner prediction
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Figure 4.5: Feature Analysis (SIGKDD 2009) for PC member prediction

4.4.3 Qualitative Topic Modeling Results

We are also interested in evaluating the ability of our model in discovering latent

topics in the author profile collections. Based on the learned results from the training

set of predicting 2009 award winners for the sigir community(working on ACM data

set), we generally retrieve the Top 10 returned words for two identified topics, and

compare them with the results obtained from the original LDA.

As shown in Table 4.8, we intend to retrieve more coherent topic-related words.

For example, for topic ‘information retrieval’, we can identify words like ‘search’,

‘terms’, which are relevant words but not ranked with Top 10 using LDA. On topic
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Table 4.8: Topic Modeling Results

LDA LtoRTM LDA LtoRTM

Topics: Information retrieval Topics: Hardware

information information design hardware
retrieval retrieval hardware circuit
systems query level circuits
query document architecture delay
based language processor architecture
model model paper processor
document text data routing
database search computer bounds
language terms based clock

‘hardware’, we can retrieve some relevant words as ‘circuit’ and ‘clock’.

Perplexity [33] is a standard measure to estimate the performance of topic mod-

eling. Lower perplexity score indicates better generalization performance. Given

a set of test words, perplexity can be defined as the exponential of the negative

normalized predictive likelihood as follows:

P (dtest
i |θ, β) =

V
∏

w=1

(

K
∑

z=1

θizβzw)stest
iw (4.9)

Perplexity = exp−

∑M test

i=1 log(P (dtest
i |θ, β))

∑M test

i=1 N test
i

(4.10)

where, M test is the number of author profiles in testing set, and N test
i is the number

of words in profile dtest
i . stest

iw indicates the word frequency of word w in testing

profile i.

In order to test the generalization performance of our topic model, we vary the

number of topics from 10 to 50, and compute the perplexity score for SIGKDD

community on predicting award winners for year 2009 and 2006 on ACM data set.

We compared our performance with that of sLDA.

As shown in Figure 4.6, our LtoRTM model can achieve lower perplexity score,

and therefore better generalization performance than sLDA for both year 2009 and

2006 under all different topic numbers.
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4.5 Bibliographic Notes

In this section, we review three lines of research work that are related to our work,

and discuss the novelty of our work from them.

Topic Modeling Generative topic modeling has become a popular machine

learning technique for topic-related content representations. Ever since the success

of the original two representative topic models, pLSA[73] and LDA[18], which focus

on pure content analysis by discovering the latent topics from large document collec-

tions, a large body of literature on topic models has been established, mostly by in-

corporating additional contextual information, such as time[16], authorship[148, 169,

174], geographical locations[196], or integrating linkage or social network information[28,

46, 129]. The linkage information being modeled, often represents the similarity be-

tween two linked documents, rather than the difference between documents, which

is the focus of our work in this paper.

Blei and McAulliffe proposed a supervised LDA model[17] in 2010, which is a

promising improvement over the original LDA, as it converts the topic modeling

approach, which is traditionally believed to be an unsupervised learning technique

into a supervised one. Several other works[139, 209] have been proposed, following

this direction. However, in these works, the labels are often attached to individual
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documents rather than every pair of documents to distinguish their different prefer-

ence over topics. Our work, however, borrows the idea of pair-wise learning-to-rank

into the topic modeling process.

Duan et al. proposed a ranking-based topic modeling[44], which utilizes the

importance of documents and incorporates the TopicalPageRank[131] into topic

modeling. Compared with our work, their documents’ importance is not defined

upon pairs of documents. Moreover, their model is built upon pLSA instead of LDA,

and the model is designed for document clustering and classification applications,

which are all different from our model.

Learning-to-Rank Learning-to-rank (LtoR for short)[104] is a recent trend of

applying machine learning techniques to learn ranking functions automatically. In

the standard LtoR setting, a typical training set is composed of queries, documents

(represented by a feature set) and their associated labels. A machine learning al-

gorithm would be employed to learn the ranking model, with the goal to predict

the ground truth label in the training set as accurately as possible in terms of a

loss function. In the test phase, when a new query comes in, the learned model is

applied to rank the documents according to their relevance to the query. Depending

on different hypotheses, input spaces, output spaces and loss functions, approaches

to LtoR can be loosely grouped into three categories: point-wise, pairwise, and

list-wise.

Expertise Ranking Expert ranking has been a promising research focus with

the rapid development of on-line academic search engines, such as ArnetMiner and

Microsoft Academic Search. Given a user query, the task of expert ranking basically

involves identifying and ranking a list of researchers based on their expertise in that

query-specific domain. Two categories of approaches have been focus of research

in the past years: the pure content analysis based approach [8, 108, 50], which

emphasizes evaluating authors’ expertise by measuring the relevance between their

associated documents and the query, and the social network based approach [39, ?],

which evaluates authors’ expertise by exploiting the social interaction of authors

and other scientific facets, such as their co-authorships, their citations to other

papers/authors and more. Balog et al. [10] made a survey on the current main
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approaches for expertise retrieval, in which they more emphasized on summarizing

the content-based approaches and divide them into probabilistic generative and

discriminative model based approaches.

The topic modeling approach is one important group of probabilistic generative

models for expert ranking. Typical works in this category include the models of

CAT [174], ACT [169], ACTC [181], ALT [88]. However, none of them combine

topic modeling with learning-to-rank approaches.

Fang et al. [50] proposed a probabilistic discriminative model for expert ranking,

which is essentially a learning-to-rank method. Two other representative approaches

using learning-to-rank for expert ranking include the work conducted by Moreira et

al. [127] and the work done by MacDonald et al. [110], both of which applied several

existing learning-to-rank algorithms for ranking experts (bloggers). None of these

models integrate the advantage of topic modeling though, and the latter two are

applications of existing algorithms.

4.6 Summary

In this chapter, we propose a novel topic model that incorporates the preference

between pairs of authors in terms of their authority in a specific domain into topic

modeling process. It borrows the essential idea of pair-wise learning-to-rank algo-

rithms and is particularly designed for modeling authors’ authority (interests or

influence) in academic environment. We further extend the model by introducing

additional features related with authors’ expertise beyond pure content. We pro-

vide introduction on model inference, parameter estimation, as well as the ranking

scheme on new authors. Experiments conducted on two real world data sets have

demonstrated our model to be either competitive or better than some state-of-the-

art algorithms.
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Chapter 5

Writing with style: venue

classification and recommendation

In this chapter, we focus on the problem of publishing venue classification and

recommendation, two tasks which have applications in the academic environment

but are seldom investigated by previous research. Particular attention has been

paid on discovering and making use of the stylometric features of publishing venues.

For venue recommendation, an enhanced collaborative filtering method is proposed.

Comprehensive experiments over real world data sets demonstrate the effectiveness

of our methods.

5.1 Introduction

As early as the late nineteenth century, the research scientist T.C.Mendenhall con-

ducted his pioneering studies in authorship attribution among Bacon, Marlowe, and

Shakespeare. More than half a century later, another two scientists, Mosteller and

Wallace, carried out their famous study on the mystery of the authorship of the

Federalist papers [128]. They examined 146 political essays from the late eigh-

teenth century, of which most are acknowledged to have been written by John Jay,

Alexander Hamilton and James Madison; however, twelve of them are claimed to be
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co-authored by Hamilton and Madison. By extracting function words as one of the

most important stylometric features and making use of Bayesian statistical analysis,

Mosteller and Wallace assigned all twelve disputed papers only to Madison.

These early studies initiated research in author attribution, also known as author

verification or identification, and demonstrated that writing style is a key feature in

distinguishing among authors. Today we not only have many more authors writing

and publishing papers, but also have many different kinds of publications, covering

different topics, with different genres and requiring different writing formats. In

this chapter, we regard the publishing venues of all kinds of publications as venues.

We have different venues for different research domains; for example, the ‘SIGIR’

conference for Information Retrieval (IR) research, and the ‘VLDB’ conference for

database research. Moreover, even in one research domain, we also have multiple

venues. To take the ‘IR’ research domain as an example, we have journals such as

Information Retrieval and J.ASIST, as well as conferences, such as SIGIR, JCDL,

WWW, CIKM and more. We also have posters, workshops, technical reports and

patents. With so many different kinds of venues provided, a straightforward question

may arise: how can they be distinguished from each other? Besides their topic-

related differences, are they also distinguishable in writing styles?

A writing style, according to Karlgren [86], is a consistent and distinguishable

tendency in making some linguistic choices. Compared to the content of a paper,

writing style more reflects the preferences of authors in organizing sentences and

choosing words. Even though no work has been carried out, to the best of our

knowledge, investigating whether venues are also distinguishable by their writing

styles, some brief statistical analysis can easily show that there exist obvious dif-

ferences in terms of the probability distributions of papers published in different

venues over stylometric features. In Figure 5.1 and Figure 5.2, we illustrate the

distributions over two context-free features: the number of words and the num-

ber of sentences, for all papers we collect from the CiteSeer digital library that

are published in two distinct venues: the JCDL venue and the WWW venue. We

can observe distinguishable differences from both of the figures: papers published

in JCDL have more diverse number of words and sentences than WWW papers,
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Figure 5.1: JCDL and WWW paper distribution over Number of Words
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Figure 5.2: JCDL and WWW paper distribution over Number of Sentences

and more papers in WWW are written in fewer total number words and sentences.

Such kind of observations further initiate the exploration into the task of classifying

venues by their writing styles, a task that is actually equivalent to the question as

whether the papers published in one specific venue share common characteristics

in writing styles, and how are they distinguishable from papers published in other

venues. We approach this problem by using a classification-based method.

Besides the task of venue classification, we are also interested in the work of

venue recommendation or prediction, since some researchers, especially when they

are new to a specific domain, may find it difficult to choose an appropriate place

to which to submit their papers. There have been provided many recommendation
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systems, such as movie recommendation, merchandise recommendation, tag recom-

mendation and citation recommendation; however, little work has been proposed for

venue recommendation. We propose in this chapter a collaborative-filtering-based

recommendation mechanism, in which we consider both content and writing style

(stylometric) features of papers. Furthermore, we differentiate the importance of

neighboring papers, those that are similar to the target paper, to better improve

recommendation performance.

In this chapter, we first investigate the importance of writing styles in determin-

ing venue classification performance via comprehensive experimental studies, and

then incorporate our observations into developing an automatic venue recommen-

dation system. In summary, the main contributions we have made in this chapter

include: 1) the first exploration into classifying venues by their writing styles; 2) a

novel collaborative filtering based mechanism for automatic venue recommendation

that have two distinctive characteristics: incorporating stylometric features to mea-

sure the similarity between papers, and differentiating the different contributions

of neighboring nodes via tuning and optimization; and 3) empirical experimental

studies which demonstrate the effectiveness of both venue classification and recom-

mendation on two real-world data sets.

5.2 Venue Classification

5.2.1 Problem Identification

Given a set of papers, with their full or partial content provided, the task of venue

classification is to determine the likelihood of a paper to be published in a particular

venue. We can approach the task using traditional classification techniques, where a

set of papers with known venue information are used for training, and the ultimate

goal is to automatically determine the corresponding publishing venue of a paper

whose venue information is missing. In particular, we are interested in exploring

the following research questions:

• How well can venues be distinguishable from each other in terms of writing
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styles?

• What are the valuable features to represent writing styles?

• How sensitive is venue classification to classifier choice?

• Compared with using content-based features, can we improve classification

results using stylometric features?

• Are topically-similar venues distinguishable by writing styles?

• Are venues of different genres distinguishable by writing styles?

5.2.2 Features

Since we focus on writing-style based venue classification, one of the main concerns

is to define an appropriate quantitative text representation that captures the writing

style of scientific papers. To avoid the influence from paper content, the features

we employed need to be unrelated to topic and context-free. Based on previous

studies and analyses in the task of author attribution, we incorporated three types

of features into the feature set: lexical features, syntactic features and structural

features. The entire set of features is listed in Table 5.1.

Lexical Features: Lexical features can be further divided into character-based

or word-based features. It reflects a paper’s preference for particular character or

word usage. In our work, we included character-based features like number of terms,

number of distinct terms, and more. The number of Hapax terms, one of the features

we used, is defined to be the number of distinct terms that appear only once in the

paper. We also used vocabulary richness as defined in [210]. In total, we have 66

lexical features.

Syntactic Features: Compared to lexical features, the discriminating power of

syntactic features is derived from different formats and patterns in which sentences

of a paper are organized. They are more likely to be content-independent. One

of the most important syntactic features is the set of short yet all-purpose words,

which are often referred to as function words, such as ‘the’, ‘a’, ‘and’, and ‘to’.
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Research in author attribution demonstrated that function words play an important

role in identifying authors, since their frequency of usage are often unaffected by

papers’ subjective topics. We adopted a set of 298 function words. Another example

of a syntactic feature is punctuation. We count the sum of appearances of eight

predefined punctuation symbols that appear in the paper.

Structural Features: Structural features represent the layout of a piece of

writing. De Vel [37] introduced several structural features specifically for email. In

our work, we adopted five structural features specifically for scientific papers: the

number of sections, figures, equations, tables, and bibliographic references. Due to

the fact that the original paper content available is in raw text format, in order to

retrieve the number of figures in one specific paper, we simply count the number of

times the word ‘figure’ or ‘Figure’ appears in the paper. We did the same for number

of sections, number of tables and number of equations. We add number of references

as an extra feature, not only because it is available in our data set, but also because

this kind of feature is important for scientific papers. We can retrieve all of these

five features for the papers in the CiteSeer data set, where the full paper content

is available. For papers in the ACM data set, we can only retrieve the number of

references feature.

In summary, we have 371 features for papers in the CiteSeer data set, and 367

features for papers in the ACM data set. The data sets are described below.

5.2.3 Experimental Evaluation

Data Collection

In order to test whether we can successfully classify venues by their writing styles,

we perform experiments on two real world data sets. The first data set is a subset

of the ACM Digital Library, from which we crawled one descriptive web page for

each of 172,890 distinct papers having both title and abstract information.

For each published paper, we extract its publishing venue and citation references.

Due to possible venue name ambiguity, we first convert all upper-case characters

into lower-case, and remove all non-alphabetical symbols. We further removed all
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digits as well as the ordinal numbers, such as the 1st, the 2nd, and applied Jaccard

similarity match to merge duplicate venue names. We finally obtained 2,197 distinct

venues.

The second data set we utilize is the CiteSeer digital library scientific liter-

ature distributed by the 2011 HCIR challenge workshop1. The whole data corpus

is divided into two parts. Meta-data about a paper, such as its title, publishing

venue, publishing year, abstract, and information about citation references are kept

in XML format; the full content of that paper is in plain text. We collected 119,727

papers published between 1949 and 2010 that have both abstracts and full content

information. We applied the same working process as we did for the ACM data set

to merge ambiguous venue names, and finally obtained 48,797 venues.

5.2.4 Overall Classification Results

In a first analysis, we determine whether venues are distinguishable by their writing

styles under general circumstances, regardless of content, topic and genre effects.

For all experiment settings, we make use of 10-fold cross validation, and adopt

Accuracy and F1 score, the two traditional classification metrics for performance

evaluation.

Multi-Class Classification Results

To examine multi-class classification results, we randomly choose K venues, where

K indicates the number of venues on which we tested. In our experiments, we

change the value of K among 2, 5, 10, 30, 50, 100 and 150. For each value of K,

we randomly choose K venues that have at least 100 papers for the ACM data set

(at least 50 papers for the CiteSeer data set). We collect all the papers published

in those chosen venues to construct the training/testing sets. The same process is

repeated ten times for each particular K, and the results are an average of all the

iterations.

1http://hcir.info/hcir-2011
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We construct RandomForest classifiers Stylometric(A) and Stylometric(F)

for the CiteSeer data set, since we have both abstract and full content information

for papers in this data set. Stylometric features are extracted from either abstract

content or paper full content respectively. For the ACM data set where the full

content of papers is missing, we work only on papers’ abstracts to generate the

stylometric features. Table 5.2 shows some brief statistics over the randomly chosen

venues we tested. In order to demonstrate the effectiveness of the classification

results, we further construct a Baseline Classifier for comparison, which randomly

guesses the venue label for paper instances in the testing set.

As shown in Table 5.3 and Table 5.4, our stylometric classifier can outperform

the baseline classifier under all circumstances. Based on the p value computed from

the students’ t test, all improvement over the Baseline classifier is statistically sig-

nificant (p ≤ 0.05), which confirms that venues are distinguishable by their writing

styles. Moreover, there exists a tendency to achieve greater improvement over the

random guessing baseline as the number of venues tested increased. Working on

CiteSeer data with paper full content, there is a 70.25% improvement for 2-venue

classification, and the performance is 7.45 times over random guessing for 30-venue

and 8.86 times for 150-venue respectively. We also notice from the experiment re-

sults in CiteSeer data that we can achieve better performance working on the full

paper content to retrieve the stylometric features than just from paper abstracts.

The improvement is statistically significant when 30 or more venues are taken as

testing venues.

Comparison of Classification Techniques

To evaluate the classification results of different classifiers, we repeat the same ex-

perimental process as described above using three state-of-the-art classifiers: Ran-

domForest (RF), NaiveBayes (NB), and Support Vector Machines (SVM). For the

CiteSeer data set, experiments were carried out for both paper abstract (A) and

full content (F ) separately. We report experimental results in Figure 5.3 and Fig-

ure 5.4. We can see that all classifiers achieve better performance than random
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Figure 5.3: Comparison of Classifiers: Accuracy and F1 Score for ACM data
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Figure 5.4: Comparison of Classifiers: Accuracy and F1 Score for CiteSeer data

guessing; however, different classifiers have different impacts on the performance

over the two data sets.
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For ACM data set, RandomForest and SVM work better than NaiveBayes for

both Accuracy and F1 Score. SVM outperforms RandomForest in terms of Accuracy,

however, RandomForest can achieve higher F1 Score than SVM.

For CiteSeer data set, all three classifiers can achieve better performance working

with paper full content than paper abstract. For both working with paper abstract

and full content, RandomForest performs the best with small number of testing

venues, and is then outperformed by SVM when the number of venues exceeds

30 and 50 respectively. NaiveBayes is the worst in general in terms of Accuracy,

however, it gradually catches up with the performance of RandomForest and SVM

when the number of venues tested is increased. In terms of F1 Score, RandomForest

is the best classifier working on both data sets. NaiveBayes shows comparable

performance as RandomForest. SVM turns out to be the worst of the three, whose

performance is only slightly better than random guessing when working on paper

abstracts.

Contribution of Features

Comparison of feature types

As introduced in Section 5.2.2, we have three groups of stylometric features:

lexical, syntactic and structural. To examine the contribution of different feature

sets, we first test the performance on each individual group, and then add them one

by one to test the changes in performance. We fix the number of venues tested to be

10. Performance in terms of Accuracy and F1 Score are summarized in Tables 5.5

and 5.6 respectively.

We can see that lexical features still play the most important role in venue

classification. Structural features are the least useful, probably due to our rough

calculation method for collecting number of sections and number of figures. However,

we can also find that each group of features contributes positively to the overall

performance, since when we add them together, performance is better than each

individualy.
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We further conducted five individual pairwise t tests in order to examine the sig-

nificance of improvement. Table 5.7 shows the p value of the t tests for feature com-

parison for both ACM and CiteSeer data sets. Both lexical and syntactic features

work significantly better than structural features. Combining lexical and syntactic

features can provide significant improvement over pure lexical features, however, the

improvement is not significant when we further add structural features. The results

are consistent across the two data sets.

Contribution of individual features

To investigate the contribution of individual features, we adopted the leave-one-

out scheme to test the classification performance when one targeted feature is not

incorporated. The more the performance drops, the more positive contribution the

targeted feature would make, and therefore, it would be more important.

Experiments were conducted for 5-classes (5-venues); RandomForest works as

the classifier. The following Table 5.8 shows the ranked results on CiteSeer data

set in terms of F1 score and Accuracy respectively. The stylometric features are

extracted from papers full content.

As indicated from the results, number of tables, number of refereces and number

of word tokens are the three most important features in classifying venues by their

writing styles.

Content vs. Writing Styles

Under all experimental settings in previous sections, we work on pure stylometric

features. Besides the difference in writing styles, venues also differ in their content.

In order to compare the classification performance between writing-style based fea-

tures and topic/content based features, we further construct the RandomForest-

based Content Classifier, in which we represent each paper by the TF-IDF scores

of the Top 500 most frequent appearing terms in the whole corpus, and the Com-

bine Classifier, where we combine both stylometric and content-based features.

As shown in Tables 5.9 and 5.11, the Content Classifier works better than the
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Stylometric Classifier. It indicates that topic-related difference is more distinguish-

able than writing styles for venues. When combining both stylometric and content

features, the performance is not improved on the ACM data set; however, we can

get improved performance on CiteSeer data set when features over full content are

integrated.

Topics vs. Writing Styles

Working on CiteSeer data set, we randomly select 100 papers published in the venue

‘SIGIR’. We would like to test whether papers in this venue can be successfully dis-

tinguished from papers published in other venues, either with more or less similarity

with the venue ‘SIGIR’ in terms of venue topics. We select six other venues, and

randomly select 100 papers for each of them. RandomForest is used as the classifier.

Table 5.13 shows the result.

We can find that papers published in similar venues can also be successfully

distinguished with high probability (e.g., 73% for papers in SIGIR and WWW)

based on writing style features. There shows an increase in classification accuracy

when venues are talking about different topics than similar topics.

Genres vs. Writing Styles

We are also interested in discovering the impact of different genres of venues on

similar topics in terms of their writing styles. As we already know, there exist many

different genres of venues even for the same topic. For example, the journal of

SIGMOD Record compared with the conference of SIGMOD in database research

domain. In this group of experiments, we collect papers published in journals and

conferences, and show their classification results. RandomForest is used as the clas-

sifier. As shown in Table 5.10, we first test on the overall performance for all journals

and conferences regardless of topic difference. For doing this, we randomly select

1000 journal venues and 1000 conferences venues, collect all their published papers,

and carry out the classification. As indicated, we can retrieve an accuracy over 76%.

We further choose three different research domains; for each of them, we collected
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100 papers published in their corresponding journal venues and conference venues

respectively. Results show that in database and computer architecture domain, the

classification results are better than that in the graphics domain. Even though we

cannot determine exactly the effect of research topics on the classification results

between journals and conferences, we can still see that on a general basis, these two

are distinguishable.

Improving Classification Results

To further improve the accuracy of our classifier, two popular techniques, Boost-

ing [152] and Bagging (Bootstrap aggregating) [22], have been adopted, both of

which essentially construct a set of classifiers which are then combined to form a

composite classifier. The composite classifier is generally believed to perform better

than the individual classifiers.

We apply both Bagging and Adaboost, provided by WEKA2, on both ACM and

CiteSeer data sets. We experimented on different numbers of venues (2, 5, 10, 30

and 50). For venues in CiteSeer data set, we also test the performance by either

using only paper abstract or full content respectively. RandomForest is used as the

basic classifier, and the results are also evaluated using 10-fold cross validation. We

report results in terms of accuracy and F1 score in Figure 5.5 and and Figure 5.6.

Both Bagging and Boosting provide significant improvement over the original

classification results. Bagging shows better ability in improving accuracy. The

improvement increases when more venues are tested. Working on 10-venue task, the

improvement of Bagging is 12.44% for ACM data set, 27.56% for CiteSeer abstract

and 16.4% for CiteSeer full paper content. AdaBoost, however, works better for

improving the performance in terms of F1 Score: it improves performance by 10.36%

for ACM, 10.71% for CiteSeer abstract and 15.09% for CiteSeer full paper content.

2http://www.cs.waikato.ac.nz/ml/weka/
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Figure 5.5: Bagging and Boosting: Accuracy and F1 Score for ACM data
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Figure 5.6: Bagging and Boosting: Accuracy and F1 Score for CiteSeer data
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5.3 Venue Recommendation

It is well understood that one of the fundamental tasks for most research scientists

is to publish their work. However, many research scientisits occasionally have a

difficult time in determining wherer to submit their papers. Even though some

experienced researchers may have a target venue in mind before they finish their

work, many others, especially new researchers in a domain, prefer to finish their

papers first, and then to decide where to submit. Similarly, if the paper is completed

after the deadline or not accepted at the target venue, another choice may be needed.

It is not a trivial task to make such a choice, however, due to the rapid growth

in both the quantity and variety of publication venues in recent decades, making us

have many different kinds of venues, with different topics and genres and requiring

different writing formats.

Recommender systems have emerged as a good solution for helping people deal

with the rapid growth and complexity of information. The technique was first intro-

duced to generate suggestions (e.g., for movies and merchandise) to users, and then

introduced in social network analysis and has been widely used in many applications,

including tag recommendation, link recommendation, and citation recommendation.

However, little effort has been employed to tackle the problem of venue recommen-

dation, where given a paper, with its authors, content, and references provided, a

list of venues are recommended for submission of this chapter.

A number of challenges arise in this task. First of all, the recommended venue

should have a good match with the topics discussed in the paper. Venues have

their own topic focus, as we have mentioned before, like information retrieval for

SIGIR and databases for SIGMOD. Secondly, venues often have their specific writing

format requirement. As we have demonstrated in the task of venue classification,

different venues do have their distinguishable writing styles, an interesting question

would therefore rise as whether papers with similar writing styles can more easily

get accepted in similar venues. Finally, a good venue recommendation should match

with the research profiles (e.g., historical venues) of the authors of the paper. We

are interested in examining how the previous publication history of an author, along
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with the relationship between the target paper and other papers will be useful to

affect the recommendation results.

Collaborative Filtering (CF for short) is the predominant approach in current

recommender systems. It can be further divided into memory-based CF and model-

based CF. Memory-based CF is widely used due to its simplicity and efficiency,

and it provides a good framework for venue recommendation as both papers’ inter-

similarity and inter-relationships can be incorporated for recommendation. In this

work, we introduce the memory-based CF into venue recommendation, and partic-

ularly provide two extensions to the basic algorithm. For the first extension, we

consider papers’ similarity in terms of their writing style, an importance feature

whose effectiveness has been desmstratated in our venue classification task; For the

second extension, we divide the neighboring papers of the target paper into sev-

eral groups, each of which represents a certain scientific relationship with the target

paper. Contributions from each sub-group of neighbors can be differentiated and

optimized.

5.3.1 Problem Identification

Let p be any given paper, and v be any candidate venue in the data corpus. The

venue recommendation task can be defined as follows:

Given a paper p, what is the probability of it being published in venue

v ?

It is essentially a ranking problem. Namely, we need to determine p(v|p), rank

the candidate venues according to this probability, and return the ranked list of

candidate venues as recommendations of venues to which this chapter could be

submitted.

In order to compute this probability, we adopt the basic idea of collaborative-

filtering, and utilize other papers with known venues to predict or recommend venues

for the target paper. Moreover, we make two extensions to the original traditional

collaborative-filtering based approach: one is to incorporate stylometric features

to better measure the similarity between papers; the other is to differentiate the
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importance of those papers that share some similarity with the target paper, to

further improve recommendation performance.

5.3.2 Approach

CF-based method

In a traditional user-item recommendation system, when the memory-based collaborative-

filtering approach is used to predict the ratings of users over items, the user-item

relationship is often represented as a two-dimensional matrix. Similarly, we can

represent the relationship between papers and venues in a two-dimensional matrix,

where the rows represent papers, and the columns represent venues. For each par-

ticular paper-venue pair (p, v), the corresponding entry on matrix represented as

I(p, v) indicates whether paper p is published in venue v.

We can apply the memory-based CF into our paper-venue matrix, with the

underlying assumption that it would have a higher probability for a paper to get

published in venues in which other similar papers have been published. However,

the paper-venue matrix is different from the user-item matrix in that one paper

can only be published in one venue, and thus it is unsuitable to use the item-based

method, where the similarity between items (venues) rated (published) by the target

user (paper) is going to be compared. We therefore choose to apply the user-based

CF.

Formally, the process of applying user-based CF to the venue recommendation

task can be described as follows.

• Given a target paper pi, we first compute its similarity with all other papers

in the data set, and collect the K most similar papers to target paper pi.

The collection of these Top K papers is indicated as S(pi). K is a system

parameter, and can be tuned via experiments.

• We collect all publishing venues of the papers in S(pi), and denote the collec-

tion as V (pi). For each venue vj in collection V (pi), we predict the probability

of having pi published in vj by computing P (vj|pi) by
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P (vj|pi) =

∑

pk⊂S(pi)
s(pi, pk)I(pk, vj)

∑

pk⊂S(pi)
I(pk, vj)

(5.1)

where s(pi, pk) is the similarity score between paper pi and pk, and I(pk, vj)

is an indicator function. We have: I(pk, vj) = 1, if pk is published in vj ;

otherwise, I(pk, vj) = 0.

• Rank all candidate venues in V (pi) by P (v|p).

Extension 1: Stylometric Features

As indicated in the above formula, one crutial component in this CF-based method

for venue recommendation is the paper-paper similarity measurement. Dominant

similarity measures in the traditional CF method include the Pearson Correlation

Coefficient and Vector Space Cosine Similarity measurement. We make use of the

latter method.

Papers differ in their content and topics. Moreover, papers as well as venues are

also distinguishable by their writing styles. To better measure papers’ similarity,

we need to consider both the content and stylometric features. To represent papers’

content, we take use of Mallet [115], which is open source software implementing

LDA [18], to retrieve the papers’ content distribution over 100 topics; To capture

the writing styles of papers, we made use of the identified over 300 distinct features

in the task of venue classification. Table 5.1 indicates all the stylometric features

we adopted, which can be grouped into three categories each of which measure a

paper’s writing style from lexical, syntactic and structural aspects.

Lexical features [128] reflect a paper’s preference for particular character or word

usage. Typical features within this category include number of distinct terms, num-

ber of alphabetic and digital characters, average sentence length, and more. Syntac-

tic features [166], however, focus on extracting the different formats and patterns in

which sentences of a paper are organized. The most representative syntactic features

include function words, punctuation and part-of-speech tags. In our work, we make

use of the first two syntactic features. Structural features [37] represent the layout
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of a piece of writing. We adopt in our work five structural features specifically for

scientific papers, including the number of sections, figures, tables, equations and

references. The entire feature sets is presented in Table 5.1.

5.3.3 Extension 2: Neighbor Differentiation

Another crucial component in the memory-based CF model is to retrieve proper

neighbors that share similarity with the target paper. Normally, this is done by

finding the topK neighboring papers in terms of their cosine similarity score with the

target paper. However, papers do not only differ in the value of the similarity scores,

but also in their different relationships with the target paper. For example, given a

paper, we can find other papers that are written by the same authors (authorship),

papers that are cited by the target paper, and papers that share the same citations

with the target paper (bibliographic coupling). All of these kinds of papers should

play different roles in their influence on the target paper in selecting future venues

in which to publish.

We divide the Top K similar papers into four categories. The first category is

called ‘author-neighbors’, which are papers written by at least one author in common

with the target paper. The second category is referred to as ‘reference neighbors’,

which are the papers that have been cited by the target paper. The third category

is named as ‘sibling neighbors’, which are papers that have at least one common

reference paper with the target paper. All other papers that share similarity with

the target paper, yet do not fall into any of the three categories mentioned above are

referred to as ‘other neighbors’. Since we rely on the historical data for prediction

or recommendation, for any given paper p which is finished in year y1, and is to

be predicted, we would only consider neighboring papers that have been published

before y1.

To differentiate their influence on the target paper, we introduce four parameters,

each of which indicates the importance of neighbor papers of one category. To
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compute P (vj|pi), the updated CF model can then be indicated as:

P (vj|pi) =
∑

c:1→4

αc

∑

pk⊂Nc(pi)
s(pi, pk)I(pk, vj)

∑

pk⊂Nc(pi)I(pk,vj)

(5.2)

where Nc(pi) (1 ≤ c ≤ 4) indicates the four categories of neighbor papers of the

target paper pi. αc ∈ [0, 1] is the parameter that needs to be tuned to reflect the

influence of neighbor papers of category c.

5.3.4 Evaluation

Experimental Setup

We introduce in this section the experiments we carried out for the task of venue

recommendation. In particular, we wish to explore the following questions:

• What would venue recommendation results be if we utilize stylometric features

alone to measure paper similarity?

• Can we achieve improved performance if we combine both the content and

stylometric features for paper similarity measurement?

• Which category of paper neighbors would play the most important role in

helping to predict publishing venues?

• Under what combination of the four categories can the best recommendation

performance be achieved?

We carried out experiments on two real world data sets. The first data set is a

subset of the ACM Digital Library, from which we crawled one descriptive web

page for 172,890 distinct papers having both title and abstract information. For

each published paper, we extracted the information about its publishing venue and

references. Due to possible venue name ambiguity, we first converted all upper-case

characters into lower-case, and removed all non-alphabetic symbols. We further

removed all digits as well as the ordinal numbers, such as the 1st, the 2nd, and

applied the Jaccard Similarity match to merge duplicate venue names. We finally
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obtained 2,197 distinct venues. To remove author names’ ambiguity, we represent

each candidate author name by a concatenation of the first name and last name,

while removing all the middle names. We then use exact match to merge candidate

author names. Finally, we obtain 170,897 distinct authors.

The second data set we utilized is the CiteSeer Digital Library scientific

literature distributed by the 2011 HCIR challenge workshop1. The data corpus is

divided into two parts. Meta-data about a paper, such as its title, publishing venue,

publishing year, abstract, information about citation references are kept in XML

format; the full content of that paper is in pure text format. We applied the same

name disambiguation process as we did for the ACM data set, and obtained 119,927

papers that have abstract, full content and venue information, resulting in 478,805

authors and 48,797 venues.

We further select 35,020 papers published across 739 venues, each of which has at

least 20 papers published in it, to serve as the experimental papers for the CiteSeer

data set. We randomly choose 10,000 papers from ACM and CiteSeer data sets

respectively as our target papers whose venues are to be predicted.

As introduced previously, we have identified three categories, and 25 different

types of features. For papers in the CiteSeer data set, where the full content of

papers is available in pure text format, we can simply count the number of times

the word ‘figure’ or ‘Figure’ appears in the paper to obtain the number of figures.

We did the same for number of sections, number of tables and number of equations.

Finally, we extracted 371 stylometric features for papers in the CiteSeer data set,

and 367 features for papers in the ACM data set.

To test venue recommendation performance, we match the predicted venues

with the real publication venues of the target papers. Two standard metrics: Ac-

curacy@N (N varies among 5, 10, and 20) and MRR are adopted for evaluation.

1http://hcir.info/hcir-2011
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Results Analysis: Stylometric Features

We first examine whether paper similarity based on stylometric features can lead

to good recommendation performance. By doing this, we represent each paper by a

vector composed of only the stylometric features of that paper, and compute papers’

similarity based on those paper vectors.

For comparison, we construct paper vectors by only making use of their pa-

per content information, that is, the paper’s content distribution over 100 topics

learned from LDA. We also combine both content and stylometric features to get

merged features for paper similarity measurement. In all the experiments, we set

the parameters αc(1 ≤ c ≤ 4) to be 0.25.

We collect the Top K most similar papers with known venues to predict the

possible publishing venue of the target paper. K is a system parameter, whose

value might affect the prediction performance. To examine its effect, and varied

the value of K among 500, 1000, 2000, 5000, 10000. We also experimented with

using all neighboring papers of the target paper. Experimental results for ACM and

CiteSeer data sets are described in Table 5.13.

Several observations can be found from the results on the ACM data set. First of

all, there is a significant improvement as we combine both stylometric and content-

based features as compared to working on either stylometric or content-based fea-

tures separately, whose performance is competitive with each other. The improve-

ment is nearly or more than 50% when a subset of paper neighbors are considered,

and is 10.92% working on all paper neighbors in terms of Accuracy@5. Secondly,

there is no obvious increase in terms of Accuracy@5, Accuracy@10 and Accuracy@20

as the value K (the Top K most similar papers to the target paper) increases from

500 to 10000 working on either stylometric or content features seperately. However,

we achieved consistent improvement on the average MRR value. When working on

combined features, performance in terms of all metrics also obtained constant im-

provement. We achieve significant improvement when we collect all paper neighbors

for consideration. The best performance is achieved when working on all neighbors

with combined features. Over 55.72%, 69.81% and 78.32% papers can have their
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publishing venues be correctly predicted within Top 5, Top 10 and Top 20 results

respectively.

We noticed consistent performance when working on the CiteSeer data set, where

paper full content is used for generating both content and stylometric features.

Content-based features work better than stylometric features when a small set of

top-returned paper neighbors are adopted; however, the performance on using sty-

lometric features gradually outperform that of content-based features when more

top-returned paper neighbors are considered. When combining both stylometric

and content-based features, there is no improvement as compared to using pure

content-based features, however, we observe improved performance for such a com-

bination when more than 2000 top neighbors are considered. The best performance

is also achieved when all paper neighbors and all features contribute, where 23.87%,

28.99% and 33.74% papers can have their venues correctly predicted within Top 5,

Top 10 and Top 20.

Results analysis: Weights among neighbors, Parameter tuning

We expect that different categories of neighboring papers can have different contri-

butions when making venue recommendations.

We gradually change the weight for each particular type of neighbors from 0 to

1, and let the other three kinds of neighboring papers share the remaining weight.

Results are reported in Figure 5.7 and 5.8.

When the weight for a particular type is set to be 1, it actually indicates the

individual contribution of that type of neighbors. As shown in the results, author

neighbors contribute the most in both data sets, while the other neighbors are less

important. It indicates that when authors finish their work, they often submit

the paper to those venues in which they have had a previous paper successfully

published. This is on one hand due to researchers continuing to focus on similar or

related topics, at least within similar research domains. On the other hand, authors

will gain more reputation and thus confidence in certain venues, so that they are

always willing to submit to those venues, and it also has higher probability to have
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Figure 5.7: ACM data set: Weight of Neighbors
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Figure 5.8: CiteSeer data set: Weight of Neighbors

their work accepted. Reference neighbors and Sibling neighbors are competitive

with each other, which matches our initial expectation, as reference neighbors and

sibling neighbors both are topic-related with the target paper.

We also notice from both results that we need to incorporate all types of neigh-

bors, since we can retrieve better performance when all four categories of neighbor-

ing papers contribute rather than giving any of them zero weight. Moreover, even

though the author neighbors are the most important source of information, when

giving extra weight to them, predictive performance decreased.
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Results analysis: Weights among neighbors, Parameter Optimization

Parameter tuning, as we addressed in Section 5.3.4, tells us the different importance

of different categories of neighboring papers. We are more interested, however, to

find parameter settings that can give us the best recommendation performance. To

implement that, we can apply parameter optimization approaches.

Given a paper pi, which is the target paper, and any candidate venue vj in the

data set, we can compute the probability P (v|p) based on formula (4). Suppose Aj ,

Rj , Sj and Oj represent the normalized accumulated similarity score between the

target paper and author neighbors, reference neighbors, sibling neighbors, and other

neighbors respectively; the formula can be re-written as: P (vj|pi) = α1Aj + α2Rj +

α3Sj + α4Oj

Let us suppose the real publishing venue for the target paper pi is venue vj ,

then in an ideal venue recommendation system, for any other venue candidate

vk rather than vj, the computed probability score P (vk|pi) should be less or at

most equal to P (vj|pi); that is, we need to have P (vj|pi) − P (vk|pi) ≥ 0 for all

vk (k 6= j). Naturally, our goal is to learn the values of the four parameters αc

(1 ≤ c ≤ 4), such that
∑

k:1→V (P (vj|pi) − P (vk|pi)) can be maximized, where V

is the number of candidate venues. Therefore, we introduce our objective function

as: h = argmax
∑

k:1→V s(P (vj|pi) − P (vk|pi)) where s(x) is the sigmoid function:

s(x) = 1
1+e−x .

To achieve the optimal combination of weights, we use gradient descent in which

the four parameters are updated in each iteration until they converge.

As shown in Figure 5.9 and 5.10, we achieved more than a 13% improvement in

Accuracy@5 for both ACM and CiteSeer.

Results analysis: Comparisons with other approaches

In order to demonstrate the effectiveness of our proposed approach, we compare

results across several baseline algorithms:
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Figure 5.9: ACM data set: Parameter Optimization

Top5Num Top10Num Top20Num avgMRR
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
er

ce
nt

ag
e

 

 

without optimization
with optimization

Figure 5.10: CiteSeer data set: parameters optimization

Simple Counting: For each target paper pi, we simply count the occurring

frequency of venues of three kinds of neighboring papers of paper pi, i.e., the ref-

erence neighboring papers (papers cited by pi, referred as SimpleCount-Ref), sib-

ling neighboring papers (papers that share at least on citation with pi, referred as

SimpleCount-Sibling) and author neighboring papers (other papers written by au-

thors of pi, referred as SimpleCount-Author). We also count the frequency of venues

of the combination of all three kinds of neighboring papers (referred as SimpleCount-

All). We would then rank and return the venues in terms of their frequency.

Content-based LDA: We construct a profile for each venue by concatenating all

the papers published in it. We use LDA topic model implemented by Mallet [115]
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to retrieve the topic distribution for each paper and venue over 100 topics. We then

compute and rank venues by their similarities with the target paper.

Traditional memory-based CF: We use the original traditional memory-based

CF approach, in which we do not incorporate stylometric features of papers to

compute their similarity, nor do we categorize neighboring papers and differentiate

their different contributions. Under this scheme, P (vj|pi) can be computed as:

P (vj|pi) =
∑

pk⊂S(pi)
s(pi, pk)I(pk, vj), where papers’ similarity is determined by

their topic distribution obtained from LDA.

Graph-based FolkRank algorithm: We used the FolkRank algorithm [76], which

is an adaptation of PageRank, and has been shown empirically to generate high

quality recommendations in tag recommendation systems. The basic idea of this

approach is to run PageRank algorithm twice, giving uniform initial weights to all

nodes in the first time, and giving higher weight to targeted nodes in the second

time. The difference in terms of the weight of the nodes is then used to generate

the final ranking.

We compare the results using our proposed approach with the baseline algo-

rithms, and show the results in Table 5.14. The results we report under our method

are the best results we can achieve when both stylometric and content features

are combined and all neighboring papers are considered. As indicated from the re-

sults, our approach outperforms the baseline algorithms under all evaluation metrics.

The content-based approach works the worst. TraditionalCF can work better than

the graph-based FolkRank algorithm; moreover, we can achieve better performance

when no normalization is introduced. The SimpleCount-based method can provide

surprisingly good results, and is the second best algorithm among all compared al-

gorithms. However, our model can improve performance over SimpleCount-All by

18.53% (on ACM) and 19.77% (on CiteSeer) in terms of Accuracy@5.

Case Study Example

We show in this section several recommendation examples using our proposed ap-

proach. We report in Table 5.15 the Top 5 returned venues for three randomly
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chosen papers in our system. Venue names written in bold indicate the actual

publishing venue of that paper. We observed that for each target paper, under

most circumstances, the top five returned venues share similarity in topics, and are

content-related to the target paper. They are all reasonable candidate venues to

which the paper could have been submitted. For papers that concentrate on topics

within specific subset of a wide research domain, or discussed topics covering in-

terdisciplinary domains, we can also provide proper recommendation. For example,

paper 1 focuses on modeling language, and therefore some computational linguistics

related venues are ranked highly, such as ACL. Paper 2 discussed database inte-

grated view design, and therefore venues in the database domain like SIGMOD and

VLDB are returned. We also notice that some paper may have other appropriate

choices when considering submitting; for example, for paper 3, even though its ac-

tual publishing venue is only ranked 8th, several other venues ranked higher than

the actual venue are also good places to submit.

5.4 Bibliographic Notes

There is a lack of prior work exploring the problem of classifying venues by their

writing styles. However, there has been a long history in the research of author

attribution, also known as author identification or verification, whose main task is

to determine the author of a piece of work, mostly by identifying the unique writing

styles of authors. Author attribution has been used in a small yet diverse number

of applications, such as authorship verification for literature and published articles,

for online messages [206, 6], plagiarism detection and forensic analysis for criminal

cases.

One of the most important components for author attribution is to identify repre-

sentative stylometric features, which compared to the features used in text content

classification, are assumed to be topic-independent and context-free. Stylometric

features used in early author attribute studies are lexical [128] (i.e., character and
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word) based, such as number of words and characters, word length, vocabulary rich-

ness [202, 175]. Further study then began to make use of syntactic features [166].

The three most representative syntactic features are function words [24, 75], punc-

tuation [29] and part-of-speech tags [166]. More recently, structural features [37],

such as number of paragraphs, use of indentation, use of signature, have attracted

attention, especially for online message authorship identification. Other useful sty-

lometric features include character-based n-grams [92] and POS-based n-grams [52].

However, due to different applications, no set of significant stylometric features have

been identified to be the most discriminative.

Just as there are a range of stylometric features, there are also many techniques

for author attribution. In most cases, this task has been treated as a single-label

multi-class classification task, and therefore many classification techniques have been

considered [206]. Besides that, there are other techniques such as statistical ap-

proaches [51], neural networks [107], genetic algorithms [75], and principle compo-

nent analysis approaches [24]. Most recently, researchers have started to use latent

factor models into author attribution task [155, 7]. However, there is no consensus

on which particular approach can perform the best due to different applications.

In this chapter we conduct a detailed study of venue classification by adopting

a set of stylometric features that have been demonstrated useful in author attribu-

tion. Unlike most author attribution experiments, we test large numbers of classes

(venues). We work on real data sets, collecting paper instances according to the ac-

tual distributions of venues in the data corpus. Moreover, we compare classification

results using different feature sets and classifiers and further examine the distin-

guishing power between creating style-based classifiers and content-based classifiers.

We further explore the relationship between writing styles and topics and genres

respectively.

For the task of venue recommendation, two previous works have been proposed

that consider this problem. Lau and Cohen [99] develop a combined path-constraint

random walk-based approach, not only for venue recommendation, but also for

citation recommendation, gene recommendation and expert finding. In their work,

they would present each term in the paper title as a node, combined with other
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entities, like author names and venue names to construct a big graph. Complex

optimization approaches are carried out to learn the weights on each edge of the

graph. Pham et al. [136, 137] define the task of venue recommendation as predicting

the participating venues of users, and therefore their input is users instead of papers,

which is different from our work. They use a clustering-based approach to group

users that share similar patterns in choosing publishing venues.

5.5 Summary

We first addressed in this chapter the task of venue classification, for which we tested

whether venues are distinguishable by the writing styles of papers published in them.

We applied the traditional classification approach for this task, and identified over

300 stylometric features for representing papers’ writing styles. Experiments on

both ACM and CiteSeer data sets demonstrated that venues can be distinguished

by their writing styles. By combining both stylometric features with traditional

content-based features using papers’ full content, we can get improved performance

for venue classification. We examined the impact of three different classifiers: Ran-

domForest, NaiveBayes and SVM. Even though they perform differently on different

experimental settings, RandomForest, however, turns out to work the best in gen-

eral. We further examined the contribution of different feature sets in which lexical

features were found to be the most valuable. Moreover, we carried out experiments

to test the relationship between venues topics and writing styles as well as venue

genres and writing styles, both of which achieved positive results on the tested

venues.

We then applied the memory-based collaborative filtering approach for venue

recommendation, and in particular, we updated the original CF based approach by

applying two extensions. The first extension is to incorporate papers’ stylometric

features to better measure the similarity between papers, the second one is to divide

the neighboring papers into four categories. By tuning or optimizing the different

contributions of four categories of neighboring papers, we succeeded in obtaining
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better recommendation performance. Experiments demonstrate our approach to be

an effective method for venue recommendation, which outperformed several baseline

algorithms. By differentiating the four categories of neighboring papers’ contribu-

tions, we also find that papers that are published by the same authors are the most

reliable source of information for the venue recommendation task.
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Table 5.1: Features

Type Features Description

Lexical TokenNum Total number of words
TypeNum Total number of distict words
CharNum Total number of characters
SentenceNum Total number of sentences
AvgSenLen Average sentence length
AvgWordLen Average word length
ShortWordNum Total number of short words

(less than 3 characters)
normalized by TokenNum

HapaxVSToken Frequency of once-occuring words
normalized by TokenNum

HapaxVSType Frequency of once-occuring words
normalized by TypeNum

ValidCharNum Total number of characters
excluding the non-digital, non-alphabetical
and non-white-space characters

AlphaCharNum Total number of alphabetic characters
normalized by CharNum

DigitalCharNum Total number of digital characters
normalized by CharNum

UpperCaseNum Total number of characters in upper-case
normalized by CharNum

WhiteSpaceNum Total number of white-space characters
normalized by CharNum

SpaceNum Total number of space characters
normalized by CharNum

TabSpaceNum Total number tab spaces
normalized by CharNum

Vocabulary A vocabulary richness measure
Richness defined by Zipf

Syntactic FuncWordNum Total number of function words
PunctuationNum Total number of punctuation characters

(‘.’, ‘?’, ‘!’, ‘,’, ‘:’, ‘;’, ‘”, ‘ / ’)
FuncWordFreq Frequency of function words

normalied by FuncWordNum (298 features)

Structural SectionNum Total number of sections
FigureNum Total number of figures
EquationNum Total number of equations
TableNum Toatl number of tables
ReferenceNum Total number of references
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Table 5.2: Statistics over Chosen Venues

Avg. No. of Avg. length of Avg. length of
Papers Papers per Venue Papers per Venue
Per Venue (Abstract) (Full Paper)

ACM 415 105 words N/A
CiteSeer 98 140 words 6490 words

Table 5.3: Multi-Class Venue Classification for ACM Data Set. Value* is significantly
better than the Baseline Classifier. The ‘Baseline’ algorithm here means ‘ran-
dom guessing’

Accuracy F1 Score
2-Venue Baseline 0.503 0.481

Stylometric 0.806* 0.713*
5-Venue Baseline 0.195 0.177

Stylometric 0.584* 0.454*
10-Venue Baseline 0.099 0.085

Stylometric 0.434* 0.309*
30-Venue Baseline 0.033 0.027

Stylometric 0.267* 0.118*
50-Venue Baseline 0.020 0.015

Stylometric 0.207* 0.077*
100-Venue Baseline 0.010 0.008

Stylometric 0.113* 0.050*
150-Venue Baseline 0.007 0.005

Stylometric 0.099* 0.040*
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Table 5.4: Multi-Class Venue Classification for CiteSeer Data Set. Value * is signifi-
cantly better than the Baseline Classifier. Value † is significantly better than
the Stylometric(A) Classifier. The ‘Baseline’ algorithm here means ‘random
guessing’

Accuracy F1 Score
2-Venue Baseline 0.498 0.485

Stylometric(A) 0.707* 0.658*
Stylometric(F) 0.847* 0.828*

5-Venue Baseline 0.206 0.197
Stylometric(A) 0.413* 0.342*
Stylometric(F) 0.625* 0.570*

10-Venue Baseline 0.101 0.095
Stylometric(A) 0.254* 0.196*
Stylometric(F) 0.450* 0.391*

30-Venue Baseline 0.033 0.031
Stylometric(A) 0.106* 0.079*
Stylometric(F) 0.246*† 0.188*†

50-Venue Baseline 0.019 0.017
Stylometric(A) 0.066* 0.051*
Stylometric(F) 0.156*† 0.116*†

100-Venue Baseline 0.010 0.009
Stylometric(A) 0.034* 0.028*
Stylometric(F) 0.094*† 0.044*†

150-Venue Baseline 0.007 0.007
Stylometric(A) 0.022* 0.018*
Stylometric(F) 0.062*† 0.044*†

Table 5.5: Accuracy for Different Feature Sets and Techniques

ACM CiteSeer
RF NB SVM RF NB SVM

Lexical 0.425 0.170 0.403 0.435 0.315 0.355
Syntactic 0.382 0.165 0.402 0.416 0.366 0.267
Structural 0.304 0.131 0.291 0.294 0.265 0.221
Lexi+Syn 0.429 0.177 0.433 0.447 0.383 0.388
Lexi+Str 0.423 0.173 0.414 0.441 0.329 0.357
Syn+Str 0.386 0.165 0.410 0.436 0.372 0.269
Lexi+Syn+Str 0.434 0.186 0.455 0.450 0.389 0.390
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Table 5.6: F1 Score for Different Feature Sets and Techniques

ACM CiteSeer
RF NB SVM RF NB SVM

Lexical 0.273 0.132 0.146 0.382 0.257 0.203
Syntactic 0.224 0.158 0.151 0.354 0.339 0.076
Structural 0.109 0.105 0.100 0.247 0.199 0.038
Lexi+Syn 0.298 0.182 0.224 0.389 0.349 0.240
Lexi+Str 0.285 0.173 0.147 0.376 0.274 0.207
Syn+Str 0.247 0.165 0.149 0.373 0.347 0.089
Lexi+Syn+Str 0.309 0.191 0.239 0.391 0.359 0.245

Table 5.7: P-values of pairwise t tests on Accuracy for different types. Symbol * indicates
statistical significance

Feature Sets ACM CiteSeer
Lexical vs. Syntactic 0.2179 0.1264
Lexical vs. Structural 0.0018* 0.0005*
Syntactic vs. Structural 0.0035* 0.0012*
Lex vs. Lex+Syn 0.0482* 0.0407*
Lex+Syn vs. Lex+Syn+Stru 0.2210 0.1987
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Table 5.8: CiteSeer Data Set: Contribution of individual features

Feature Accuracy Feature F1 Score
tableNum 0.5972 tableNum 0.5416
RefNo 0.6041 RefNo 0.5483
TokenNum 0.6072 TokenNum 0.5492
TabSpaceNo 0.6084 AlphaCharNo 0.5511
AlphaCharNo 0.6090 AvgWordLen 0.5559
FuncWordDis 0.6096 TabSpaceNo 0.5563
figureNum 0.6100 FuncWordNum 0.5581
TypeNum 0.6125 SentenceNum 0.5586
CharNum 0.6127 FuncWordDis 0.55927
upperCaseNo 0.6129 DigitalCharNo 0.55930
punctuNo 0.6137 figureNum 0.5594
equationNum 0.61376 equationNum 0.55956
AvgWordLen 0.61377 SpaceNo 0.55962
SpaceNo 0.6143 AvgSentenceLen 0.5598
DigitalCharNo 0.6148 TypeNum 0.5607
FuncWordNum 0.6157 upperCaseNo 0.5609
HapaxVSType 0.61585 CharNum 0.5615
AvgSentenceLen 0.61588 sectionNum 0.56355
SentenceNum 0.6162 ValidCharNo 0.56361
ShortWordNum 0.6177 HapaxVSType 0.5647
sectionNum 0.6179 punctuNo 0.5648
ValidCharNo 0.6185 ShortWordNum 0.5662
HapaxVTToken 0.6195 HapaxVSToken 0.5669
whiteSpaceNo 0.6211 whiteSpaceNo 0.5683
VocRichness 0.6228 VocRichness 0.5695

All 0.6245 All 0.5701
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Table 5.9: Content vs. Writing Style: ACM data set. Value* is significantly better than
Stylometric Classifier

Accuracy F1 Score
2-Venue Stylometric 0.806 0.713

Content 0.916 0.888
Combine 0.884 0.836

5-Venue Stylometric 0.584 0.454
Content 0.798 0.706
Combine 0.742 0. 636

10-Venue Stylometric 0.434 0.309
Content 0.657 0.528
Combine 0.595 0.444

30-Venue Stylometric 0.267 0.118
Content 0.491* 0.302*
Combine 0.419* 0.227*

50-Venue Stylometric 0.207 0.077
Content 0.407* 0.216*
Combine 0.342* 0.155*

100-Venue Stylomeric 0.113 0.050
Content 0.280* 0.141*
Combine 0.217* 0.101*

150-Venue Stylometric 0.099 0.040
Content 0.135* 0.085*
Combine 0.179* 0.074*

Table 5.10: Writing Styles vs. Genres

Conference vs. Journal Accuracy F1 Score
Overall 0.7680 0.7679

Database 0.7965 0.7949
Computer Graphics 0.5887 0.5885

Computer Architecture 0.7670 0.7668
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Table 5.11: Content vs. Writing Style: CiteSeer Data Set. Value* is significantly better
than Stylometric classifier. Value† indicates that ’Combine’ Classifier is
significantly better than ’Content’ Classifier

Accuracy F1 Score
2-Venue Stylometric(F) 0.847 0.828

Content 0.885 0.868
Combine 0.886 0.866

5-Venue Stylometric(F) 0.625 0.570
Content 0.687 0.638
Combine 0.691 0.645

10-Venue Stylometric(F) 0.450 0.391
Content 0.504 0.442
Combine 0.516† 0.458†

30-Venue Stylometric(F) 0.246 0.188
Content 0.270 0.211
Combine 0.286 0.225

50-Venue Stylometric(F) 0.156 0.116
Content 0.187* 0.141*
Combine 0.191* 0.145*

100-Venue Stylometric(F) 0.094 0.044
Content 0.111* 0.086*
Combine 0.116*† 0.087*†

150-Venue Stylometric(F) 0.062 0.044
Content 0.075* 0.059*
Combine 0.079* 0.060*

Table 5.12: Writing Styles vs. Topics

Accuracy F1 Score
SIGIR WWW 0.730 0.729
SIGIR CIKM 0.660 0.659
SIGIR SIGKDD 0.755 0.755
SIGIR JCDL 0.690 0.688
SIGIR computer architecture 0.855 0.855
SIGIR parallel computing 0.895 0.895
SIGIR graphics 0.845 0.844
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Table 5.13: Venue Recommendation Results on ACM and CiteSeer data

Top K=500

ACM CiteSeer

Style Content S+C Style Content S+C

Accuracy@5 0.084 0.103 0.150 0.065 0.125 0.108
Accuracy@10 0.150 0.190 0.291 0.086 0.172 0.148
Accuracy@20 0.265 0.352 0.526 0.141 0.251 0.231
MRR 0.002 0.003 0.005 0.010 0.013 0.013

Top K=1000

Style Content S+C Style Content S+C

Accuracy@5 0.081 0.081 0.150 0.086 0.122 0.116
Accuracy@10 0.138 0.151 0.286 0.105 0.157 0.152
Accuracy@20 0.239 0.272 0.504 0.137 0.212 0.209
MRR 0.003 0.004 0.009 0.008 0.009 0.009

Top K=2000

Style Content S+C Style Content S+C

Accuracy@5 0.079 0.071 0.166 0.114 0.122 0.130

Accuracy@10 0.128 0.124 0.319 0.131 0.156 0.162

Accuracy@20 0.224 0.221 0.520 0.158 0.197 0.209

MRR 0.005 0.006 0.013 0.006 0.007 0.008

Top K=5000

Style Content S+C Style Content S+C

Accuracy@5 0.080 0.075 0.214 0.153 0.117 0.158

Accuracy@10 0.128 0.124 0.375 0.177 0.148 0.196

Accuracy@20 0.220 0.217 0.559 0.203 0.197 0.236

MRR 0.009 0.008 0.022 0.006 0.006 0.007

Top K=10000

Style Content S+C Style Content S+C

Accuracy@5 0.086 0.082 0.249 0.190 0.118 0.195

Accuracy@10 0.134 0.140 0.422 0.221 0.161 0.231

Accuracy@20 0.230 0.241 0.604 0.250 0.227 0.272

MRR 0.011 0.009 0.027 0.006 0.006 0.007

All Neighbors

Style Content S+C Style Content S+C

Accuracy@5 0.502 0.367 0.557 0.238 0.124 0.239

Accuracy@10 0.623 0.492 0.698 0.286 0.178 0.290

Accuracy@20 0.716 0.600 0.783 0.332 0.250 0.337

MRR 0.032 0.016 0.046 0.006 0.007 0.006
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Table 5.14: ACM and CiteSeer: Comparison with baseline algorithms

ACM Data Accuracy@5 Accuracy@10 Accuracy@20 MRR

SimpleCount-Ref 0.203 0.212 0.212 0.0006
SimpleCount-Sibling 0.252 0.307 0.344 0.0008
SimpleCount-Author 0.377 0.430 0.446 0.0008
SimpleCount-All 0.470 0.566 0.603 0.0013

contentLDA 0.010 0.018 0.024 0.0008

traditionalCF 0.317 0.467 0.608 0.0283

FolkRank 0.102 0.184 0.252 0.0087

Our method 0.557 0.698 0.783 0.0459

CiteSeer Accuracy@5 Accuracy@10 Accuracy@20 MRR

SimpleCount-Ref 0.096 0.099 0.099 0.0001
SimpleCount-Sibling 0.112 0.141 0.161 0.0001
SimpleCount-Author 0.129 0.157 0.176 0.0001
SimpleCount-All 0.199 0.239 0.277 0.0002

contentLDA 0.008 0.016 0.022 0.0005

traditionalCF 0.095 0.015 0.224 0.0040

FolkRank 0.037 0.068 0.113 0.0037

Our method 0.239 0.290 0.337 0.0058

Table 5.15: Venue Recommendation Results: Examples

Paper Title Top 5 Predicted Venues
1. corpus structure lan-
guage

annual meeting acl

models and ad hoc annual intl acm sigir conf on research
and development in information re-
trieval

information retrieval journal machine learning research
(SIGIR 2004) computational linguistics

acm ieee cs joint conf on digital libraries
2. induction of integrated acm sigmod intl conf on management data
view for xml data intl conf on information and knowledge

management
with heterogeneous dtds acm symposium on applied computing
(CIKM 2001) communications acm

vldb journal mdash intl journal on very large
data bases

3. multi resolution indexing acm intl conf on multimedia
for shape images intl conf on very large data bases
(CIKM 1998) annual acm siam symposium on discrete al-

gorithms
conf on visualization
annual conf on computer graphics and inter-
active techniques
(rank 8) intl conf on information and
knowledge management

4. video suggestion and dis-
covery

intl conf on human computer interaction
with mobile devices and services

for youtube taking random
walks

annual sigchi conf on human factors in com-
puting systems

through the view graph acm sigkdd intl conf on knowledge discovery
and data mining

(WWW 2008) intl conf on world wide web
annual meeting on association for computa-
tional linguistics
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Chapter 6

Academic Network Analysis: a

Joint Topical Modeling Approach

Generative topic modeling provides an extensible platform to integrate multiple

types of entities and discovery their underlying semantics (topics) over words. In

this chapter, we continue on developing enhanced topic modeling approach for ex-

pert ranking. Compared to the work conducted in chapter 4, we integrate two more

important factors: the publishing venues and cited authors into topic modeling

process. Experiments show that additional information can improve ranking per-

formance. We also demonstrate the capability of the model in predicting publishing

venues and cited authors via experimental studies.

6.1 Introduction

Social network research has attracted the interests of many researchers, not only

in analyzing online social media applications, such as Facebook and Twitter, but

also in providing comprehensive services in the domain of scientific research. We

define an academic network as a kind of social network which integrates scientific

factors, such as authors, papers, publishing venues, and their relationships. With
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the rapid development of online digital libraries, the proliferation of large quanti-

ties of scientific literature provides us abundant opportunity to extract the textual

content of scientific factors (i.e., publishing papers) as well as their mutual rela-

tionships (citation, coauthorship), and therefore stimulates the emergence of many

applications that are particularly important in academic domain (in mining and

analyzing academic networks), such as expert ranking, citation prediction, cited

author prediction, venue prediction, etc.

Generative topic modeling has emerged as a popular unsupervised learning tech-

nique for content representation in large document collections. This kind of gen-

erative model was first envisioned for pure contextual analysis while ignoring the

linkage structure among text data. Representative models of this type of analysis

(e.g., [73, 18]) exploit the co-occurrence patterns of words in documents and un-

earth the semantically meaningful clusters of words (as topics). Researchers have

since added extensions to model authors’ interests [148], providing a framework for

answering questions and making predictions at the level of authors rather than doc-

uments, and in a variety of other aspects, such as incorporating link structures and

integrating additional context information.

Despite such recent developments (which we review in Section 2), limitations are

still present. It is widely acknowledged that one of most prominent advantages of

generative topic modeling is that it provides us a flexible and extensible framework

to exploit the underlying latent structures over text data as well as their mutual

connections. In the academic network, we have multiple kinds of scientific factors

and connections; however, most of the previous work considers one aspect of several

factors while ignoring some others.

In this chapter, we provide a framework that can jointly model authors, papers,

cited authors, and venues in one unified model. We name the model as the Author-

Citation-Venue topic model (abbreviated as ACVT model), in which we link authors

to observed words, cited authors and venues via latent topics. We hypothesize that

such a joint modeling has multiple advantages. First of all, this model provides a

more comprehensive framework to fully utilize the content words of documents and

combines them with other useful contextual information: authors, cited authors
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and venues. It therefore directly models documents’ content relevance, authors’

interests, authors’ influence, and venues’ influence in one model, all of which are

important instructive evidence in supporting academic network based applications,

such as expert ranking, cited author prediction, and venue prediction. Missing the

integration of one sort of contextual information, some certain kind of application

would become impossible; for example, if the topic-venue association is not explored,

we cannot make valid venue predictions. Our model therefore can be applied in a

wider range of applications than previous work. Moreover, incorporating additional

contextual and linkage information can help to identify more coherent and complete

latent structures over multiple facets. In the ACVT model, we assume that we

can achieve better topic-related associations for authors, cited authors and venues

when we simultaneously model them together, and such associations with greater

coherency are believed to be able to further improve the performance of multiple

applications.

In summary, we make the following contributions in this chapter:

• We propose a generative model that incorporates multiple facets of academic

network: authors, papers, venues and cited authors in an integrated fashion.

• We apply our model, and provided solutions to three tasks in the academic

domain: expert ranking, cited author prediction and venue prediction.

• Experiments based on two real world data sets demonstrate our model to be

effective on all three tasks, significantly outperforming several state-of-the-art

algorithms.

6.2 Model

Before presenting the model, we first introduce some notation. Suppose W , D,

A, V indicate the size of the word vocabulary, the number of papers, the number

of authors (cited authors), and the size of venues in the corpus respectively. ad,

cd and Nd denote the set of authors, the set of cited authors, and the number of
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Figure 6.1: Graphical Model for the original Author-Topic Model

position-based words in paper d. T denotes the number of latent topics predefined.

We further suppose that there exists a A × T author-topic distribution matrix θ

indicating the distribution of authors over topics, a T ×W topic-word distribution

matrix φ indicating the probability distribution of topics over words, an T × A

distribution matrix ϕ indicating the distribution of topics over cited authors, and a

T × V distribution matrix ϑ indicating the distribution of topics over venues. z, x,

m, s are random variables, representing the topic assignment, author assignment,

cited author assignment and venue assignment for each word. α, β, γ, and λ are

the Dirichlet prior hyper-parameters that determine θ, φ, ϕ, and ϑ respectively. We

list the detailed notation in Table 6.1.

6.2.1 Model Description / Generative Process

We depict the graphical model of ACVT in Figure 6.2 as compared to the original

Author-Topic Model shown in Figure 6.1. As indicated, the graphical model is com-

posed of six plates. Besides the four plates representing Topics, Authors, Documents

and words in each document, ACVT introduces two additional plates, representing

the topic-cited author association and topic-venue association respectively. As we

can see, authors, words, cited authors and venues are all connected via the latent
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Table 6.1: Notation

Symbol Size Description

W scalar size of word vocabulary
D scalar number of papers
A scalar number authors (cited authors)
V scalar number of venues
T scalar number of latent topics
Nd scalar the number of words in paper d

Ad scalar the number of authors of paper d

Cd scalar the number of cited authors of paper
d

N scalar the number of words in corpus

Observed Data

ad |ad| the set of authors of paper d

cd |cd| the set of cited authors of paper d

wd |wd| the words lists of paper d

vd 1 the publishing venue of paper d

A A the set of authors (cited author) in
corpus

w N the set of word tokens in corpus
V V the set of venues in corpus

Hyper-Parameters

α 1× T Dirichlet prior for θ

β 1× T Dirichlet prior for φ

γ 1× T Dirichlet prior for ϕ

λ 1× T Dirichlet prior for ϑ

Random Variables

θ A× T distribution of authors over topics
φ T × V distribution of topics over words
ϕ T ×A distribution of topics over cited au-

thors
ϑ T × C distribution of topics over venues
zdi 1× T topic assignments for ith word in pa-

per d

xdi 1× |ad| author assignments for ith word in
paper d

mdi 1× |cd| cited author assignments for ith

word in paper d

sdi scalar venue assignments for ith word in
paper d
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Figure 6.2: Graphical Model for the Author-Citation-Venue-Topic Model

topics. Note that even though the author list and cited author list for any given

paper d are assumed to be known, the exact author and cited author assignment for

each particular word in paper d are unknown.

Within ACVT, each author is associated with a multinomial distribution over

topics θ, and each topic is associated with a multinomial distribution over words

φ, a multinomial distribution over cited authors ϕ, and a multinomial distribution

over venues ϑ. Moreover, θ, φ, ϕ and ϑ follow a Dirichlet distribution with respect

to the Dirichlet prior α, β, γ, and λ respectively.

The design of the ACVT model captures the intuition of people writing a paper.

Normally, when authors start to write a paper, they should have known what they

are going to write about, namely, the topics of their paper. Based upon the chosen

topics, they will then choose the exact words to use to represent their intended

topics, figure out other related works and their corresponding authors to cite, and

determine where to submit this chapter. We assume that one paper may address

multiple topics, and can be co-authored by more than one author, and that each of

the co-authors may have different weights of contributions to a specific topic.

The generative process of the ACVT model can be described as follows. We
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first sample the author-topic, topic-word, topic-cited author and topic-venue distri-

butions based on the four Dirichlet prior hyper-parameters. Suppose we know the

author lists of papers; then for each word in a given paper, we would first draw an

author from its author list, then conditioned on this drawn author and his associated

author-topic distribution, we sample one topic, based upon which, we further sam-

ple the cited author, venue and word according to their topic-related distributions

independently.

Under this generative process, the likelihood of the corpus w, conditioned on θ,

φ, ϕ, and ϑ is:

p(w|θ, φ, ϕ, ϑ,A,V)

=
D
∏

d=1

p(wd|θ, φ, ϕ, ϑ,ad, cd, vd)

=
D
∏

d=1

Nd
∏

i=1

1

Ad

∑

a∈ad

T
∑

t=1

Cd
∑

c=1

ϕtcϑtvd
φtwdi

θat

6.2.2 Parameter Inference and Estimation

The primary inference goal of our ACVT model is to estimate the posterior distri-

bution of two sets of unknown random variables: (1) the distribution of θ, φ, ϕ and

ϑ, and (2) the topic, author, cited author and venue assignments for each word wdi:

zdi, xdi, mdi, sdi.

p(θ, φ, ϕ, ϑ, z,x,m, s|Dtrain, α, β, γ, λ) (6.1)

where, z,x,m, s indicate the topic, author, cited author and venue assignments for

all word tokens in corpus.

Even though calculating these posterior distributions is intractable for exact in-

ference, various approximate inference models have been employed to estimate these

posterior distributions in hierarchical Bayesian models, including variational infer-

ence [18], expectation propagation[124], and Markov chain Monte Carlo (MCMC)

schemes. In this chapter, we use Gibbs Sampling [63], a special case of the MCMC
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approximation scheme, which is not necessarily as computationally efficient as vari-

ational inference and expectation propagation, but is unbiased and simple to imple-

ment.

The entire inference process involves two steps. Firstly, we obtain an empirical

sample-based estimate of p(z,x,m, s|Dtrain, α, β, γ, λ) using Gibbs Sampling, and

then secondly, we infer the posterior distribution of θ, φ, ϕ, and ϑ based upon

z,x,m, s, by exploiting the fact that the Dirichlet distribution is conjugate to the

multinomial distribution.

1). Gibbs Sampling for z,x,m, s

Using Gibbs Sampling, we construct a Markov chain, in which the transition

between two successive states results from repeatedly drawing the four-tuple <

z, x,m, s >, i.e., the assignment of topic, author, cited author, and venue for each

word as a block from its distribution, conditioned on all other variables. Such a

sampling process would be repeated until it finally converges to the posterior distri-

bution of z,x,m, s. The corresponding updating equation for this blocked Gibbs

Sampler can be defined as:

p(xdi = a, zdi = t,mdi = c, sdi = v|Uknown)

∝
CAT

at,−di + α
∑

t′ C
AT
at′,−di + Tα

CTW
tw,−di + β

∑

w′ CTW
tw′,−di + Nβ

×
CTC

tc,−di + γ
∑

c′ C
TC
tc′,−di + Aγ

CTV
tv,−di + λ

∑

v′ C
TV
tv′,−di + V λ

Uknown

= {wdi = w,z
−di,x−di,m−di, s−di,w−di,ad, vd, α, β, γ, λ}

where CAT represents the author-topic count matrix, and CAT
at,−di is the number

of words assigned to topic t for author a excluding the topic assignment to word wdi.

Similarly, CTW represents the topic-word count matrix, and CTW
tw,−di is the number

of words from the wth entry in word vocabulary assigned to topic t excluding the
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topic assignment to word wdi; C
TC represents the topic-cited author count matrix,

and CTC
tc,−di is the number of cited authors assigned to topic t excluding the topic

assignment to word wdi, and finally, CTV represents the topic-venue count matrix,

and CTV
tv,−di is the number of venues assigned to topic t excluding the topic assignment

to word wdi. Moreover, z
−di,x−di,m−di, s−di, and w

−di stand for the vector of

topic, author, cited author and venue assignment and the vector of word observations

in the corpus except for the ith word in the dth document respectively.

In implementing this Gibbs Sampling, we simply need to keep track of the four

matrices (CAT , CTW , CTC , CTV ). By initially assigning words to randomly chosen

topic, authors, cited authors and venues, we repeatedly apply this equation to each

word in corpus, until finally converged.

2). The Posterior on θ, φ, ϕ, ϑ

After we obtain the approximated estimation of z,x,m, s, the posterior distri-

bution of θ, φ, ϕ, ϑ can be directly computed by exploiting the fact that the Dirichlet

distribution is conjugate to the multinomial distribution, and therefore we have:

θ|z,x, Dtrain, α ∼ Dirichlet(CAT + α) (6.2)

φ|z, Dtrain, β ∼ Dirichlet(CTW + β) (6.3)

ϕ|z,m, Dtrain, γ ∼ Dirichlet(CTC + γ) (6.4)

ϑ|z, s, Dtrain, λ ∼ Dirichlet(CTV + λ) (6.5)

We can then estimate the posterior mean of θ, φ, ϕ, ϑ by following:

E[θat|z,x,Dtrain, α] =
CAT

at + α
∑

t′ C
AT
at′ + Tα

(6.6)

E[φtw|z,Dtrain, β] =
CTW

tw + β
∑

w′ CTW
tw′ + Wβ

(6.7)

E[ϕtc|z,m,Dtrain, γ] =
CTC

tc + γ
∑

c′ C
TC
tc′ + Cγ

(6.8)

E[ϑtv |z, s,Dtrain, λ] =
CTV

tv + λ
∑

v′ C
TV
tv′ + V λ

(6.9)
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6.3 Application

We introduce in this section three main applications related to academic network

analysis that can be solved by applying our ACVT model.

6.3.1 Expert Ranking

The problem of expert ranking is equivalent to the problem of finding experts. The

ultimate goal of an expert finding task is to identify people who have relevant exper-

tise to a specific topic of interest. In the academic research environment, estimating

a researcher’s reputation (contribution) and further ranking academic researchers is

of great importance as it can offer support when making decisions about researchers’

job promotion, project funding approval, paper review assignment, as well as scien-

tific award assignment.

Rank experts by Topic Models

Based on the learning results from the ACVT model, we obtain four distributions: θ,

φ, ϕ and ϑ. Suppose we are given a query q, composed of a set of words w, then for

any given author a in the corpus, the probability of having author a being relevant

to the query q, i.e, the expertise of the author a in domain q, can be computed

under our ACVT model as:

pTM(a|q) ∝ pTM(q|a) (6.10)

=
∏

w∈q

p(w|a)

=
∏

w∈q

p(w|aa)p(w|ac)
∑

v∈V (a)

p(w|v)

where p(w|aa) represents the probability of author a generating word w as an au-

thor; p(w|ac) represents the probability of author a being cited by word w; p(w|v)

represents the probability of venue v generating word w. We consider all the pub-

lishing venues V (a) of a to evaluate the relevance of author a to word w from the

venue aspect of view.
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Based upon the learning results from ACVT, we can further have:

p(w|aa) =
∑

t

p(w|z)p(z|aa) =
∑

t

φtwθaat (6.11)

p(w|ac) =
∑

t

p(w|z)p(z|ac) (6.12)

∝
∑

t

p(w|z)p(ac|z) =
∑

t

φtwϕtac

p(w|v) =
∑

t

p(w|z)p(z|v) (6.13)

∝
∑

t

p(w|z)p(v|z) =
∑

t

φtwϑtv

As a result, we can compute pTM(a, q) by:

pTM(a|q) ∝
∏

w∈q

(
∑

t

φtwθaat)(
∑

t

φtwϕtac)(
∑

v∈V (a)

∑

t

φtwϑtv) (6.14)

Combining with Language Model and Random-walk

We are also interested in examining whether we can achieve better performance

when combining the results obtained from Topic Modeling with that of using a

language model based approach and a random walk based approach, the two other

representative approaches in evaluating researchers’ expertise.

To evaluate the relevance of an author a to a query, we can construct a virtual

document Fa of author a by concatenating all the publishing papers of author a,

and thus the relevance of author a to query q would be equivalent to the relevance of

document Fa to query q. Under the standard language model with Jenilek-Mercer

smoothing, the probability can be computed by:

pLM(a|q) = pLM (Fa|q)

=
∏

w∈q

{(1 − λ)
n(w,Fa)

n(Fa)
+

λ

∑

Fa′
n(w,Fa′)

∑

Fa′
n(Fa′)

} (6.15)

A random-walk based algorithm directly models the interaction among network

nodes. In this chapter, we construct a heterogeneous academic network (as shown
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in Figure 6.3, which follows the network design mentioned in paper [169]) which is

composed of three kinds of academic factors: authors, papers and venues, and their

mutual relationships: G = (Va ∪ Vd ∪ Vv, Ead ∪Edd ∪Ecd). Va, Vd and Vv represents

the collection of authors, papers and venues respectively. Based on our definition,

(di, dj) ∈ Edd if paper di cites paper dj. We further represent each undirected edge

into two directed edges in bipartite graphs, and therefore we have both (ai, dj) ∈ Ead

and (dj, ai) ∈ Ead if paper dj is written by author ai. Similarly, (vi, dj) ∈ Evd and

(dj, vi) ∈ Evd if paper dj is published in venue vi.

The transition probability between any two nodes in the network is determined

by two parameters: the type-based transition parameter λt1t2 , which determines the

probability when the random surfer transfers from node of type t1 to node of type

t2. The second parameter p(n1|n2) determines the transition probability between

any two specific nodes, no matter what type of the nodes they are. Under this

definition, if the random surfer transfers from node n1 of type t1 to node n2 of type

t2, the transition probability would be λt1t2p(n2|n1).

Given this academic network, we apply a PageRank-like [133] propagation al-

gorithm over it to achieve the ranking score for each ‘author’ node. Suppose the

PageRank score of each node ni is denoted as r(ni), and then it can be computed

by:

r(nj) =
d

|V |
+ (1− d) ∗

∑

(ni,nj)∈E

λt(ni)t(nj )p(nj |ni) (6.16)

where |V | is the total number of nodes in the network, and t(ni) indicates the type

of node ni.

We adopted two methods to combine the ranking performance of topic modeling,

language model and random-walk based PageRank. To linearly combine them, the

final ranking score of an author a for a given query q can be computed as:

pF inal(a|q) = αpTM(a, q) + βpLM(a, q) + γr(a) (6.17)

where, α, β and γ, satisfying α + β + γ = 1, are the parameters that need to be

tuned.
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We can also multiply the results obtained from the three methods, which results

in the final ranking score presented as:

pF inal(a|q) = pTM(a|q)× pLM(a|q)× r(a) (6.18)

Figure 6.3: Heterogeneous Academic Network

6.3.2 Cited Author Prediction

We examine in this task the capability of our model in predicting the authors that a

given paper might cite in the future. Instead of predicting the cited papers directly,

we predict the cited authors. This has applications in real life, since we sometimes

follow some authors, especially some authors who are of high reputation in a certain

field, and then by going through their publications, an author can locate the most

recent and relevant papers to cite.

Suppose we are now given a new document, represented by Wd, and suppose we

know its author lists ad. In order to predict the potentially cited authors, we need

to compute the probability of p(c|wd), the probability of generating c given words

Wd and author lists ad. This probability can be computed by making use of the

distributions we learned from the training set. We have:
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p(c|Wd) =
∑

z

∫

p(c, z, θ|Wd)dθ =
∑

z

∫

p(c, z, θ,Wd)

p(Wd)
dθ

∝
∑

z

∫

p(c, z, θ,Wd)dθ

=
∑

z

∫

p(Wd|z)p(c|z)p(z|θ)dθ

=
∑

z

p(Wd|z)p(c|z)

∫

p(z|θ)dθ

=
∏

w∈Wd

[
∑

z

∑

a∈ad

p(w|z)p(c|z)

∫

p(z|θ)dθ]

≈
∏

w∈Wd

[
1

|ad|

K
∑

k=1

∑

a∈ad

θakφkwϕkc] (6.19)

where, a ∈ ad.

6.3.3 Venue Prediction

In the task of venue prediction, we aim to predict the potential publishing venue

given a paper with both its content and author lists provided. This task is of

importance to some researchers, especially researchers that are new to a domain.

They may find it difficult to decide where to submit after they finish their work.

Similarly, in order to predict the potential venue, we need to compute the probability

of p(v|wd). The derivation process is similar to that of the cited author prediction,

and therefore we have:
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p(v|Wd) =
∑

z

∫

p(v, z, θ|Wd)dθ =
∑

z

∫

p(v, z, θ,Wd)

p(Wd)
dθ

∝
∑

z

∫

p(v, z, θ,Wd)dθ

=
∑

z

∫

p(Wd|z)p(v|z)p(z|θ)dθ

=
∑

z

p(Wd|z)p(v|z)

∫

p(z|θ)dθ

=
∏

w∈Wd

[
∑

z

∑

a∈ad

p(w|z)p(v|z)

∫

p(z|θ)dθ]

≈
∏

w∈Wd

[
1

|ad|

K
∑

k=1

∑

a∈ad

θakφkwϑkv] (6.20)

where, a ∈ ad.

6.4 Experimental Evaluation

6.4.1 Experimental Setup

In order to demonstrate the effectiveness of our model, we carried out a set of

experiments on two real world data sets. The first data set is a subset of the ACM

Digital Library, from which we crawled one descriptive web page for each 172,890

distinct papers having both title and abstract information.

For each published paper, we extracted the information about its publishing

venue and references. Due to possible venue name ambiguity, we first converted

all upper-case characters into lower-case, and removed all non-alphabetic symbols.

We further removed all digits as well as the ordinal numbers, such as the 1st, the

2nd, and applied the Jaccard Similarity match to merge duplicate venue names.

We finally obtained 2,197 distinct venues. To remove author names’ ambiguity, we

represent each candidate author name by a concatenation of the first name and last

name, while removing all the middle names. We then use exact match to merge

candidate author names. Finally, we obtain 170,897 distinct authors.
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Table 6.2: Statistics over ACM and ArnetMiner data set

Data Set Paper Author Venue Distinct Word Word Tokens

ACM 92,708 2,965 1,816 17,341 6,224,821

ArnetMiner 165,330 14,454 2,304 18,151 13,368,826

The second data set we utilized is the data set ’DBLP-Citation-network V5’

provided by Tsinghua University for their ArnetMiner academic search engine [?].

This is data set is the crawling result from the ArnetMiner search engine on Feb

21st, 2011 and further combined with the citation information from DBLP1. We

name this data set as the ArnetMiner dataset. After carrying out the same

data processing method as we did for the ACM data set, we find 1,572,277 papers,

795,385 authors and 6,010 publishing venues.

We further carried out a filtering process to remove data noise, and to obtain a

smaller subset of both data sets for experiments. We collect for two data sets the

papers that have complete information, i.e, title, abstract and venue. Moreover, the

papers we collect should have at least one available author and at least one citation.

This results in a collection of 92,708 papers for the ACM data set, and 165,330

papers for the ArnetMiner data set. We further collect authors that have at least

one publication and have been cited ten times as minimum, resulting in a set of

2,965 authors and 14,454 authors for ACM and ArnetMiner data sets. We finally

filter out the stop words in paper content, and collect sets of 17,341 and 18,151

distinct words for ACM and ArnetMiner respectively that have a word frequency

in the entire corpus greater than ten. Table 6.2 shows a brief summary of the two

data sets we use for experiments.

6.4.2 Experimental Methodology and Results

We report in this section results over several groups of experiments. We compare our

results with several other state-of-the-art baseline algorithms, and provide analysis

for the results.

1http://www.informatik.uni-trier.de/ ley/db/
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Qualitative Topic Modeling Results

We are interested in examining the modeling results in terms of the four probability

distributions we define in the model. In the experiments for both ACM and Ar-

netMiner data set, we pre-fixed the number of topics to be 50. In this section, we

report the top 10 returned words, authors, cited authors, and venues based on their

topic-based distributions for one randomly chosen latent topic for ArnetMiner data

set as one example.

As shown in Table 6.3, we can observe cohesive and interpretable results. For

topic 12, which concerns ‘information retrieval’-related research as concluded from

the top returned words, we can identify several well-known scientists in this field from

both the top 10 author list and cited author list. For example, the top cited author,

Prof. Gerard Salton, is regarded as a founding scientist in the field of information

retrieval, and the SIGIR Award outstanding contributions in IR research is named

after him. The top returned author, Prof. Norbert Fuhr, was presented the Salton

Award in 2012 due to “his pioneering, sustained and continuing contributions to the

theoretical foundations of information retrieval and database systems.”

Table 6.3: Topic Modeling Results on ArnetMiner data set

ArnetMiner data set Topic (Information Retrieval)

Top 10 Words Top 10 Authors Top 10 Cited Authors Top 10 Venues

information Norbert Fuhr Gerard Salton sigir
based Christopher Manning W Croft cikm
web Jaap Kamps Hector Molina world wide web
paper Kathleen Mckeown Ricardo Baeza-Yates acl
search Gary Lee Berthier Neto inf process manage
results Jian Nie Justin Zobel coling
retrieval Eiichiro Sumita Fernando Pereira jcdl
model Jamie Callan John Lafferty jasist
using Jimmy Lin Clement Yu computational linguistics
user Vimla Patel Andrew Mccallum emnlp
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Expert Ranking

(1). Evaluation Ground Truth

It has long been acknowledged as one of the problems in expert ranking re-

search that the community lacks both standard query collections and benchmarks

for evaluation. Much previous research resorts to human labeling, which is natu-

rally subjective and biased, and is also time-consuming. In this chapter, we make

use of other evidence and carry out two kinds of evaluations. In the first approach

(GT1), we use historical information regarding award winners provided by 16 SIG

communities as supporting ground truth. We assume that these award winners are

nominated and selected by other researchers in an open and objective way. They are

widely acknowledged in their community to have made outstanding contributions

in their research fields, and have established world-wide reputations. The corre-

sponding query is generated based on the main research area of that community;

for example, the query for SIGIR community is ‘information retrieval’. We also

check the generated queries with the 23 categories provided by Microsoft Academic

engine, and make sure that each query corresponds to one category. We assume

that these queries cover the main disciplines of computer science research, and that

they represent reasonable topics that users might use for information. These queries

are intended to be broad queries.

In the second evaluation approach (GT2), we make use of a benchmark data set

with seven queries and expert lists provided by Zhang et al. [205].2 The expert

lists are generated by pooled relevance judgments together with human judgments.

Specially, for each query, the top 30 results from three main academic search engines

(Libra, Rexa, and ArnetMiner) are collected and merged then further judged by one

faculty professor and two graduate students. These queries are more specific queries.

We utilize the traditional IR evaluation metric MAP. We list the query and their

corresponding number of experts in Table 6.4.

2This data is available online at http://arnetminer.org/lab-datasets/expertfinding/ (the New

People Lists).
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Table 6.4: Evaluation Benchmark

Benchmark 1: SIG Community Award Winner

Query Expert No.

algorithm theory 7
security privacy 4
hardware architecture 27
software engineering 15
programming language 19
artificial intelligence 14
data mining 7
information retrieval 9
graphics 12
human computer interaction 10
multimedia 2
network communication 18
operating systems 9
database 18
simulation 3
computer education 28

Benchmark 2: ArnetMiner New Expert Lists

intelligent agents 30
information extraction 20
semantic web 45
support vector machine 31
planning 35
natural language processing 43
machine learning 41

(2). Topic Modeling Results

We report the experiment results comparing the performance of our ACVT model

with the ATM model [148], the CAT model [174], the ACT [169] model, and the

ACTC [181] model which is the most recently published work extending ACT [169].

For ACTC [181] model, additional latent variable ‘subject’ is introduced, and

there is no direct author-topic distributions. Instead, each author would be associ-

ated with a multinomial distribution over multiple subjects, which have distributions

over topics and conferences respectively. There also exists a distribution for topics
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over words. Under this model, the expertise ranking scheme can be described as:

P (a|q) =
∏

wi

∑

sj

∑

zt

P (a|sj)P (sj|zt)P (zt|wi) (6.21)

In our experiments, we set the number of latent topics to be 50, and the number

of latent subjects to 20 for the ACTC [181] model. For the four hyper-parameters,

we set α = 2, β = 0.01, γ = 2 and λ = 2. As indicated in the results, our ACVT

model works the best in all scenarios and it significantly outperforms the other four

models in both ACM and ArnetMiner data sets. Better results can be achieved

with the ACVT model using the first benchmark than the second one in both data

sets. It can also be observed that under most circumstances, CAT, ACT and ACTC

outperform the original ATM, except that working on ArnetMiner data set and

using the second benchmark, ACT works slightly worse than ATM. ACTC works

better than ACT, and CAT works better than both ACT and ACTC under most

circumstances.

Working on ArnetMiner data set, we list in Table 6.5 the Top 10 ranked experts

for query ‘information retrieval’ under five different topic models (ATM, ACT, CAT,

ACTC and ACVT) combined with the query. As indicated in the results, we can

achieve more valid results using CAT and ACVT than ATM, ACT and ACTC, since

several well-known experts in information retrieval can be identified within Top 10,

and ranked higher. Furthermore, ACVT can do even better than CAT, since all

the returned experts are information retrieval concentrated researchers, while some

of the top 10 returned experts by CAT are experts in other fields; for example,

Prof.Jeffrey Ullman is famous for his research in compiler, theory of computation and

database theory, and Prof.Jennifer Widom is also a well-known database researcher

who has won the SIGMOD award in 2007.

(3). Combine with Language Model and Random-Walk methods

We examine in this section whether the performance can be improved if we

combine topic modeling with a language model-based approach and a random-walk

based approach. We report the results for expert ranking in terms of using a lan-

guage model, a random-walk based method and topic modeling separately, as well
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Table 6.5: Comparison of Topic Modeling Results: MAP

ACM data set
ATM CAT ACT ACTC ACVT

GT1 0.0288 0.0688 0.0513 0.0562 0.1802
GT2 0.0269 0.0791 0.0780 0.0785 0.1490

ArnetMiner data set
ATM CAT ACT ACTC ACVT

GT1 0.0156 0.0919 0.0514 0.0685 0.1485
GT2 0.0508 0.0552 0.0673 0.0730 0.1135

Table 6.6: Expert Ranking Results Comparison (on ArnetMiner data set)

Query: information retrieval

ATM ACT ACTC CAT ACVT

Jintao Li C Giles Edward Fox Gerard Salton W Croft
Ling Duan Wei-ying Ma C Giles Ricardo Baeza-Yates Gerard

Salton
Baeza-Yates

Simone Tini Ji Wen Marcos Alves W Croft Ricardo
Baeza-
Yates

Stanley Jr Maarten Rijke W Croft Hector Molina Hector
Molina

Sunil arya Jian Nie Berthier Neto Jiawei Han Berthier
Neto

Karthikeyan Irwin King Maarten Rijke Rakesh Agrawal Jiawei Han
Sankaralingam
Si Wu Alan Smeaton Jian Nie Berthier Neto Justin

Zobel
Cleidson Soua Chengxiang Zhai Min Kan Hans Kriegel Fernando

Pereira
Shi Neo Rohini Srihari Mounia Lalmas Jeffrey Ullman C Giles
Osman Unsal W Croft Mark Sanderson Jennifer Widom Wei-ying

Ma

as the combined results.

As introduced in section 4.1.2, we adopted two combination methods. For linear

combination, we take use of a simple greedy search method to tune the parameters.
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Figure 6.5: Combine ranking methods (ArnetMiner data set)

We gradually change the weight for one particular method from 0 to 1, and let the

other two methods evenly share the remaining weights, i.e. (α ∈ [0, 1], β = γ =

(1− α)/2). Figure 6.4 and Figure 6.5 depict the results working on ACM data set

using GT1 as the ground truth, and ArnetMiner data set using GT2 as the ground

truth respectively. Table 6.6 indicates the results by the multiplication combination

method.
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Table 6.7: Comparison of Topic Modeling Results: MAP

ACM data set
LM PR ACVT LM+PR+ACVT

GT1 0.0752 0.0316 0.1802 0.1863
GT2 0.1242 0.0129 0.1490 0.1529

ArnetMiner data set
LM PR ACVT LM+PR+ACVT

GT1 0.0258 0.0107 0.1485 0.1750
GT2 0.1044 0.0104 0.1135 0.1676

Several observations can be made from the results. 1) We can achieve bet-

ter performance when combining the three methods by multiplication than linearly

combining them. The best performance under linear combination is always outper-

formed by multiplication method. This is also true for working on ACM data set

with GT2 ground truth, and ArnetMiner data set with GT1 as ground truth. 2)

Our ACVT model works better than both the language model and random-walk

PageRank-based approach in all experimental scenarios. 2) The language model

approach works the second best, and its performance is much better under the first

benchmark than the second benchmark. 3) We can achieve improved performance

when combing the three approaches together than working on any of them indi-

vidually. The relative improvement over plain ACVT is 3.45% (ACM under GT1),

2.62% (ACM under GT2), 17.85% (ArnetMiner under GT1) and 47.67% (Arnet-

Miner under GT2) respectively.

6.4.3 Cited Author Prediction

Here we consider the capability of our ACVT model in predicting the authors that

any given paper might cite. We take the CAT model as our baseline algorithm, in

which cited author information is modeled yet the venue information is missing. In

experiments, we select 10,000 papers for the ACM data set, and 18,000 papers for

the ArnetMiner data set, as our two testing sets, corresponding to roughly 10% of

the total papers in each data set. The criterion for such a selection is that we make
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Table 6.8: Comparison of Cited Author Prediction: MAP

Data Set CAT ACVT
ACM 0.1029 0.1154
ArnerMiner 0.0364 0.0488
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Figure 6.6: Cited Autor Prediction: Precision@K

sure that the authors of each paper in the testing set has at least one other paper

publication in the remaining training set.

Predictions are made by following Equation 19. The actual set of cited authors

for each test paper serves as our ground truth. We evaluate our performance in

terms of MAP, as shown in Table 6.8 and Precision@K, as shown in Figure 6.6.

As shown in Table 6.8, we can achieve a 12.15% and 34.07% improvement in

MAP when using our ACVT model as compared to the CAT model in ACM and

ArnetMiner data sets respectively. These demonstrate our model to be more effective

in predicting cited authors, and indicate that jointly modeling venue information

can provide more cohesive author-topic and topic-cited author associations.

We observed consistent performance in terms of Precision@K across two data

sets. Even though the value of Precision@K keeps dropping when K is increased,

ACVT outperforms CAT at all different K values. We further notice that there is

greater improvement for ACVT over CAT on ArnetMiner data set than ACM data
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Figure 6.7: Venue Prediction: Precision@K

Table 6.9: Comparison of Venue Prediction: MAP

Data Set ACT ACVT
ACM 0.3226 0.3585
ArnerMiner 0.1151 0.1977

set. For both data sets, the improvement of ACVT over CAT decreases with larger

K value.

6.4.4 Venue Prediction

We now evaluate the capability of our ACVT model to predict the publishing venue

of a given paper. We take the ACT model as our baseline algorithm in which the

venue information is modeled yet the cited author information is missing. Similar

to the experiments for cited author prediction, we select 10,000 papers and 18,000

papers from ACM and ArnetMiner data sets respectively to work as our testing sets,

and make sure that the authors of those chosen papers have at least one other paper

in the remaining training sets.

We can perform venue prediction by following Equation 20, and evaluate the

results by comparing with the real publishing venue of the given paper.

169



As demonstrated in Table 6.9, our ACVT outperforms the ACT model in predict-

ing the publishing venues of any given paper. The improvement of ACVT over ACT

is 11.13% for ACM and 71.76% for ArnetMiner. This demonstrates the advantage

of jointly modeling multiple facets.

Figure 6.7 shows the performance in terms of Precision@K. We observe similar

trend as in the task of cited author prediction. Our ACVT model can outperform the

ACT model under all different K values, and we can achieve greater improvement

on ArnetMiner data set than on ACM data set.

6.5 Bibiliographic Notes

6.5.1 Author Topic Modeling

Generative topic modeling is a popular unsupervised learning technique for topic-

related content representation. Initially, this kind of generative modeling was uti-

lized in pure contextual analysis. Two representative models of this kind, Probabilis-

tic Latent Semantic Analysis (PLSA) [73] and Latent Dirichlet Allocation (LDA)

[18], exploit co-occurrence patterns of words in documents and unearth the seman-

tic clusters (topics) of words. In those proposed models, each document would be

regarded as a mixture over multiple latent topics.

The original PLSA and LDA idea of document topic modeling has been extended

to include modeling of authors’ interests. The very first work in this direction is that

of Rosen-Zvi et al. [148], which simultaneously models the content of documents

and the interests of authors, such that the mixture weights for different topics would

be determined by the authors of the documents.

Most recently, a number of models that extend the original idea of LDA and

ATM have been proposed, most of which contribute in the direction of incorporat-

ing additional contextual information and integrating linkage structures. Link-LDA

[46], Pairwise-LDA and Link-PLSA-LDA [129] are three representative topic models

that extend PLSA and LDA by integrating citation linkages among papers into topic
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modeling. However, in these three efforts, no author information has been consid-

ered, and the citation prediction is made based upon pairs of papers, which is quite

different from the model we propose in this chapter that particularly emphasizes

the interests and influence of authors.

Several representative works have been proposed to extend ATM. The Author-

Conference-Topic (ACT) [169] model adds contextual information, the publishing

venues of papers, to represent venues’ influence over topics. The Author-Conference-

Topic-Connection [181] model extends [169] by introducing an additional latent vari-

able ‘subject’, from which the confereneces (venues) and topics can be respectively

generated. The Citation-Author-Topic (CAT) [174] model directly models the cited

authors’ information, such that authors’ influence over other authors can be consid-

ered. As a further extension to the CAT model, the Context Sensitive Topic Models

[88] introduces a learning mechanism that can dynamically determine the citation

context windows, and to associate terms within citation context windows to cited

authors. Our proposed model, the ACVT model, can be regarded as a further exten-

sion and combination of the ACT and CAT model, in that we jointly model both the

venue and the cited authors information, as compared to ACT which only considers

venues, and CAT and the Context Sensitive model that only consider citations.

There are also other topic models which emphasize different aspects of contri-

bution. Liu et al. [106] proposed a model that can jointly model topics, author

communities and link information for author community detection. Johri et al.

[83] introduced a model that can relax the ‘bag-of-words’ assumption and can au-

tomatically identify multi-word phrases into modeling; Mei et al. [119] conducted

temporal author topic analysis, and Song et al. [163] built topic models to disam-

biguate names. Mei et al. [118] incorporated network regularization technique into

an extended version of PLSA. Our ACVT model distinguishes itself from all the

work mentioned above by its model design focus and applications.
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6.5.2 Applications: Expert Ranking, Cited Author and Venue

Prediction

Expert ranking has blossomed since the advent of the TREC Enterprise Track ini-

tiated in 2005, and the rapid development of online academic search engines, such

as ArnetMiner and Microsoft Academic Search. Given a user query, the task of

expert ranking basically involves identifying and ranking a list of researchers based

on their expertise in that query-specific domain. Two categories of approaches have

been the research focus in the past years: the pure content analysis based approach

[8, 108, 50], which emphasizes evaluating authors’ expertise by measuring the rel-

evance of their associated documents to the query, and the social network based

approach [39, 171, 62, 79], which evaluates authors’ expertise by exploiting the so-

cial interaction of authors and other scientific facets, such as their co-authorships,

their citations to other papers/authors, etc. Few prior works directly make use of

topic modeling results for expert ranking. The CAT, ACT and ACTC models are

the three most representative works we have identified.

Citation prediction has long been a research topic as a specific application in

link prediction (e.g., [70, 69]). However, most of them predict citations among

papers, and few use topic modeling results. In our paper, we focus on predicting

the potential cited authors given a new document, which has seldom been explored

by previous work except the work of Tu et al. [174].

In venue recommendation, a ranked list of venues is generated to which a given

paper could be submitted. Two prior works [99, 137] particularly address such a

problem, however, none of them makes use of a topic modeling approach.

6.6 Summary

We proposed in this chapter an extended probabilistic topic model (the ACVT

model) that can jointly model authors, papers, cited authors and venues in one

unified model. As compared to previous work, ACVT can provide a more complete

framework to incorporate additional useful contextual information. It is therefore
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more applicable to multiple applications related to academic network analysis. We

have considered performance in three typical applications: expert ranking, cited

author prediction and venue prediction. Experiments based on two real world data

sets demonstrate that our model can identify more interpretable topic-related as-

sociations in terms of authors, cited authors, and venues, and can provide better

performance in all three applications as compared with several baseline algorithms.
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Chapter 7

Recommendation in Academia: a

Joint Multi-Relational Model

In this chapter, we present an extended latent factor model that can jointly model

several relations in an academic environment. The model is specially designed for

four recommendation tasks: author-paper citation prediction, paper-paper citation

prediction, publishing venue prediction and author-coauthor prediction, and is pro-

posed based upon the assumption that several academic activities are highly coupled,

and that by joint modeling, we can not only solve the cold start problem but also

help in achieving more coherent and accurate latent feature vectors. Moreover, to

facilitate ranking, we extend an existing work which directly maximizes MAP over

one single tensor into a more generalize form and is therefore able to maximize MAP

over several matrices and tensors. Experiments carried out over two real world data

sets demonstrate the effectiveness of our model.

7.1 Introduction

People can conduct many activities in academic environment: publishing papers,

collaborating with other authors, or citing other papers/authors. Theses activities

are sometimes not easy to fulfill. For example, reading and therefore citing new
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published papers is one of the most important tasks that a researcher should do for

research, however, to find relevant and referential scientific literature from hundreds

of thousands of publications is a time-consuming and labor-intensive task especially

with the rapid development of Internet which makes published papers easy to be

accessed. For another example, when a researcher finished writing a paper, it may

be difficult for him to decide where to submit due to the large number of possible

conferences and journals. To better facilitate such activities, information needs have

arisen for developing systems that can automatically help to predict or recommend

proper venues to submit, papers to cite, and authors to collaborate. In this paper, we

focus on the prediction task in academic environment, and particularly pay attention

to the following four tasks: the prediction on publishing venues, collaborators, cited

papers for authors, and cited papers for papers.

Even though individual systems or algorithms have been proposed to tackle each

of the four tasks separately, which we will review in later sections, limitations still

remain. Most of the previous methods only focus on one single type of relationship

while neglect to explore the mutual interaction among different relationships. In

a real complicated academic environment, which often consists of heterogeneous

nodes and links, each scientific factor can play different roles, and participate in

different activities. For example, individual researcher can work as an author to

write paper, as a collaborator to work with another researcher, or to be cited by

another researcher. The entire academic network is composed of multiple relations

that mutually affect each other.

To better model this multi-relational academic activities and to provide good

recommendations, several challenges remain:

• coupled high order data: as mentioned above, there are multi-typed sci-

entific entities in the academic environment, playing different roles and par-

ticipating in different activities. These activities are often coupled. It is quite

natural for a paper that has a large number of citations from other papers to

be cited by more authors and that authors who collaborate more frequently

may tend to have the same set of paper citations. It is necessary to incorporate
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other correlated relations when making prediction on one specific relation.

• cold start problem: the cold start problem is a typical problem in recom-

mender systems. Take the task of citation recommendation for papers as one

example, some most recently published papers will hardly be cited since they

have never been cited before by other papers or authors, even though they are

highly relevant to a topic or may have great contribution in a certain field.

• Personalization support for authors: Researchers play an important role

in many activities, and they may have different preferences in selecting which

paper to cite, or which venue to submit, even though those papers or venues

focus on similar topics.

• Interest evolution for authors: The interest of researchers evolves over

time. Even though they keep on working in one research field, their research

focus and methods may change.

To tackle these challenges, we propose a joint multi-relational model referred as

the JMRM model which directly models several groups of coupled activities in the

academic environment and provide a more general framework that can solve several

prediction tasks simultaneously in a unified way.

Our model is fundamentally the latent factor collaborative-filtering(CF)-based

model, in which each relation can be represented as a matrix or higher-dimensional

matrix. However, the following three characteristics distinguish our model from

previous ones. Firstly, our model is composed of multiple matrices or tensors, each

of which indicate one relation in the academic environment, and are highly coupled

with each other. Secondly, we integrate the temporal information into the gen-

eration of several matrices to better reflect the evolution of authors’ preferences;

Thirdly, we choose the objective function for solving the model as maximizing the

mean average precision (MAP) as compared to most of the previous work minimiz-

ing the predicting error (RMSE). MAP is a standard IR evaluation metric which

provides a single-value measure of quality across all recall levels. It is widely used

due to its good discrimination and stability property. More important, MAP is
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a ranking-based measure for which errors at top of the ranking list will lead to a

higher penalty than errors at lower places of the ranking list. This top-heavy biased

property makes MAP particularly suitable to work as the objective function for

recommender systems, since most people will only pay attention to the top ranked

results in the recommendation list. For this reason, we choose to maximize MAP as

our objective function.

To sum up, the main contribution of our work are as follows:

• we propose a joint multi-relational model which integrates several coupled re-

lations in an academic environment presented as matrix or higher dimensional

matrix in a unified way. This model is particularly designed for four recom-

mendations: the prediction task on paper submission for venues, co-authorship

prediction, paper citation prediction for authors, and paper citation prediction

for papers.

• we choose to maximize MAP as the objective function for solving the model,

and extend the tensor factorization approach optimizing MAP into a more

general framework that can maximize MAP for coupled multiple matrices and

tensors.

• experimental evaluation over two real world data sets demonstrate the ca-

pability of our model in four recommendation tasks, as they show improved

performance as compared to several state-of-the-art algorithms.

7.2 Preliminary Experiments

In this section, we conducted some simple experiments on two real world data sets:

the ACM data set and ArnetMiner data set to analyze the characteristics of

activities and relationships among scientific factors in the academic environments.
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7.2.1 Data sets

The ACM data set is a subset of the ACM Digital Library, from which we

crawled one descriptive web page for each 172,890 distinct papers having both title

and abstract information. For each published paper, we extracted the information

about its authors and references. Due to possible author names’ ambiguity, we

represent each candidate author name by a concatenation of the first name and last

name, while removing all the middle names. We then use exact match to merge

candidate author names. Finally, we obtain 170,897 distinct authors, and 2097

venues.

The ArnetMiner data set is the data set ‘DBLP-Citation-network V5’ pro-

vided by Tsinghua University for their ArnetMiner academic search engine [171].

It is the crawling result from the ArnetMiner search engine on Feb 21st, 2011 and

further combined with the citation information from ACM. The original data set is

reported to have 1,572,277 papers and to include 2,084,019 citation-relationships.

After carrying out the same data processing method as we did for the ACM data

set, we find 1,558,415 papers, 795,385 authors and 6010 venues.

7.2.2 Coupled Relations

We are first interested in finding out whether multiple relations in an academic

environment are coupled. As a simple test example, we compute for each author in

both data sets his/her total number of publications, citations and coauthors, and

evaluate the correlation between these three factors. Figures 7.1 and 7.2 show our

results.

As we can see, there exists an obvious linear positive correlation between number

of publications and coauthors, indicating that under most circumstances, the more

coauthors you have, the more publications you can achieve. This observation is

compatible with our common sense. However, the correlation between publication

number and citation number is not so obvious. As shown in Figure ??, we have

many data points scattered in the lower-left corner of the figure, indicating that

some authors who do not publish many papers can also achieve high citation.
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Figure 7.1: Correlation between Number of Publications and Coauthors

Figure 7.2: Correlation between Number of Publications and Citations

7.2.3 Cold Start Problem

We evaluate the changes in papers’ attracting citation to demonstrate the existence

of cold start problem in the academic environment. We average the number of

citations each paper retrieves in both data sets on a yearly basis. This simple

statistical result, as shown in Table 7.1, indicates that averagely a newly published

paper begins to retrieve citations 2 more years later than its publication. However,

after that, it just costs around 0.97 years and 0.85 years for papers in ACM and

ArnetMiner data set to retrieve one new citation. Another simple statistics, as

shown in Figure 7.3, indicates that papers on average can achieve most of their

citations in the following year of its publication, and that number gradually drops

as time evolves.
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Table 7.1: Statistics on Papers’ Citations

Data set No. of Papers First Citation Avg. Citation
after publication Frequency

ACM 55392 2.035 0.9693
Arnet 315831 2.7599 0.8528
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Figure 7.3: Average number of citations change over time

7.2.4 Interests evolution

We evaluate the evolution of authors’ research interests by checking the changes in

their publishing venues. For ACM data set, we collect for each author the publishing

venues of his papers published before 2003 and after 2003 (including 2003) as two

sets, and adopt the Jaccard Similarity method to detect the similarity/difference

between these two sets. For ArnetMiner data set, we set the year point as 2006. We

choose the year point by guaranteeing that the average number of distinct venues

of authors in each separate data set is equivalent before and after that year point.

Table 7.2 shows the results.

As indicated, the average Jaccard values for both data sets are pretty small, indi-

cating that authors have a diversified publishing venue list. Authors chose different

venues to submit, which indicates that their research focus may evolve over time.
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Table 7.2: Statistics on Changes of Publishing Venues

ACM ArnetMiner
(Y = 2003) (Y = 2006)

No. of Authors 23358 188143
Avg No.Venues before Y 2.73 5.14
Avg No.Venues after Y 2.75 5.09
Avg Jaccard Similarity 0.0946 0.1188

7.3 Joint Multi-Relational Model (JMRM): Model

Design and Generation

Inspired by the information needs for developing recommender systems in the aca-

demic environment and in order to fulfill the challenges, we propose a joint multi-

relation model. Our model is designed for four particular recommendation tasks in

the academic environment, each of which represents one academic activity, and in-

duces one relation. Therefore, we have four main relations in the model: the author-

paper-venue relation (represented as the APV-tensor), author-author-collaboration

relation (AA-matrix), author-paper-citation relation (AP-matrix), and paper-paper-

citation relation (PP-matrix). Figure 7.4 shows the framework of the model. In or-

der to deal with the cold start problem and better support authors’ personalization,

we further incorporate additional features for papers and authors. In the current

work, we only consider the pure paper content as paper features, and we use the

PW-matrix to represent it. We model authors and their features as the AF-matrix,

and will introduce more detailed features for authors in the following section.

APV-tensor: the author-paper-venue relation This three-order relation con-

sisting of triples <author-paper-venue> indicates the publishing venue selection for

papers with known authors.we have: APV (ai, pj, vk) = 1 if paper pj written by

author ai is published in venue vk; Otherwise, APV (ai, pj , vk) = 0.

AP-matrix: the author-paper-citation relation The AP matrix models the
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Figure 7.4: Coupled Matrices and Tensor

Figure 7.5: Graphic Model Representation

citation relationship between authors and papers. An author may cite a paper mul-

tiple times at different times, and the preference of the author over papers may

also change over time. In order to model this temporal evolution property, we first

generate a three-order tensor incorporating the temporal factor as the third dimen-

sion, and then collapse the tensor into a two-dimensional matrix by aggregating the

number of citations at different years with a time decay function. Given an author

ai, and a paper pj cited by ai, the number of times pj is cited by ai on year tk (the

value for entry < ai, pj, tk >) can be retrieved as:

E(ai, pj, tk) =
∑

pai∈pai

δ(y(pai) = tk ∧ pj ∈ cpai
) (7.1)

where pai is any paper published by ai, pai is the publication set of ai. cpai
is

the set of all cited papers of pai. Function y(pai) retrieves the publication year of
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pai, and δ(c) is a function which returns 1 if condition c is satisfied and 0 otherwise.

We aggregate the citations at different time points based upon the hypothesis that

authors’ interests decay over time, and therefore more recent citation contribute

more heavily than older citation. We penalize the old citations by introducing an

exponential decay kernel function. The entry < ai, pj > for the collapsed author-

paper matrix can thus be defined as:

EAP (ai, pj) =

T2
∑

tk=T1

e−β(T2−tk) · E(ai, pj, tk) (7.2)

where T1 and T2 are the earliest and last year for paper publication in the data

set, and β is the decay rate.

AA-matrix: the author-author-collaboration relation The AA-matrix indi-

cates the collaboration, an important social interactions between pairs of authors.

Similar to the changing interests’ of authors over papers, researchers may also change

to work with others researchers in different time periods. We follow the same pro-

cedure as introduced for the AP-matrix generation by first constructing the author-

author-time tensor, and then collapse it into author-author matrix. The entry for

< ai, aj > can thus be determined by:

EAA(ai, aj) =

T2
∑

tk=T1

e−β(T2−tk) ·E(ai, aj, tk) (7.3)

where E(ai, aj, tk) is the number of times author ai collaborates with aj on year

tk.

PP-matrix: the paper-paper-citation relation The generation of the PP-

matrix is different from that of the AP-matrix or AA-matrix, since each paper

can only cite another paper once. However, there also exists temporal influence,

as a paper may cite a paper published long time ago, or a more recent one. Sup-

pose we have three papers p1, p2 and p3, published in y1, y2 and y3 respectively

(y1 ≤ y2 ≤ y3), and we have paper p3 cites p2 and p1. In our work, we assume that

p2 will have a greater contribution in presenting the topic interests or preferences for
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p3 than p1, since in publishing papers, we often need to review and compare with

those most recently published and state-of-the-art papers. With this assumption,

we have for each entry < pi, pj > indicating that paper pi cites pj in the PP-matrix

as:

EPP (pi, pj) = e−β(y(pi)−y(pj)) (7.4)

where y(pi) and y(pj) returns the publishing year for pi and pj respectively.

PW-matrix: the paper-word relation PW-matrix indicates the features of pa-

pers. In current work, we only consider the pure content of papers, and therefore

we collect the top returned words in the data set with higher frequency. Each entry

of < pi, wj > indicates the term frequency of word wj in paper pi.

AF-matrix: the author-feature relation We identify 20 distinctive features for

authors listed in Table 7.3 to represent the personalized property of an author from

three aspects, and we introduce them as follows.

Content profile based features : Even though we directly model the contex-

tual virtual profile of an author by discovering its coherent clusters of words and

representing it by a distribution over topics, we are also interested in measuring

the content profiles by other widely-used IR metrics. Here we compute the tradi-

tional BM25 score of each author virtual profile, as well as the relevance score using

standard language models. Both these two features are domain-based.

Simple bibliographic based features : We adopt a set of simple bibliographic

features. These include:

total publication number (totalPubNo): which indicates the total number

of publications of one author, across different research domains.

total citation number (totalCitNo): which indicates the total number of

citations an author received from other papers published in different domains.

H-index[71]: H-index is the most well-known measurement in evaluating a re-

searcher’s expertise. A researchers is said to have an H-index with size h if h of his or

her total papers have at least h citations each. This index is affected by the number
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of citation that a researcher has and the citation distribution among a researcher’s

various papers.

G-index[47]: G-index is another primarily used measurement. The G-index

value is the highest integer (g) such that all the papers ranked in Position 1 to g in

terms of their citation number have a combined number of citations of at least g2.

Rational H-index distance (HD-index)[149]: this variant of H-index calcu-

lates the number of citations that are needed to increase the H-index by 1 point.

Rational H-index X (HX-index)[149]: the original H-index indicates the

largest number of papers an author has with at least h citations. However, a re-

searcher may have more than h papers, for example, n papers, that have at least h ci-

tations. If we define x = n−h, then the HX-index is calculated byHX = h+x(s−h),

where s is the total number of publications an author has.

E-index[203]: the original H-index only concentrates on the set of papers an

author published, each of which has at least h citations. This set of papers is often

referred to as the h-core papers of an author. By using this measurement, the only

citation information that can be retrieved is h2, i.e., at least h2 citations of an

author can be received. However, the additional citations for papers is the h− core

would be completely ignored. To complement the H-index for the ignored excess

citations, E − index is proposed, which can be computed by e2 =
∑h

j=1(citj − h) =
∑h

j=1 citj −h
2, where citj are the citations received by the jth paper in the h− core

set. We can further have E − index = sqrt(e2).

Individual H-index IH-index[13]: this measurement is proposed to reduce

the effects of co-authorship. It can be computed by dividing the standard H-index

by the average number of authors in the h-core set: IH-index= h2/NT
a , NT

a is the

total number of authors in h-core set.

Normalized Individual H-index NIH-index[65]: this measurement is also

proposed to reduce the coauthor’s effect, but is much finer-grained than the previous

one. To compute it, we can firstly normalize the number of citations for each paper

in the h-core by dividing the number of its citation by its number of authors. Then
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we compute the H-index score based on these normalized citation counts.

It is noticeable to mention that we calculate all the features mentioned above

from all its publications, as well as only those publications from a specific research

domain. For example, we can compute the overall H-index of an author, by doing

that, all the papers written by that author would be considered. However, when

computing the H-index of an author in a specific domain c, we would only consider

those papers published in that domain, and compute its citations only based on

other papers that are also from that domain.

Network based features : this group of features measure how well an author

collaborate with other authors, and how their publications influence other authors.

We construct two types of network, and apply the PageRank algorithm to compute

the authors’ authority scores. The networks we considered are:

Coauthor Network: this network is generated by connecting authors by their

coauthor-relationships. For the sake of PageRank algorithm, we convert one non-

directional edge into two directional edges. As a result, one non-weighted edge

would exist from author ai to author aj and from author aj to author ai if they have

written at least one paper together.

Citation Network: this directed network is generated by connecting authors

by their citations. One non-weighted edge would point from author ai to aj if at

least one publication of author ai cites one paper of author aj .

We also generate such two kinds of networks for each research community we

considered.

Temporal features : this group of features measures authors’ authority by some

temporal characteristics associated with them. These include:

CareerTime: this measures how long a researcher has devoted into academic

research? We assume that the longer career time a researcher has, the higher au-

thority he may have.

LastRestTime: this indicates how many years have passed since the last pub-

lication of a researcher. We assume that a long time rest without academic output

will negatively affect a researcher’s academic reputation.
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PubInterval: this measures how many years on average would a researcher

take between every two consecutive publications. We assume that more frequent

publication indicates more active academic participation.

Citation Influence ratio: we define and consider one other temporal factor

which tests the long time influence of a researcher’s publication, and thus indirectly

represents the influence of the researcher. We assume that if a paper continues to be

cited a long time after its publication, it brings higher prestige to its author (e.g., the

paper PageRank [133] is frequently and persistently cited by the following papers).

To model this temporal factor, we first introduce a decay function to differentiate

the weight between a pair of paper citations. If paper pj published in year yj cites

another paper pi published in year yi (yj − yi) ≥ 0, we define a probability as the

citation influence ratio of paper pj on pi as: CIR(pji) = β1(1 − β
yj−yi

2 ), where β2

(0 < β2 < 1) is the decay base. We now define the citation influence between a pair

of authors as: CI(aji) =
∑

CIR(pji), where pj is any paper of author aj, pi is any

paper of ai, and pj cites pi.

Contemporary h-index CH-index[159]: this index adds an age-related weight-

ing to each paper. The basic assumption is that the older the paper, the less the

weight. The new citation count for each paper of an author can be computed as

Sc(i) = γ × (Y (now)− Y (i) + 1)−δ × |C(i)|, where Y (i) is the year when paper i is

published, and |C(i)| is the set of paper citing paper i. In computation, δ is often

set to be 1, and γ is set to be 4. After computing this new citation count for each

paper, we can compute the H-index as the standard one based on the new citation

count of each paper.

AR-index[80]: it is also an age-weighted index. The citation count of each

paper would be divided by the age of that paper, and then the AR-index is the

square root of the sum of all the papers in the h-core of an author.

AWCR-index[65]: This is the basically the same with the AR-index, but it

sums over the weighted citation count of all the papers of an author rather than

only the papers in the h-core set.

AvgPubNo: this is computed by dividing the total publication number of an
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author by the CareerT ime of this author.

AvgCiteNo: this is computed by dividing the total number of citations of an

author by his/her CareerT ime.

Table 7.3: Author Features

Feature Category Feature

Simple bibliographic total publicationNo ; total cita-
tionNo ; H-index [71];
G-index [47]; Rational H-index dis-
tance [149]; Rational H-index X
[149];
E-index [203]; Individual H-index
[13]; Normalized individual H-index
[65]

Network-based PageRank score on coauthor net-
work;
PageRank score on citation network

Temporal-based CareerTime [192]; LastRestTime
[192]; PubInterval [192];
Citation Influence Ratio [192]; Con-
temporary H-index [159]; AR-index
[80]
AWCR-index [65]; Avg Publication
number; avg Citation number

7.4 Joint Multi-Relational Model: Algorithm

7.4.1 Preliminary Notations

As shown in Figure 7.4, our joint multi-relational model consists of six relations

generated by authors, papers, venues, words and features entities. It is noticeable

to mention that we distinguish the ‘paper’ entity into two different entities types:

the citing papers and cited papers, and therefore we altogether have six entity types.

Even though to fulfill more applications, more complicated model frameworks can

be generated by increasing the dimension of matrix(relation) and integrating more
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Table 7.4: Notations

K Number of entity types (K = 6)
a, p, pc, v, w, af represents author, citing paper

cited paper, venue, word
and feature entity type respectively.

ai entity of type a with index i
k entity type. k ∈ a, p, pc, v, w, af

Nk Number of entities of type k in data corpus
D Dimension for latent vector
V Number of relations (V = 6)
θk Latent matrix for entities of type k
θkt

Latent feature vector for the tth entity of type k

matrices/tensors, we focus in this current work the model design for four specific

prediction tasks. Table 7.4 lists the notations.

The joint multi-relational model is a further extension and generalization of the

classical matrix or tensor factorization, in which each entity in the interactions

can be represented by a latent feature vector in R
D, where D is typically a small

number. By doing this, each tensor or matrix can be factorized into lower rank

approximations. Figure 7.5 shows the graphical model for the data factorization

associated with our model. The lower-dimensional latent vectors are denoted by

θ = (θ1, . . . , θK) (K = 6), where for each k ∈ K θk = (θk1, . . . , θkNk
) ∈ RNk×D.

7.4.2 Model Factorization maximizing MAP

Computing MAP

We choose to maximize MAP as our objective function due to its top-heavy bias

property. Two questions remain for incorporating MAP into matrix/tensor factor-

ization: how to represent the ‘rank’ of the entities and therefore compute the MAP

scores based upon the latent feature vectors. We follow the same idea proposed in

paper [158] to smoothly approximate MAP, and make it appropriate to be used for

both tensors and matrices. Since our model contains one tensor and five matrices,
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for better illustration, we choose to take the APV-tensor and AP-matrix as two ex-

amples to show how to compute the MAP scores. The same method can be applied

to the other four matrices.

In a tensor like APV-tensor, the predicted value for each entry < ai, pj, vm >

can be computed as: f̂aipjvm
= 〈θai

, θpj
, θvm
〉 =

∑D

d=1 θaidθpjdθvmd, where D is the

dimension for latent vector.

Similarly, In a matrix like AP-matrix, the predicted value for each entry <

ai, pj > can be computed as: f̂aipj
= 〈θai

, θpj
〉 =

∑D

d=1 θaidθpjd.

Under these schemes, suppose vm in triple < ai, pj , vm > is the entity that needs

to be ranked, and pj in tuple < ai, pj > is the entity that needs to be ranked,

then we can directly approximate 1/raipjvm
for vm and 1/raipj

for pj by: 1
raipjvm

≈

g(f̂aipjvm
) = g(〈θai

, θpj
, θvm
〉) , 1

raipj

≈ g(f̂aipj
) = g(〈θai

, θpj
〉), where function g(·) is

the sigmoid function satisfying g(x) = 1
1+e−x .

Correspondingly, the loss function in terms of the MAP values for APV-tensor

and AP-matrix can be computed as below:

To compute the loss function for matrix AA, PP, PW and AF, we can follow the

same way as we do for the AP matrix.

Optimization

We introduced the loss function for each individual matrix/tensor in the last section.

The overall loss function for this multi-relational model is therefore a summation

over all individual loss functions plus the regularization terms to prevent overfitting,

as shown in Equation 7.7. We use Ω to denote the regularization terms, where ‖ · ‖

indicates the Frobenius norms.

We choose to use gradient ascent to solve this optimization problem. For each

relation (matrix or tensor) in the model, we alternatively perform gradient ascent

on the latent feature vector for one entity at each step, while keep the other latent

vectors unchanged. The gradients for the same entity across different relations will

be merged. The same process will be repeated for a certain number of times, or until

it finally converges with no further updates on all latent feature vectors. To better
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illustrate, we list below the gradients for the author, paper and venue entity in the

APV-tensor, and author and paper entity in the AP-matrix. Similar process can

be applied into other entities in other relations. We leave the generalized updating

forms for a model with K N ×M matrices for future’s work.

Lapv = MAPapv =
1

NaNp

Na
∑

i=1

Np
∑

j=1

1
∑Nv

t=1 fAPVaipjvm

×

Nv
∑

t1=1

fAPVaipjvt1
g(〈θai

, θpj
, θvt1〉)

×
Nv
∑

t2=1

fAPVaipjvk2
g(〈θai

, (θvt2 − θvt1), θpj
〉) (7.5)

Lap = MAPap =
1

Na

Na
∑

i=1

1
∑Np

j=1 fAPaipj

×

Np
∑

t1=1

fAPaipt1
g(〈θai

, θpt1〉)

×

Np
∑

t2=1

fAPaipt2
g(〈θai

, (θPt2 − θPt1)〉) (7.6)

L = LAPV + LAA + LAP + LPP + LPW + LAF + Ω

Ω =
∑

k∈a,p,pc,v,w,af

λθk

2
‖ θk ‖

2 (7.7)

For one particular author ai, paper pj and venue vm in the APV-tensor, the

gradients for updating their corresponding latent vector θai
, θpj

and θvm
can be

computed as follows. For notation convenience, we adopt the following substitutions:

f̂APVaipjvm
= 〈θai

, θpj
, θvm〉

f̂APVaipj(vt2
−vt1

)
= 〈θai

, θpj
, (θvt1

− θvt1
)〉
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∂LAPV

∂θai

=

Np
∑

s=1

1
∑Nv

t=1 fAPVaipsvt

Nv
∑

t1=1

fAPVaipsvt1

× [δ1(θps ⊙ θvt1
) + g(f̂APVaipsvt1

)

×

Nv
∑

t2=1

fAPVaipsvt2
g′(f̂APVaips(vt2

−vt1
)
)

× (θps ⊙ θvt2
)]− λθai

∂LAPV

∂θpj

=

Na
∑

s=1

1
∑Nv

t=1 fAPVaspjvt

Nv
∑

t1=1

fAPVaspjvt1

× [δ1(θas ⊙ θvt1
) + g(f̂APVaspjvt1

)

×

Nv
∑

t2=1

fAPVaspjvt2
g′(f̂APVaspj(vt2

−vt1
)
)

× (θas ⊙ θvt2
)]− λθpj

∂LAPV

∂θvm

=

Na
∑

s=1

Np
∑

d=1

fAPVaspdvm
(θas ⊙ θpd

)
∑Nv

t1=1 fAPVaspdvt1

×

Nv
∑

t2=1

fAPVaspdvt2
[g′(f̂APVaspdvm

)

× g(f̂APVaspd(vt2
−vm)

) + (g(f̂APVaspdvt2
)

− g(f̂APVaspdvm
))g′(f̂APVaspd(vt2

−vm)
)]

− λθvm (7.8)

where

δ1 = g′(f̂APVaipjvm
)

Nv
∑

t1=1

fAPVaipjvt1
g(f̂APVaipj (vt1

−vm)
) (7.9)

− g(f̂APVaipjvm
)

Nv
∑

t1=1

fAPVaipjvt1
g′(f̂APVaipj (vt1

−vm)
)
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For one author ai and paper pj in the AP-matrix:

∂LAP

∂θai

=
1

∑Np

t=1 fAPaipt

Np
∑

t1=1

fAPaipt1
[δ2(θpt1

)

+ g(f̂APaipt1
)

Np
∑

t2=1

fAPaipt2
g′(f̂APai(pt2

−pt1
)
)(θpt2

)]

− λθai

∂LAP

∂θpj

=

Na
∑

s=1

fAPaspj
(θas)

∑Np

t1=1 fAPaspt1

×

Np
∑

t2=1

fAPaspt2
[g′(f̂APaspj

)

× g(f̂APas(pt2
−pj)

) + (g(f̂APaspt2
)

− g(f̂APaspj
))g′(f̂APas(pt2

−pj)
)]

− λθpj
(7.10)

where

δ2 = g′(f̂APaipj
)

Np
∑

t1=1

fAPaipt1
g(f̂APai(pt1

−pj)
)

− g(f̂APaipj
)

Np
∑

t1=1

fAPaipt1
g′(f̂APai(pt1

−pj)
) (7.11)

where g′(x) is the derivative of g(x) and ⊙ denotes element-wise product, and λ

is the regularization parameter.

7.4.3 Recommendation by Factor Matrices

After retrieving the latent matrix for each entity type, it is straightforward to gen-

erate the ranking list based upon the recommendation task and the design of ma-

trix/tensor. Take the prediction task for the author-paper citation as one example,

given one author ai, we can achieve the relevance score of each paper pj in the

candidate set by computing 1
raipj

≈ g(f̂aipj
) = g(〈θai

, θpj
〉), and rank all papers in

descending order. The same process can be applied to all other recommendation

tasks considered in our model.
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Table 7.5: Data Set Statistic (1)

data set authors papers venues APV records AA records AP records PP records

ACM 24,764 18,121 846 47,810 112,456 366,201 71,396
ArnetMiner 49,298 47,794 1,682 132,186 361,794 1,675,564 237,531

7.5 Experimental Evaluation

We report in this section the experimental evaluation results for our model, and

compare it with several existing state-of-the-art algorithms.

7.5.1 Data Preprocessing

We conduct our experiments on a subset of the ACM and ArnetMiner data set

introduced in section 3. For papers in each data set separately, we collect the papers

with complete information (authors, abstract, publishing venue and publishing year)

and have been cited at least 5 times in the ACM data set and 10 times in the

ArnetMiner data set. Based on these papers, we further collect all their authors

and publishing venues.

We construct the tensor and matrices as introduced in section 3 for each data

set. The β parameter in AA, AP and PP matrix is set to be 0.5. The PW-relation

and AF-relation are constructed for all valid authors and papers. Table 7.5 shows

a brief data statistics for both data sets, and the total number of records for each

relation. Five-fold cross validation is conducted over the APV-relation, AA-relation,

AP-relation and PP-relation to get the averaged predicting results. In the APV-

relation, since each paper can have multiple authors but just one publishing venue,

in order to avoid to have overlapped records in the training and testing set, we split

the APV-relation into five folds by guaranteeing that one particular paper with all

its authors (and the associated records) would appear in either the training or the

testing set.

We further compute the average number of coauthors and cited papers for au-

thors and papers in the AA-relation, AP-relation, and PP-relation constructed from
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Table 7.6: Data Set Statistics (2)

Avg. node degree
data set APV AA AP PP
ACM 1 10.28 17.51 4.71
ArnetMiner 1 18.40 42.03 7.81

the ACM and ArnetMiner data set separately. For simplicity, we name the average

number as the ‘node degree’ in each relation. For example, in APV-relation, each

author-paper pair is associated with one venue, therefore the average node degree

in APV-relation is 1.

We adopted MAP as our evaluation metric, as the model is specially designed

for maximizing MAP. Since the data in each relation is quite sparse (as shown in

Table 7.6), we cannot treat all entries with no observed data as negative samples

(consider the situation that paper a should also cite paper b, but unfortunately

it did not.), in which case the recommendation results would be deteriorated. To

avoid this, we randomly select 200 negative samples (much higher than the average

node degree in each relation) for each entity in the testing set. The performance

is therefore measured based on the recommendation list that contains the known

positive samples and 200 randomly selected negative samples.

In all experiments, we set the latent dimensionality D = 10, the regularization

parameter λ = 0.001 and the learning-rate as 0.001.

7.5.2 Co-effects analysis of multiple relations

In this part of experiments, we work on totally eight different kinds of multi-

relational combinations, and evaluate the performance over four tasks respectively.

Table 7.7 and 7.8 shows the results.

In the table, c0 indicates the single relation respectively. c1 = {apv, aa, ap, pp, pw, af},

c2 = {apv, aa, ap, pp, pw}, c3 = {apv, aa, ap, pp}, c4 = {apv, pw, af}, c5 = {a, af},

c6 = {ap, pw, af}, c7 = {pp, pw}, and c8 = {aa, ap, pp}.
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Table 7.7: Performance comparison over different combinations of relations

Combinations
ACM

APV AA AP PP
C0 0.0329 0.0487* 0.0456* 0.0389
C1 0.0263* 0.0560 0.0455* 0.0325*
C2 0.0282* 0.0462* 0.0458* 0.0338*
C3 0.0307* 0.0460* 0.0455* 0.0329*
C4 0.0279* NA NA NA
C5 NA 0.0560 NA NA
C6 NA NA 0.0465 NA
C7 NA NA NA 0.0395
C8 NA 0.0468* 0.0453* 0.0325*

Table 7.8: Performance comparison over different combinations of relations

Combinations
ArnetMiner

APV AA AP PP
C0 0.0277* 0.0534* 0.0782* 0.0342*
C1 0.0289* 0.0566 0.0788 0.0357
C2 0.0317 0.0541* 0.0786 0.0353
C3 0.0285* 0.0538* 0.0784 0.0353
C4 0.0316 NA NA NA
C5 NA 0.0565 NA NA
C6 NA NA 0.0786 NA
C7 NA NA NA 0.0348*
C8 NA 0.0543* 0.0787 0.0349*

Several observations can be drawn from the results. 1) Under almost all situ-

ations, jointly modeling multiple relations can indeed improve the prediction per-

formance. For the four tasks over two data sets (just except the publishing venue

prediction (APV) on ACM data set), the best performance is always achieved when

some relations are jointly modeled. 2) There is no clear trend that the more relations

we jointly modeled, the better performance we can achieve. For some prediction

task, i.e., the paper-paper citation prediction on ACM data set, best performance
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Table 7.9: Performance Comparison

Approaches
ACM

APV AA AP PP
JMRM 0.0329* 0.0560 0.0465* 0.0395
FM 0.2127 0.0434* 0.0388* 0.0053*
CTR 0.0374* 0.0513 0.0341*
BPRA 0.0161* 0.0558 0.0360* 0.0216*

is obtained when only paper-paper-citation and paper-word relation are incorpo-

rated. However, for the ArnetMiner data set, three out of four tasks have the best

performance with all relations incorporated.

For each relation in both of the two data sets, we conducted the students’ t test

between the best performance result with others. Statistically significant improve-

ments (paired-based p ≤ 0.05) are labeled with a ∗ in Table 7.7 and 7.8.

7.5.3 Comparison with existing methods

We report the performance comparison with three state-of-the-art approaches: the

Factorization Machines (short as FM) [140], the Collaborative Topic Regression

(short as CTR) [179] and the Bayesian probabilistic relational-data Analysis [195]

approach.

Factorization machines are a generic approach which can effectively combine the

generality of feature engineering with the high-prediction accuracy superiority of

factorization models. It therefore can mimic most factorization models by simple

feature engineering.

CTR model combines traditional collaborative filtering with topic modeling.

BPRA jointly models coupled matrices and tensors but optimizes the model by

minimizing RMSE.

For FM, CTR and BPRA models, we feed the same training and testing set

we used for JMRM, and evaluate the prediction performance on each individual

relations separately. For JMRM, the reported results are the best results selected
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Table 7.10: Performance Comparison

Approaches
ArnetMiner

APV AA AP PP
JMRM 0.0317* 0.0566 0.0788 0.0357*
FM 0.1595 0.0402* 0.0613* 0.0047*
CTR 0.0395* 0.0756* 0.0375
BPRA 0.0176* 0.0359* 0.0794 0.0286*

from different combinations of multiple relations (as shown in Tables 7.7 and 7.8).

For using FM method, we regard the tasks as ‘regression’ tasks; The dimensionality

of the factorization machine is set to be ‘1,1,8’, indicating that the global bias,

one-way interactions and pairwise interactions are all used, and that the number

of factors used for pairwise interactions is set to be 8. Stochastic gradient descent

(SGD) is chosen to used as the learning method. For CTR method, we construct

paper profiles by their abstracts, and author profiles by concatenating all their

publications. The basic LDA is used to retrieve the topic proportion and distribution

vectors. The dimension for latent factor is set to be 10, and the number of latent

topics is set to 20. Since CTR is only proposed for factorizing two types of entities,

we did not adopt it to the task of publishing venue prediction (the APV-relation).

Note that both FM and CTR are implemented using publicly available software.

We also set the dimension for latent factor in BPRA as 10.

Table 7.9 and 7.10 show the results. As indicated, we found that our JMRM

mode can outperform FM and CTR in several cases which demonstrates the effec-

tiveness of our model. FM can achieve significantly better results than JMRM in

predicting publishing venue, but has a very poor performance in predicting paper-

paper citation. Our model shows the best overall performance, since out of 8 cases

(four recommendation tasks over two data sets), our model ranks first for three cases,

and the second for the other five cases, demonstrating its superiority in providing

recommendations for four tasks simultaneously.

198



7.6 Bibiliographic Notes

In this section, we first review three lines of recent development of the latent factor

based collaborative filtering (CF) models that are relevant to our research in this

paper, and then introduce some related research on each specific recommendation

task we considered in this paper. The three lines of research are: latent factor

models 1) with additional features or contents integration 2) for multi-relational

higher-order matrices factorization and 3) for ranking-based optimizations.

Recently, researchers have explored to enhance the traditional latent factor mod-

els by incorporating additional features or content of participating entities. One

group of work in this direction is the ’Regression Based Factor Models’, proposed

by Agarwal and Chen [4], whose basic idea is to replace the zero-mean Gaussian

distributions with regression-based means. Another work is the CTR model [179],

which combines matrix factorization with probabilistic topic modeling for scientific

papers recommendation. The third work is the ’feature-based matrix factorization’

[32], which combines the traditional latent factor model with linear regression. How-

ever, all of these three models can only cope with the two-order data interactions,

and cannot be model higher-order data structures. The forth work is the ’Factoriza-

tion Machine’ model proposed by Rendle [140], which combines latent factorization

model with SVM. Compared with these work, we incorporate both features for pa-

pers and authors in our model. The model is designed for more than two-order data

interactions, and is based on pair-wise learning mechanism.

The second direction of development for latent factor model emphasizes on joint

modeling multi-relational relations. The ’collective matrix factorization’ from Singh

and Gordon [162] is one typical work in this direction. However, the ’multi-relation’

shown in this work is only limited to be two or three relations. Most recently, Yin et

al. [195] proposed a ’Bayesian probabilistic relational-data Analysis’ (BPRA) model

which extends the BPMF and BPTF model by making it applicable to arbitrary

order of coupled multi-relational data structures. However, the model is also used

for personalized tag recommendation, which is a different research domain with our

paper, and is based upon point-wise RMSE optimization, different from our targeted
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ranking-based optimization.

Even though most of the traditional latent factor models target at optimizing

point-wise measures, such as RMSE or MSE, several ranking-based optimization

models have been proposed. One relevant work is the ’Bayesian Personalized Rank-

ing’ (BPR) model [142], which minimizes the AUC metric by using a smooth version

of the hinge loss.The method that is most similar to our work is the TFMAP model

[158], which proposes a method to approximate and optimize the MAP measure.

However, their model is for user-item-context recommendation, and is only able to

deal with one single tensor relation, which are both different from our work in this

paper.

We then summarize some relevant work with each specific recommendation task

considered in this paper. Future paper citation recommendation is the most widely

explored problem. We categorized existing works into three groups. In the first

group, neighborhood based CF models along with graph-based link prediction ap-

proaches are widely used to tackle the citation recommendations for a given author

or paper with a partial list of initial citations provided, typical works in this category

include [117], [208], [168] and etc. In the second group of approach, probabilistic

topic modeling is used for citation list generation.In the third group, citation con-

text (the text around citation mentions) is utilized. Typical work includes the

context-award citation recommendation work and its extensions proposed by He et

al. [70, 68] Despite of these existing work, few work has be developed using CF

latent factor models for recommendation, excluding the CTR model.

Coauthor-ship recommendation is mostly tackled by using graph-based link pre-

diction approach. The most representative work is proposed by Liben-Nowell [101],

which measures the performance on using several graph-based metrics. The work on

predicting future conference(venue) submission is seldom explored. Lau and Cohen

[99] develop a combined path-constraint random walk-based approach, not only for

venue recommendation, but also for citation recommendation, gene recommendation

and expert finding. Pham et al. [136, 137] define the task of venue recommendation

as predicting the participating venues of users, and therefore their input is users

rather than papers.
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7.7 Summary

In this chapter, we proposed a joint multi-relational model to recommend author-

author coauthorships, author-paper citations, paper-paper citations and paper pub-

lishing venues. The model is proposed based on the assumption that these activities

are coupled, and that joint modeling can help us in achieving more coherent and

accurate latent feature vectors. Moreover, we extend an existing work maximizing

MAP over one single tensor into a more generalize form which is able to maximize

MAP over several matrices and tensors. Experiments carried out over two real world

data sets demonstrate the effectiveness of our model.
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Chapter 8

Conclusions and Future Work

In this chapter, we conclude this dissertation. We fist summarize the main contribu-

tions we have made in this dissertation, and then analyze its potential impact and

applications in other research directions; we further discuss the limitations and de-

ficiencies of the current research, and finally discuss possible future work directions.

8.1 Recapitulation

In this dissertation, we focus on applying information retrieval, data mining and

machine learning techniques into mining and analyzing academic network, which

to our definition, is a certain kind of social network that concentrates in the aca-

demic domain. The nodes in an academic work are scientific-related entities, such

as authors, papers, venues, and the links in the network model the relationships

between these scientific entities, including the co-authorships, citations, and etc.

Two specific research problems: the expertise retrieval problem and research action

prediction and recommendation problem are particularly addressed.

Academic network has its own characteristics. It consists of heterogeneous data,

can be divided into multiple levels of communities, and is often dynamic. These

characters make the research on academic network interesting and challenging. In

this dissertation, we mainly focus on the property of heterogeneity, where several

algorithms and models have been proposed to integrate different sources of data and
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relationships, and their effects have been demonstrated in both expertise retrieval

and research action recommendation tasks. Temporal factor is another factor that

we have considered and made endeavors to incorporate it into our proposed models.

The specific contributions of our dissertation are introduced as follows.

For the task of expertise retrieval, we made several contributions:

Firstly, we generated a unified heterogeneous framework that consists of four

types of academic entities: authors, papers, publishing venues and authors’ affilia-

tions to evaluate the expertise of authors. To our best knowledge, this is the first

work that specifically combining both the ‘venues’ and ‘affiliations’ into an academic

network, and therefore provides a more complete and general aspects of view of the

academic environment, and can evaluate the expertise of a researcher more com-

prehensively. Based on this unified framework, we first test the performance for

expert finding on different versions of this framework by either deleting a certain

type of entities or relationships, and experiments demonstrate the effectiveness of

integrating more complete data entities. We further proposed/applied three mod-

ified PageRank-like algorithms on this network to estimate and rank researchers’

expertise. In the first algorithm, we introduced the topical PageRank into aca-

demic network analysis, and therefore we can identify experts on the topic level;

we then proposed a heterogeneous PageRank algorithm, which investigates the dif-

ferent contributions of the participating entities in determining the expertise of a

researcher; we finally distinguished some temporal-related features, and proposed a

temporal-based PageRank into a particular expert finding work on SIG-community

award predictions. We compared our proposed algorithms based on the ACM digi-

tal library data set with several state-of-the-art approaches, and demonstrated their

superiority.

Secondly, we proposed an enhanced author-topic model (the ACTV model) by

directly modeling two additional information: the conference venues and cited au-

thors information into the topic modeling process. This extends the previous author-

topic-model based approaches when fewer valuable information is incorporated. Ex-

periments based on two real world data sets: the ACM digital library data set
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and ArnetMinet data set with two sets of different queries and ground truth la-

bels demonstrate the effectiveness of our proposed model as it can outperform the

previous state-of-the-art approaches.

Thirdly, we proposed a model that formally incorporates the pair-wise based

learning-to-rank algorithm into topic modeling process. This is a fundamental direc-

tion in expert finding where the probabilistic discriminative model (the learning-to-

rank approach) can be effectively combined with the generative probabilistic model

(the topic modeling approach). Even though previous works have been conducted

using either the discriminative or generative models, the combination of them is sel-

dom explored before. We took this step and demonstrated the model’s effectiveness

via experiments on both the ACM and ArnetMiner data sets.

On the task of research action prediction, we have made the several contributions:

We took the first step in investigating on whether publishing venues can be

classified and predicted by leveraging linguistic stylometric features. Since there are

many available conferences, it is sometimes difficult to decide which to submit. One

of the main contribution we made is that we identified several stylometric features,

and we compared and showed the improved classification performance when combing

both the content-based and stylometric features. We then proposed a modified

collaborative filtering approach for venue recommendation, in which two extensions

were made and verified: the extension on incorporating the stylometric features in

computing the similarity between papers, and the extension on distinguishing the

different weight of contributions of the neighboring papers via parameter tuning and

optimizing.

We then tested and demonstrated the capability of our proposed ACTV model in

both cited-author prediction and publishing venue prediction, and shown improved

performance over other existing topic modeling based work in these two tasks.

We proposed an extended latent factor model that can jointly model several rela-

tions in an academic environment and evaluated its performance in four recommen-

dation tasks: the recommendation on author-coauthorship, author-paper citation,

paper-paper citation and paper-venue submission. The model is proposed based

upon the assumption that several academic activities are highly coupled, and that
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by joint modeling, we can not only solve the cold start problem but also help in

achieving more coherent and accurate latent feature vectors. Moreover, to facilitate

ranking, we extend an existing work which directly maximizes MAP over one single

tensor into a more generalize form and is therefore able to maximize MAP over

several matrices and tensors. Experiments carried out over two real world data sets

demonstrate the effectiveness of our model.

8.2 Impact

We focus on mining and analyzing the academic network in this dissertation, which

is a subset and special case of a much larger, complicated and varied social network

in the social media domain, connecting millions of common users (not limited to

researchers in the academic domain) and different kinds of social entities (such as

movies, tags, videos, photos, social comments, products, etc). Even though the

models and algorithms we developed in this dissertation are especially designed

for the academic network, the ideas behind those models can be extended beyond

academic network research and inspire the research in other domains, due to the

following two reasons: 1) the academic network and other social networks share

common properties; 2) there exist similar information needs and applications in

other social medias. In this section, we will first discuss the similarity between

the academic network and other social networks in terms of both network property

and similar applications, and then discuss the possible application of each of our

proposed models int other domains.

Similarity in network properties

Social media has provided us abundant services nowadays, including the so-

cial tagging or information sharing systems (e.g., Youtube, Flickr [53], Bibsonomy,

and Delicious), microblogging systems (e.g., Twitter, Weibo), social communication

networks (e.g., Facebook, Renren), professional networks (e.g. Linkedin), informa-

tion filtering and recommender systems (e.g. Netflix, MovieLens, Amazon product

reviews), news search and online computational advertising (e.g., Bing sponsored
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search). Despite different kinds of services they provided, these applications can all

be represented and modeled as social networks, in the same way as we model the

academic network, where system participators like users, products, and comments

can be represented as nodes and their mutual relationships like following/follower (in

Twitter), being friends (in Facebook), rating a movie (in Netflix) can be represented

as links. These constructed networks also show the same properties as we analyzed

for the academic networks. First of all, they are often heterogeneous networks, con-

sisting of different types of entities and relations. In Netflix system, we have users

and movies being connected by ratings; in Twitter, we have users who can follow

each other, and tweets which can be re-tweeted by users; in social tagging systems,

we have even more entities and relationships, for example, in Flickr, we have users,

photos(items), tags, and comments; users can be friends with each other; can tag

an item as well as comment an item. Secondly, entities in those social networks can

form communities. Linkedin offers a good example, as it allows users to select differ-

ent groups or communities to join in. Thirdly, those networks are also dynamically

changing. In Facebook, users often update their status, locations, and generate new

friendship with other users; in Linkedin, users often update their status by changing

affiliations, job titles or getting connections with new friends; in Twitter, the tweet

which is most frequently re-tweeted varies over time, indicating the evolution of hot

topics either globally or locally over time. Due to the similar network properties we

considered when developing algorithms, the models we proposed are applicable to

tackle those similar problems in other social networks.

Similarity in applications

We emphasize on mining and analyzing the academic network for two specific

tasks in this dissertation: the ranking of research experts and recommendations

for academic actions, both of which can find similar applications in web search

and/or other social media applications. The task of ranking experts in terms of

their estimated expertise to a query (in a domain) is essentially equivalent to rank-

ing web pages according to their relevance to a query. In social media domain,

we have various such information needs and applications. In the question-answer
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(Q&A) systems, we often need to identify the best answers (ranking answers) to a

given question, and/or to rank users who can provide the most best answers. In

Blog or Twitter, people are also interested in finding blogs/tweets which are most

popular or most instructive on certain topics, and those bloggers or Twitter users

who are believed to be the most prestigious in raising or discussing about a certain

topic. Developing recommender systems has an even wider range of applications in

social media domain, for example, recommending tags or comments for user-item

pairs (Flickr, Delicious), predicting ratings of a movie to users (Netflix system),

or recommending ads which can attract the highest clicks from users (online ad-

vertising systems). The ideas behind our design for generating recommendations

for co-authors, citations and publishing venues in the academic domain can also be

adapted in other domains.

Besides the generalized analysis on the similarity between the academic network

and the other social networks, we then discuss some specific impact of each of our

models on other research domains.

Topic-driven multi-type citation network analysis for ranking authors:

in this research work, we developed a multi-type heterogeneous citation network

connecting four types of entities authors, papers, affiliations and venues to rank-

ing authors. The following properties distinguish the model from other related: 1)

a multi-type heterogeneous network; 2) a Page-Rank basic ranking function with

modification; 3) combining both content-based expertise with graph-based ones. 4)

borrowing the Topical PageRank algorithm into citation network analysis to dif-

ferentiate the topic-based difference in expertise propagation; and 5) differentiating

the importance of different types of entities in propagation; 5) incorporating tempo-

ral factors to differentiate the expertise importance in propagation. Such a model

design with its specific features can also be applied to other systems ranking entities.

• In Blog search or Twitter Search, where we intend to rank blogs/tweets or

bloggers/twitters, we can construct a bipartite graph connecting tweets(blogs)-

tweets(blogs), twitters(bloggers)-twitters(bloggers), and twitters(bloggers)-
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tweets(blogs) rather than individual homogeneous graphs. In spite of its sim-

ple scheme, PageRank-like ranking functions are still verified effective and

efficient ranking functions, yet we can also modify it by combining with the

blogs/tweets content information. Moreover, twitters/bloggers’ interests over

topics may evolve over time, and therefore changing their weight of impor-

tance over topics by either crediting or discrediting the importance of old

tweets/blogs may lead to improvement of the ranking results.

• In Q&A systems, where the best answers and/or the most knowledgeable per-

sons on certain topics are to be identified, we can construct a tripartite graph

connecting questions, answers and answer providers (users). Temporal factors

can also be incorporated to represent the expertise of an answer provider, such

as how long the person has been an active user, and how frequently and how

quickly he answers the problems.

• The basic idea of ranking authors by leveraging the information from inte-

grated information sources can also be applied into link prediction or recom-

mendation task. In the social tagging systems, for example, users, tags and

items can be connected to form a multi-type network, based upon which, the

most related tags for user-item pairs can be identified. users, tags, and items

specific features, including temporal features can be incorporated to deter-

mine the propagation weight. Decayed importance can be applied for users

not using a specific tag for a long time.

A joint topic modeling approach for academic network analysis: in this re-

search work, we extended the previous author-topic models by incorporating citation

and venue information for three tasks: ranking authors, cited author predictions and

venue predictions. The fundamental idea of integrating additional factors is essen-

tially the sames as the our topic-driven multi-type citation analysis work, however,

we set it in the topic modeling framework, which has at least the following two

advantages: 1) topic models can better discover the latent meanings of words than

bag-of-words approach, which is especially important when documents have fewer
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words. 2) we naturally combine content and link information in the generating

process rather than linearly combine them after each ranking is achieved.

• In microblog search, such as Twitter search when influential twitter users are to

be identified, topic modeling can help to achieve users’ expertise distributions

over topics as represented in his posted tweets. Since tweets are normally

short with at most 140 words, topic modeling based approach can help to

better understand the content of tweets than bag-of-words based approach.

Ranking authors by learning-to-rank topic modeling: in this work, we in-

tegrated pairwise learning-to-rank into topic modeling for ranking authors. The

prominent advantage of introducing the learning-to-rank mechanism is that we can

easily incorporate features of ranking entities in addition to textual features derived

from topic modeling process. Other ranking-oriented research tasks can also get

benefit from such an integration.

• In Twitter search for influential twitter users, topic models can help to achieve

users’ expertise distributions over topics as represented in their posted tweets;

Other user-specific features, like user’s status, geographical locations, number

of followers/followees, number of tweets can be incorporated by the learning-to-

rank scheme. It would also be helful in finding most popular tweets over topics

as there are additional metadata on tweets, such as hashtags and thematic

labels provided by users. All these metadata can be well incorporated by the

learning-to-rank scheme.

• Similar mechanism can be applied into Q&A systems, where user-related and

answer-related features can be explicitly represented and incorporated into the

learning and ranking process.

Venue classification and prediction: Given a paper to determine its potential

publishing venue is equivalent to the task of given a user in Facebook to determine

which group he/she can join in. To do that, making use of the friends information of

that user (which is equivalent to making use of the neighboring papers of the target
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paper) will help to achieve satisfying results. Identifying and integrating stylometric

features in both classification and prediction is one distinguished property of our

model, which to our belief can shed light in microblog Twitter search on finding

global or local influential topics, as geographically different people tend to have

different speaking/writing styles.

Joint multi-relational model for recommendations: Two properties distin-

guished our joint multi-relational model from other recommender systems: 1) we

integrate and jointly model several coupled relations represented as either tensors

or matrices in order to achieve more coherent and accurate latent factors among

entities; 2) choose to optimize the ranking-based metric MAP in order to favor

the Top N ranking results. Both these two properties can benefit other related

recommendation tasks.

• In social tagging systems, such as Flickr and MovieLens, there exist multi-

ple types of entities generating coupled relations, such as user-tag-item, user-

comment-item, user-user-friendship. There has exist research work optimizing

RMSE over such joint coupled relations, or optimizing MAP over one single

tensor. However, combining these two mechanisms as our model proposed has

not been applied in recommendations in social tagging systems.

• Similar mechanism can be applied into social communication systems (such

as Facebook) where friendship is to be recommended, microblogging systems

(such as Twitter) where new following/follower relation is to be predicted,

or online advertising systems where users’ browse and click behavior are to

be predicted, as in all these systems, we have multi-type of entities enriched

with features generating coupled relations, and we normally appreciate the top

ranked results, for example, in online advertising systems, the top four ads are

considered.
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8.3 Caveats

We recapitulated the main contribution of this dissertation; presented the impact of

our work; we now analyze the limitations and deficiencies of the dissertation projects

respectively.

Topic-driven multi-type citation network analysis for ranking authors

Several limitations remain for this work.

• We made use of the hierarchically-organized ACM categories to retrieve topic

distributions of entities (authors, papers, queries, etc). Some other more

widely used topic modeling approach, such as pLSA and LDA can be adopted.

• Experiments are conducted on one data set, the ACM data set. Additional

experiments over other data sets may better validate the effectiveness of our

model.

A joint topic modeling approach for academic network analysis

• One of the limitations in our model design is that we assume that each word

in the author profiles will be associated with a cited author. However, in real

situations, only those words in the introduction section or related work section

are likely to be related with cited authors. Therefore, a better model design

is to first identify word portions that are cited-author related, and only model

those words in the joint modeling process for topic, cited authors and venues,

while other words only contribute to the topic and venue generation process.

Ranking authors by learning-to-rank with topic modeling

• One of the limitations in this model is that we create a virtual profile for each

author by concatenating all his/her publications. This process may introduce

much noise, as different papers of an author may cover different topics. A

solution to this problem is to develop a two-layer topic models, in which the

lower level modeling paper content, and the upper layer modeling authors’

interests.
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Venue classification and recommendation

• More stylometrics may need to be identified and used in addition of the cur-

rently used ones, for example, the POS tags.

• A larger size of testing set (more than 10000 randomly chosen) could be con-

structed to better validate the model performance.

A joint multi-relational model for recommendations in academia

• Computational efficiency is the biggest problem of this model. It normally

takes over a week for 50 iterations, which would make the model inappropriate

for online recommendation. An more efficient algorithm need to be developed

for MAP computing and entities’ latent vector updating.

8.4 Future Work

Even though a number of achievements in both expertise retrieval and research

action prediction have been presented in this dissertation, there are several open

issues that need to be explored in future work. We discuss them for the two tasks

separately.

8.4.1 Expertise Retrieval

Temporal evolution

In this dissertation, we identified several temporal factors, and incorporated

them into the temporal PageRank algorithm or took them as individual features to

feed into the learning-to-rank topic modeling process. However, this seems far from

enough. More well-formed machine learning techniques, such as time series analysis

techniques may be utilized to better model the temporal evolution of experts’ ex-

pertise and further improve the expert finding ranking performance. Prior research
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on temporal analysis for traditional web search can be valuable in addressing the

problem in expertise retrieval.

Expertise retrieval on Web and social media

Expertise retrieval has been traditionally studied on enterprise intranet or limited

to a specific domain, for example, as emphasized in this dissertation, in the academic

domain. However, it would be a more interesting and challenging work to find

experts on Web where more plenty of information are available with varying quality,

and in social media which provides a modern platform for more and more people

indicating and sharing their expertise. Even though some work has been proposed

for expert finding on question-answering sites or on Twitter, more research efforts

can be made in this direction as finding experts in social media is very challenging.

First of all, there would be a much wider variety of expertise areas compared to

those identified areas in enterprise intranet or academic domain; Secondly, there

are a huge number of users online, which would make the scalability and efficiency

problem a key research problem. Thirdly, expertise identified via social media would

be highly dependent on time and location which indicates that more research work

will be emphasized on temporal or geographical analysis. Privacy and security issue

will also play a role in finding experts in social media.

Besides conducting research on identifying experts on social media alone, it would

be an interesting task to combine and integrate those expertise represented in enter-

prise intranet, academic domain, and social media domain to leverage the advantages

from all of them.

Personalized expertise retrieval

The current expert finding task normally generates one global ranking results for

all users with the same query. However, people may tend to have their understanding

or interpretation on what is expertise and who can be regarded as experts, specially

in social media domain where various query topics exist. Therefore, generating

personalized expert ranking results would be a challenging task. Collecting user

interactions with the expert ranking system via their query logs, click-through data,
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explicit or implicit feed-backs will help to address this problem.

Community-based expertise retrieval and fuzzy query match

Community is one prominent property of academic network and other social net-

works. Finding community-based experts would be more accurate in some scenarios

than query-based expert finding since sometimes it is difficult to use a query con-

sisting of several terms to describe a community. For example, if we present each

author by his publishing paper titles, and suppose we intend to find experts on ‘in-

formation retrieval’, if only using content-based algorithms, the ranking performance

would not be good enough, since few authors will explicitly indicate ‘information’

and ‘retrieval’ in their paper titles or even abstracts. However, these researchers on

information retrieval would form a community by other kind of interaction. The

community identified in the work of H. Deng [42] is based upon publishing in the

same conferences, not automatically generated. Moreover, enhanced methodologies

can be provided which allow us to estimate the relevance of experts by their close

meaning but not term exact match to the given query. Natural language processing

and machine translation techniques may help in solving this problem.

Expertise retrieval: go beyond just relevancy

Expertise retrieval has been widely researched to retrieve and rank experts based

on their estimated expertise in terms of their relevance to a given query. However,

there are other interesting aspects of people’s expertise, for example, their diversity

(doing research covering different domains), their sociability (active academic ac-

tivities organizers), or their potential capability (research rising stars). Identifying

experts from multiple facets would provide a more comprehensive view of experts.

8.4.2 Research action prediction and recommendation

Temporal-sensitive recommendation

In this dissertation, we aim at generating accurate recommendations or predic-

tions while ignoring the temporal requirements. For example, to recommend the
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most recently published paper citations, or to recommend future possible collab-

orators. In our work on joint multi-relational model, we constructed the matri-

ces/tensors by considering the temporal factor, however, we did not evaluate the

performance for recommending temporal-sensitive actions. This will constitute one

part of our future work.

Personalized recommendation and prediction

Generating personalized recommendation is one of the key requirements in mod-

ern recommender systems, and there also exist such information needs for the recom-

mendation tasks in the academic environments. For example, some authors prefer

to cite papers with higher relevancy, but others prefer to cite those more recently

published. In our current proposed models, we do not explicitly consider this factor.

In the joint multi-relational model, for example, no user or paper specific bias has

been incorporated. Future work can be conducted to overcome this deficiency.
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