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Abstract

With billions of internet users, online media services have become commonplace.

Prediction and recommendation for online media are fundamental problems in var-

ious applications, including recommender systems and information retrieval. As an

example, accurately predicting user behaviors improves user experiences through

more intelligent user interfaces. On the other hand, user behavior prediction in

online media is also strongly related to behavior targeting and online advertisement

which is the major business for most consumer internet services. Estimating and

understanding users’ click behaviors is a critical problem in online advertising.

In this dissertation, we investigate the prediction and recommendation problems

in various online media. We find a number of challenges: high order relations, tem-

poral dynamics, complexity of network structure, high data sparsity and coupled

social media activities. We consider user behavior understanding and prediction in

four areas: tag prediction in a social tagging system, link prediction in microblogging

services, multi-context modeling in online social media and click prediction in spon-

sored search. In such topics, based on real world data, we analyze user behaviors

and discover patterns, properties and challenges. Subsequently, we design specific

models for online user behavior prediction in various online media: a probabilistic

model for personalized tag prediction, a user-tag-specific temporal interests model

for tracking users’ interests over time in tagging systems, a personalized structure-

based link prediction model for micro-blogging systems, a generalized latent factor

model and Bayesian treatment for modeling across multiple contexts in online social

media, a context-aware click model and framework for estimating ad group perfor-

mance in sponsored search. Our extensive experiments on large-scale real-world

datasets show our novel models advance the state-of-the-art.
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Chapter 1

Overview

In this chapter, we provide an overview of the full dissertation. We start by briefly

reviewing the evolution of the World Wide Web and online user behaviors in Web

2.0. Then we study the organization of some current online media and discuss

problems and challenges in predicting online user behaviors. Finally, we summarize

our contributions to various applications in four topics: tag prediction in social

tagging, link prediction in microblogging, modeling across multiple contexts in online

social media and click prediction in sponsored search.

1.1 Online User Behaviors

The traditional web (also called Web 1.0) was entirely made up of Web pages con-

nected by hyperlinks. Users could only browse webpages but could not contribute

to the content of the webpages. Few interactions could be made by users under

this scheme. Although some forms such as e-mail and newsgroups provide basic

user interactions and engagement in the early era of the web, the modern web (also

2



called Web 2.0) reflects the development and evolution of web service and applica-

tions. With hundreds of millions of participants, online media services have become

commonplace. Compared to the traditional web where users could only view web-

pages, the modern web provides many opportunities for user engagement, where

users can generate their content and contribute to the World Wide Web with text

(Wordpress[145, 134]), photos (Flickr[41]), videos (Youtube[164]), etc. Users are

intensively involved in the online services: one could create a profile and become

an entity in online services; users could share resources/opinions with others; users

could declare friendship with other users, etc. Take Flickr as an example; in ad-

dition to being able to share content, users can often 1) rate content, 2) declare

friendship with other users, 3) tag content with keywords, 4) comment on content,

and 5) send personal or public messages to other users. Each of these activities

provides valuable data to the service that can be used to model and predict future

actions. For example, in a photo sharing site like Flickr, users of the service can

add photos shared by others to their favorites. This is a form of rating, and so

the service could examine a collection of user-photo pairings and build a model to

predict whether the user would mark this photo as a favorite (e.g., what photos are

preferred). Declaring friendship is similar to the more general activity of indicating

the existence of a link between two entities (e.g., user-user rather than user-photo)

which are a common context for recommender systems [22, 30, 93, 73].

Studying human behaviors is a traditional research topic in Sociology, Anthro-

pology, Psychology, etc. However, most traditional research is based on surveys,

field research or small scale datasets. For instance, in his famous social network ex-

periments, Stanley Milgram challenged people to route postcards to a fixed recipient

by passing them only through direct acquaintances [132]. Milgram found that that

human society is a small-world-type network characterized by short path-lengths

and the average number of intermediaries on the path of the postcards lay between

3



4.4 and 5.7, depending on the samples of people chosen. In that experiment, the

connections of people are presented by mailing. However, such kinds of experiments

are not easy to be conducted in a large scale. It is not feasible to involve millions of

people to do paper-based survey or field research. When the experiments are con-

ducted through the online social networks, e.g., Facebook and Twitter, it becomes

much easier and feasible. For example, Backstrom et al. [8] report the results of

the first world-scale social-network graph distance computations, using the entire

Facebook network of active users (721 million users, 69 billion friendship links). The

average distance we observe is 4.74, corresponding to 3.74 intermediaries or “degrees

of separation”.

Besides social network research, other studies in human behaviors, e.g., purchas-

ing, conversations, also have been explored for decades. Nowadays, such behaviors

have been more and more intensively associated to online media. For instance, in

Facebook, not only users’ social connections are presented, but also different be-

haviors (e.g., sharing photos, update status, personal messages) can be performed

by users. Instead of going to a retail store, online shopping has become common

and more convenient. By tracking online user behaviors, some similar experiments

and research can be conducted more easily and accurately. However, although some

classical theories and methodologies developed in traditional areas provide the foun-

dations for modern analysis of online user behaviors, most of them cannot be directly

applied to online settings due to their qualitative nature and also due to some of

their case-by-case style of studies that cannot be scaled to the amount of data online.

On the other hand, online user behaviors have their own properties and character-

istics. Comparing traditional user behavior analysis, online media shows higher

dynamics, such as higher speed information distribution and light-weight behaviors

(e.g., clicks). Since classical behavior research was conducted prior to the time of

popularity of the Internet, few characteristics of online behaviors were taken into
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consideration. The conclusions and results obtained through the classical methods

are also needed to be re-verified in the new era as well.

It is clear that understanding online user behaviors is meaningful in traditional

areas such as Sociology, Psychology etc. Moreover, the other applications of under-

standing online user behaviors, interests play important roles in three aspects: 1)

accurately predicting user behaviors improves user experiences. For instance, in a

social tagging system, when a user is trying to save a bookmark, we can predict

the tags which the user will use on the bookmark and the user will select the sug-

gested tags rather than typing tags. In an online video sharing system, when a user

watches a video, we can predict which video that the user will watch subsequently

and then we can preload that video for the user. 2) information filtering. The data

and information in online media are growing explosively and it becomes difficult

for users to capture the useful and interesting information effectively. Understand-

ing user interests and filtering useful information for users in online media is more

important than in traditional media. For instance, in a microblogging system, mil-

lions of messages may be generated in a very short time. A user can only received

the messages produced by the friends that one follows, but there is likely to be

a number of messages which the user does not receive but is interested in. Since

it is impossible for user to browse all messages, understanding user interests and

filtering out non-informational messages and mining the messages which users are

interested in is quite important. 3) behavior targeting and online advertising. User

behaviors or interests prediction is also strongly related to online advertising which

is the major business for internet services. For instance, pay-per-click (PPC) is an

advertising model that has been adopted by sponsored search markets. Under the

PPC model, advertisers are charged when their advertisements are clicked by search

engine users. More clicks bring more revenue to search engine companies [18], which

has triggered research into related issues [13, 106]. Estimating and understanding
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users’ click behaviors of a search ad is an important problem for modern commercial

search engines.

1.2 Research Challenges

However, understanding user interests and behaviors in online media is not trivial,

and analysis of data from social media services can be challenging, especially when

considering 1) high order relations, 2) temporal dynamics, 3) complexity of network

structure, 4) high sparsity of the data, and 5) co-related (coupled) activities. We

now consider each of these challenges in more detail:

High order relations

In many social media contexts, user activities generate relations involving more than

two types of entities. In contrast, most existing work is focused on traditional sec-

ond order relations that involve just two types of entities. For instance, user-movie

ratings involve pairs of users and movies.1 However, in social media, typically data

coupled only by second order relations are considered (presumably for simplicity).

For example, by involving a temporal factor, user-movie-time ratings become third

order relations, and thus naturally model users’ preferences with temporal informa-

tion [73, 148]. In social tagging systems, the posts (user-tag-item) are by nature

third order data [114, 112, 159, 158]. Similarly, user-tag-item-time is an example of

a fourth order relation. However, these types of higher order relations have rarely

been studied due to the complexity and difficulty in modeling and inference. How-

ever, they are needed: if one is required to predict a user’s comments on an item,

1The responses for pairs of users and movies are explicit ratings while others might be implicit

e.g., user-user connections. Both implicit and explicit response data involves two types of entities,

thus we define this as second order relational data.
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traditional second order relations are not applicable. This comment prediction prob-

lem is related to but different from traditional opinion mining [34, 63], where the

comment is classified or summarized.

Temporal dynamics

Past research on recommender system and user behavior prediction has shown that

accuracy can be significantly improved by modeling users preferences [114, 112, 159,

158]. However, these preferences are usually treated as constant over time, neglect-

ing the temporal factor within user interests. User interests may change and evolve

dynamically [73]. Modeling temporal changes in user preferences brings unique chal-

lenges. The change of user preferences may be from two aspects: 1) Macro change,

for example, the emergence of new products or services (e.g., seasonal changes, or

specific holidays) will trigger the change of trends and most user preferences. 2)

Micro change, the change of the individual’s taste in movies and musics. All those

changes cannot be captured and modeled easily, which also brings a challenge to

current research.

Complexity of network structure

Random walk-based methods such as PageRank[19], HITS[69] have been used for

traditional link analysis, especially for hyperlinks, but as online social networks and

social media surging recently, the network structure became more complex. For

instance, typical social network contains symmetric relationship and a number of

properties (e.g., homophily) show the complexity of social network structures. More

recently, in microblog services such as Twitter, Yammer and Weibo, relationships

between two users may be asymmetric, leading to three types of link relationships.

As a result, the network connecting users in a microblogging service will likely have

7



properties of both a social network in which participants connect to establish or

represent social relationships between them and an information network in which

people connect so that information can be passed from a producer to a consumer

(and perhaps retransmitted to many other users). It is even harder and more com-

plex to analyze such an asymmetric micro-blogging network.

Sparse data

In most social media, the natural form of data representation results in significant

data sparsity, and in extreme cases when a new entity is added there may be no

information on which to build a prediction (a.k.a., the cold start problem [6, 163]).

Indeed, data in typical recommendation tasks can be very sparse: Netflix users

select from tens of thousands of movies, but relatively few of them are rated by any

given user and there are even users who have not rated any movies [5, 163]. The

sparsity of data is even more serious when the relations between entities involve

many entities and are coupled.

Coupled social media activities

Many social media services (e.g., in Facebook, YouTube, and Flickr) involve user

activities which create relations between entities. For example, users, items, com-

ments, and messages are frequently used in multiple contexts. This will cause the

problem that the relational data from different contexts are coupled together. Some

activities are strongly related to each other: for instance, activities where users com-

ment on items or where users rate items share two of the same types of entity—user

and item. Another example is the temporal factor which is shared by all activi-

ties, and cannot be modeled separately in different contexts if one wishes to see the

system evolve as a whole. Therefore, activities in social media contexts are often
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naturally coupled together, increasing the difficulty of the problem.

1.3 Network View of Online Media

In this dissertation, we will study the problem—understanding and prediction of

online user behaviors—in different domains, such as social tagging system (e.g.,

Flickr, Bibsonomy), microblogging system (e.g., Twitter), movie rating system (e.g.,

Netflix, MovieLens ) and online advertising system (e.g., Bing sponsored search).

Before we dig into the details of the problems, let’s review these online medias at

first.

The resource sharing and structure of online services in Web 2.0 are often studied

based on the types of networks. One type of network is a homogenous network, where

the types of nodes are all the same. The most common one among these networks

is the friendship network, where the users can make connections with other users.

There is no direction information on the links. Once two users are connected, they

will become mutual friends with each other. The typical web services of this network

are Facebook [40], Linkedin [83] and Renren [115]. The problem will be to predict the

potential friendship between users. The second type of the homogenous network is

the directed network, where there is direction on the links. For example, user u may

be interested in user v, but user v may not be interested in user v. The relationship

between u and v will be u → v. The typical web service of directed homogenous

network is microblogging network, such as Twitter [135], Weibo [124] and Google

Plus [48]. In microblogging services, participants form an explicit social network by

following (subscribing to) another user and thus automatically receive the (short)

messages generated by the target user. Unlike common online social networks such

as Facebook, LinkedIn and Renren, a followed user has the option but not the

requirement to similarly follow back. Thus, relationships in these social networks
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may be asymmetric, leading to three kinds of link relationships between users A and

B. If A follows B, we say that A is a follower of B, and that B is a friend of A. If A

and B both follow each other, we consider them mutual friends or reciprocal friends.

Thus, user B in a microblog service can generate messages, which are generally

public and searchable, and any followers of B, such as A, will automatically receive

those messages along with messages generated by all other users that A follows.

The combination of multiple message intentions and asymmetry of connections has

led some to call microblogging services such as Twitter hybrid networks [76, 136].

They are hybrid not just because they can carry multiple types of messages, but also

because participants create links for multiple reasons to be social (e.g., to connect

online to existing offline social contacts) or to link to information sources.

Another type network is the heterogeneous network, in which the types of nodes

can be different e.g., Netflix [102], Youtube [164]. Take Netflix as an example: users

can connect with movies and that means, if some user likes a movie, then we consider

this user has connected to the movie. From this view, the problem actually is a link

prediction in bipartite graph problem which is also treated as a recommendation

problem. In some web service, such as Netflix, not only to predict links, the users

could rate the movie, in four levels—1,2,3,4. Higher ratings represent the user

prefers the movie over other movies. The problem will be to predict the potential

ratings which users rate the movies and then the system could recommend the

movies to the users. Another similar application is online advertising and behavior

targeting where we try to find the best ads for the specific users who are likely to

click. Sponsored search (one type of online advertising) is the major business for

todays commercial search engines, in which more clicks bring more revenue to search

engine companies. Although the responses of traditional recommender system (e.g.,

movie, photo recommendation) and online advertising are different, the technical

solutions are essentially the same under the view of heterogeneous network. In both
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problems, we study relation user-item, where item depends on the context (e.g.,

items are movies in Netflix and ads in online advertising). Generally speaking,

such systems are based on one of two strategies [75]: 1) content filtering approach.

It creates a profile for each user or item to characterize its nature. For example,

movie features could be extracted from its genre, the participating actors and so

forth. User profiles might include demographic information or answers provided

on a suitable questionnaire. The profiles allow programs to associate users with

matching products. The movie features and user profiles may not be easy to collect.

2) collaborative filtering[44]. It relies only on past user behaviors for example,

previous transactions or product ratings without requiring the creation of explicit

profiles.

In heterogeneous networks, another research topic is provided by social tagging

systems, e.g., Flickr [41], Delicious [151]. In a social tagging system, the users could

tag or bookmark the items which the users like. Unlike the movie recommendation

system, the users could use a word or several words to describe the items rather than

ratings. The item could be different types. For example, in Delicious, the items are

webpages, in Flickr, the items are images, in Youtube the items are videos. Social

bookmarking has already showed its value in many areas, such as query expansion

[12], web search [10], personalized search [121, 149], web resource classification [162]

and clustering [110]. A better understanding and prediction of tags on web pages

is quite meaningful, especially in those areas. The problem in social bookmarking

system, will not only be to recommend items, but also to recommend tags which the

user will use on specific items. Tag recommenders can assist users with the tagging

process by suggesting a set of tags that users are likely to use for a web resource.

Personalized tag recommenders which take users’ previous tagging behaviors into

account when making suggestions usually have better performance compared with

general tag recommenders. In short, the goal of a personalized tag recommender is
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to predict tags for each user specifically and effectively, given an item.

1.4 Contributions

In this dissertation, we discuss online user behavior prediction and its application

in different contexts, such as social tagging prediction, friend recommendation and

online advertising. We address many problems mentioned above and propose novel

models to achieve state-of-the-art performance in a number of tasks in online media:

• In social tagging, we address the problem of tag prediction by proposing a

probabilistic model for personalized tag prediction, which improves quality by

over 30% compared to a leading algorithm on a public dataset.

• We investigate the dynamics of user interests in social tagging systems and

propose a user-tag-specific temporal interests model for tracking user interests

over time, which outperforms state-of-the-art tag prediction algorithms.

• In a micro-blogging system, by analyzing data collected over time, we find

that 90% of new links are to people just two hops away and the dynamics of

friend acquisition are also related to users’ account age.

• We propose a novel structure-based personalized link prediction model for

micro-blogging system, which outperforms fundamental and popular link pre-

diction methods, including the state-of-the-art.

• In modeling multi-context in online media, we propose a generalized latent

factor model and Bayesian treatment which handle the problems—coupled

high order interaction, data sparsity and cold start on items, noticeably out-

performing state-of-the-art approaches.
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• In online advertising, to model user click behaviors, we propose a novel Context-

Aware Click Model for sponsored search which outperforms the existing state-

of-the-art.

• To estimate ad group performance in sponsored search, we design a novel

framework that directly predicts group performance for lists of ads. Our meth-

ods noticeably outperform the existing state-of-the-art approaches.

We will discuss the contributions in detail:

At first, we study social tagging systems. We perform a time-sensitive sampling

on an existing public dataset, resulting in a new scenario which is much closer to

“real-world”. We address the problem of tag prediction by proposing a probabilis-

tic model for personalized tag prediction. The model is a Bayesian approach, and

integrates three factors—an ego-centric effect, environmental effects and web page

content. Two methods—both intuitive calculation and learning optimization—are

provided for parameter estimation. Pure graph-based methods which may have

significant constraints (such as every user, every item and every tag has to occur

in at least p posts) cannot make a prediction in most real-world cases while our

model improves the F-measure by over 30% compared to a leading algorithm on a

publicly-available real-world dataset. Then we investigate the temporal dynamics

of user interests in social tagging systems and propose a user-tag-specific tempo-

ral interests model for tracking user interests over time. Additionally, we analyze

the phenomenon of topic switches in social bookmarking systems, showing that a

temporal interests model can benefit from the integration of topic switch detection

and that temporal characteristics of social tagging systems are different from tra-

ditional concept drift problems. We conduct experiments on three public datasets,
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demonstrating the importance of personalization and user-tag specialization in tag-

ging systems. Experimental results show that our method can outperform state-of-

the-art tag prediction algorithms. We also incorporate our model within existing

content-based methods yielding significant improvements in performance.

The second contribution is about link analysis and prediction in microblogs.

Unlike a traditional social network service, a microblogging network like Twitter is

a hybrid network, combining aspects of both social networks and information net-

works. Understanding the structure of such hybrid networks and to predict new links

are important for many tasks such as friend recommendation, community detection,

and network growth models. By analyzing data collected over time, we find that

90% of new links are to people just two hops away and dynamics of friend acquisition

are also related to users’ account age. We compare two popular sampling methods

which are widely used for network analysis and find that ForestFire, etc. does not

preserve properties required for the link prediction task. We further compare recent

and most popular methods and principles for link prediction and recommendation.

We propose a novel structure-based personalized link prediction model and compare

its predictive performance against many fundamental and popular link prediction

methods on real-world data from the Twitter microblogging network. Our exper-

iments on both static and dynamic data sets show that our methods noticeably

outperform the state-of-the-art.

In this dissertation, we also study higher-order multi-relational data in online so-

cial media. Most research in recommender systems focuses on modeling the interests

as a function of two factors, such as predicting a rating given the user and the item.

However, often there is one or more additional factors that have been ignored in the

context of that recommendation. For instance, the activities of users commenting

on items represent data with a third order coupling as it involves the user, the item,

and the comment made by the user about this item. Moreover, the same factors
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(e.g., user, item, item-content, message) frequently appear in different contexts in

social media. Our analyses demonstrate three principal challenges: coupled high

order interaction, data sparsity and cold start on items. We tackle these problems

by using a generalized latent factor model and Bayesian treatment and then test on

three real-world data sets: Flickr, Bibsonomy and MovieLens. Our experiments on

these data sets show that to achieve best predictive performance, one can employ

a fully Bayesian treatment in modeling high order relations in social media. Our

methods noticeably outperform state-of-the-art approaches.

Finally, we also discuss the application of user behavior prediction in online ad-

vertising. Sponsored search is the major business for today’s commercial search

engines. A critical problem in sponsored search is to understand and predict the

browsing and click behaviors of users. In this dissertation, we analyze several factors

influencing the CTR (click through rate) from the perspective of ad context, includ-

ing the number of displayed ads, the content of the ads, the relationship between the

query and ads, and the mutual influences between ads. Based on our data analysis,

we propose a novel Context-Aware Click Model for sponsored search. We compare

our Context-Aware Click Model with three strong baseline methods. The experi-

ments show that our methods can outperform state-of-the-art methods. We then

further challenge the current ad-delivery strategy (which is focused on predicting

individual ad CTR) and study the problem—predicting the group performance (e.g.,

click yields) in sponsored search. To tackle all challenges in this problem—depth

effects, interactive influence and cold start—we first investigate several effects and

propose a novel framework that could directly predict group performance for lists

of ads. To best leverage the text features and solve the sparseness issue in textual

information, we embed a topic coding model into our framework to learn the top-

ical information of short text for ads. Our extensive experiments on a large-scale

real-world dataset from a commercial search engine show that we achieve significant
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improvement by solving the sponsored search problem from the new perspective.

Our methods noticeably outperform the existing state-of-the-art approaches.

1.5 Organization

This dissertation is organized as follows.

In Chapter 2, we provide an overview of the social tagging system, and we address

the problem of tag prediction by proposing a probabilistic model for personalized tag

prediction. The model is a Bayesian approach, and integrates three factors—an ego-

centric effect, environmental effects and web page content. We further investigate

the temporal dynamics in social tagging system and analyze the phenomenon of topic

switches in social bookmarking systems. Material in this chapter was published in

three papers, presented at KDD 2010[159], WWW 2011[155] and AAAI 2011[158].

In Chapter 3, we study a hybrid network—microblogging system. We analyze

the link formation in this microblogging network and compare two popular sampling

methods. By analyzing data collected over time, we propose a novel structure-based

personalized link prediction model and compare its predictive performance against

many fundamental and popular link prediction methods on real-world data from

the Twitter microblogging network. Material in this chapter is from two papers,

presented at WWW 2011[157], CIKM 2011[156].

In Chapter 4, we investigate problems and challenges in predictive social media

systems. Our analyses demonstrate three principal challenges: coupled high order

interaction, data sparsity and cold start on items. We tackle these problems by

using a generalized latent factor model and Bayesian treatment. Material in this

chapter was a paper, presented at WSDM 2013[154].

In Chapter 5, we study problems in online advertising. We analyze several

factors influencing the CTR from the perspective of ad context, and propose a
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novel Context-Aware Click Model for sponsored search. We further challenge the

traditional strategy and study the problem predicting the ad group performance

(e.g., click yields) in sponsored search.

Chapter 6 concludes the dissertation, summarizes what was learned, and dis-

cusses future directions.
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Chapter 2

Personalized Tag Prediction in

Social Tagging Services

In this chapter, we briefly introduce social tagging and study user behaviors in such

systems. We first address the problem of tag prediction by proposing a probabilistic

model for personalized tag prediction. The model is a Bayesian approach, and

integrates three factors—an ego-centric effect, environmental effects and web page

content. Two methods—both intuitive calculation and learning optimization—are

provided for parameter estimation. We then investigate the temporal dynamics of

user interests in tagging systems and propose a user-tag-specific temporal interests

model for tracking user interests over time.

2.1 Introduction

Collaborative tagging systems have become increasingly popular for sharing and

organizing web resources. In collaborative tagging systems, users add metadata

in the form of descriptive terms, called tags, to describe web resources. Social
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tagging has already showed its value in many areas, such as query expansion [12],

web search [10], personalized search [121, 149], web resource classification [162] and

clustering [110]. A better understanding and prediction of tags on web pages is quite

meaningful, especially in those areas.

Tag recommenders can assist users with the tagging process by suggesting a set of

tags that users are likely to use for a web resource. Personalized tag recommenders

which take a user’s previous tagging behaviors into account when making suggestions

usually have better performance compared with general tag recommenders. In short,

the goal of a personalized tag recommender is to predict tags for each user specifically

and effectively, given a web resource.

Personalized tag prediction has become a popular research topic. The two

main directions for these systems are content-based approaches and graph-based

approaches. Content-based methods, which usually model users’ preferences from

textual information (e.g., web pages, academic papers and tags), can predict tags

for new users and new web resources. Graph-based approaches, while often having

stronger assumptions than content-based ones, typically provide better performance.

For example, one such assumption is the CORE p [64] requirement, in which every

user, every item and every tag has to occur at least p times in the training set.

However, in most cases, such an assumption is not realistic. Actually, tag recom-

menders are often asked to recommend tags when the system knows nothing about

the web resource or the user. Our analysis will show that in a real world scenario,

the probability of a web resource being new to a tag recommender is more than 0.9.

Comparing both kinds of approaches, the content-based approach has the advantage

that it can predict tags for any user and any web resource, while the overall per-

formance is not as good as graph-based approach. Graph-based approaches which

require CORE p can have significantly better performance, but can only predict tags

for certain groups of users and web resources, preventing them from being widely
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applicable. Thus, a better tag recommender should be able to recommend tags for

new users or new web resources, and still have reasonably good performance. Our

tag recommender has such functionality, in part by incorporating various factors.

We believe that in the real world, when a user is tagging web pages, at least the

following three factors will affect the choice of tags which he will finally use.

The ego-centric effect. A given user will have some specific interests and will

tend to bookmark similar items with similar tags based on the user’s vocabulary.

Assume for example that a user is interested in “development” and he has already

tagged many web pages about development by using “C++”, “java”, and “tutori-

als”. When he bookmarks a new web page, intuitively, this item will be relevant to

“development” with high probability. That is, the content of this new web page is

very likely to be similar to web pages that the user tagged previously. In addition,

on this web page, the user will also tend to use similar tags which he used before.

We name this effect, which is from the user himself, the ego-centric effect.

Environmental effects. A user may be influenced by other users. When a user

is tagging some web page, he may adopt tags which are used frequently by other

similar users. For instance, a user may often use the tag “java” previously, but

never use the tag “tutorial”. Suppose that there is another user who is similar to

this user—say, they both frequently use tag “java”—but in addition frequently uses

the tag “tutorial”. In this case, when the user is trying to bookmark an item which

is similar to the items where the other user already has tagged as “tutorial”, the

probability of this user using both “java” and “tutorial” is higher (even if this user

never used the tag “tutorial” before). In addition, some users may discover resources

within the tagging system; that is, they find interesting items which other users have

already tagged. In this case, the probability of this user using the same tags will be

very high (most graph-based recommenders adopt this strategy). Another aspect

is that some current tagging systems allow users to set up relationships with other

20



users, e.g., delicious [151, 137]. This also strengthens the influence of neighboring

users. We call all of these kinds of effects environmental effects.

Item content. For an item which already exists in past bookmarks, we can

get some prediction hints from the tags which have already been used on this item.

However, we have found that tag prediction systems may need to face new items

more than 90 percent of the time. Thus, strictly graph-based recommenders will not

work on these new items. When facing a new item, content analysis is necessary.

Even if the item is not a new item, content analysis is still quite useful, because

other items with similar topics will provide hints for tag prediction.

Temporal factor. some, such as [56, 165], attempt to study the temporal char-

acteristics of tagging systems in a global sense and suggest that the more frequently

and recently used tags should be favored for tag suggestion, due to the fact that

users may re-use tags in a short time frame and the scope of users’ interests might

change over time. This implies that it is not appropriate to make suggestions simply

based on all past data, as most current methods do, and the possibility to advance

the state-of-the-art approaches by carefully modeling temporal dynamics of individ-

ual user’s interests. However, none of these is rigorously studied in the literature. In

other forms of collaborative filtering and recommendation systems, the performance

of recommenders has been greatly improved by incorporating temporal factors into

the models. For instance, in the problem of movie recommendation, Koren [73]

showed that users’ inclinations are evolving over time and proposed a latent factor

model with temporal dynamics which can better recommend items for users. Xiang

et al. [146] also found that temporal information can contribute to improved rec-

ommendation in collaborative filtering by fusing the temporal factor into a random

walk graph-based model.

In this chapter, we first propose a probabilistic model for tag prediction which
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integrates three factors—an ego-centric effect, environmental effects, web page con-

tent. Then we systematically investigate the temporal dynamics of user interests in

social tagging systems and propose a novel approach for the tag prediction problem

by modeling users’ long-term and short-term preferences in a principled manner.

More specifically, we associate each user and tag pair with a kernel function to char-

acterize their temporal changes and show an effective estimation process to embed

this idea into the probabilistic model.

In this chapter, our contributions are as follows:

• We perform time-sensitive sampling on an existing public dataset, and propose

a new use case of tag prediction which is closer to real world cases.

• We present a novel probabilistic model for personalized tag prediction.

• We verify the existence of short-term interests through the exploration of sim-

ple models.

• Our experiments show that our methods which are only based on personal

historical tagging sequences can outperform the state-of-the-art in the presence

of concept drift, personalized tag prediction and content-only tag prediction.

• By combining methods, state-of-the-art algorithms can get significant improve-

ments in predictive quality in the online tag prediction task.

The chapter is organized as follows: Section 2.2 precisely defines the problem and

notation. Section 2.6 introduces a general model for capturing users’ current inter-

ests. Section 2.4 reports our experiments. Section 2.8 concludes and outlines future

work. In Section 2.9, we briefly review some recent work on tag recommendation,

temporal analysis and related topics.
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2.2 Definitions

In a social tagging system, users can bookmark web pages by assigning tags to them.

The system can also retrieve the content of a web page which the user is bookmarking

and based on content, the system can recommend to the user some personalized tags.

The task of recommending tags to users is called tag recommendation.

A similar task is tag prediction which needs to predict the tags which the user

will use on some bookmarks. This can also be personalized; that is, given a user and

a set of bookmarks without tags, the algorithm should predict which tags the user

will use on each bookmark. In order to predict or recommend tags for a specific user

precisely, the recommender should first understand the user well. Because different

users have different preferences and interests, for some users, the bookmarks the

user saves may tend to be similar or in the same topic. In addition, on similar

bookmarks, the tags which different users use may be similar. But for other users,

even if they save the same or similar web pages, they may use different tags because

of different perspectives and different preferences.

Here, we formalize the definitions. Let U be the set of all users, I be the set

of all items (they sometimes are also called objects, resources, or web pages in

other literature) and T be the set of all tags. For past tagging information, we have

existing ternary relations S, and S ⊆ U×I×T . Thus, each single record (u, i, t) ∈ S

means that user u has tagged an item i with the tag t. Here, we also define Ps as

all the past distinct user-item combination:

Ps = {(u, i)|∃t ∈ T : (u, i, t) ∈ S}

Thus, when the current user uc is trying to add an item ic, the task is to recommend

a list of tags to the potential post (uc, ic), based the past posts S, which we also call

training data.
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2.3 Probabilistic Model

The tag prediction problem can be treated as the reverse of web search. In web

search, users submit a list of terms as a query, and then the relevant web pages

i will be retrieved and the web pages can be ranked by P (i|t), the probability of

the page i being relevant to the query t. Here, the list of terms can be considered

as a list of tags. Without considering personal information (non-personalized tag

prediction), the general tag prediction could be that given a web page i, retrieve

a list of potential tags. The tags can be ranked by P (t|i). According to Bayesian

theory, we have

P (t|i) =
P (i|t) · P (t)

P (i)
(2.1)

In Equation 2.1, P (t|i) means the probability of using tag t given an item i. P (i|t)

means the frequency of item i in a set of items which are tagged by t. P (t) is the

prior probability of tag t. If the tag t appears more frequently, it will hold a higher

prior probability. If the item i exists in past posts which can be considered as the

training data, then P (i|t) can be easily estimated by simply using the number of

occurrence of (i, t)—Ni,t. However, if the item i does not exist in the past posts,

that is, i is a new item, it is difficult to estimate the probability P (i|t). One possible

solution is to use the content of the item.

The content of item i can be represented by a language model. The most straight-

forward model is a unigram language model. The item i is treated as a bag of words

W = {w|w appears in item i}. Here, if the word-independence assumption is made,

the probability of item i given the tag t will be:

P (i|t) =
∏

w∈Wi

P (w|t) (2.2)

According to Equation 2.2, we know that the probability P (i|t) can be broken down

into the production of word-level probabilities
∏

w∈Wi
P (w|t). P (w|t) means the
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likelihood of the word w appearing in the item’s content, given a tag t. Given a

item i, the number of occurrence of w is denoted as Nw,i. Given a tag t, the number

of occurrence of w is denoted as Nw,t which can be calculated as follows:

Nw,t =
∑

i∈I Nw,i ·Ni,t

To estimate P (w|t), we can assume that words obey the following distribution:

P (w|t) = Nw,t

Nt

Then, maximum likelihood estimation (MLE) can be used to estimate the parameter

N . To maximize the probability of the word w, we have:

Nt =
∑

w Nw,t

By combining Equations 2.1 and 2.2, general tag prediction can be expressed as:

P (t|i) =

∏

w∈Wi
P (w|t) · P (t)

P (i)
(2.3)

2.3.1 Personalized Tag Prediction

While we have shown how to perform general tag prediction, personalized tag pre-

diction is more preferable. In social tagging systems, individual users may have

specific interests and tend to bookmark similar web pages by using similar tags.

For different users, the prior probability of tags is often different, and the language

model of tags is also different. Even if two users bookmark the same item, the

tags they use can also be different because of their various interests, perspectives

and preferences. Rendel et al. [112] show that personalized tag prediction systems

empirically outperform the theoretical upper bound for any non-personalized tag

recommender. In our probabilistic model, the general tag prediction can be simply
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extended to personalized prediction by involving the ego-centric effect. Given a user

u, the personalized tag prediction can be:

P (t|i, u) =
P (i|t, u) · P (t|u)

P (i|u)
(2.4)

Here, P (t|i, u) means that given a user u, the probability that tag t is applied to

the item i. P (i|t, u) means the likelihood of item i given a tag t and user u. P (t|u)

is also the conditional prior probability of tag t, given the user u. It can be easily

understood that Equation 2.4 is based on a set of past posts S—that is, for the

specific user uc, Suc
= {(uc, i, t)|(uc, i, t) ∈ S}. Similar to non-personalized tag

prediction, to incorporate the content of items, replacing P (i|t, u) in Equation 2.4,

the personalized tag prediction will become:

P (t|i, u) =

∏

w∈Wi
P (w|t, u) · P (t|u)

P (i|u)
(2.5)

However, in this model, if a user has not yet used a tag, we cannot rank it. Because

if tag t has not been used by user u, the prior probability P (t|u) = 0, and we

cannot get the P (i|t, u) either. According to Equation 2.5, for this new tag t, the

P (t|d, u) will be always 0. Thus, the candidate tags will be constrained to the set of

tags which the user has used before. Obviously, such candidate tags are often quite

limited.

In addition, when users are trying to bookmark some web pages, the three factors

mentioned previously will affect the tags which the user will finally use: the ego-

centric effect, environmental effects and item content. In Equation 2.5, the ego-

centric effect is modeled by the whole equation and item content is modeled by
∏

w∈Wi
P (w|t, u). To model environmental effects, we involve the probability of

neighbor effects P (uk|u), that is, given the current user u, the probability of user

uk affecting user u. When uk = u, then P (u|u) represents the exact weight of the
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ego-centric effect. Thus,
∑

uk

P (uk|u) = 1 (2.6)

When we integrate the environmental effects into Equation 2.5, we get

P (t|i, u) =
∏

w∈Wi

∑

uk
P (w|t, uk)P (uk|u)×

∑

uk
P (t|uk)P (uk|u)

∑

uk
P (i|uk)P (uk|u)

(2.7)

This equation enlarges the tag candidates for tag prediction and also integrates

the environmental effects. Given a user u and an item i, the probability of tag t

being used will be P (t|i, u). Our algorithm will rank the tags by the value P (t|i, u).

Because the evidence P (i|u) is the same for all tag candidates, then

P (t|i, u)

∝
∏

w∈Wi

∑

uk

P (w|t, uk)P (uk|u)×
∑

uk

P (t|uk)P (uk|u)

∝
∑

w∈Wi

log
∑

uk

P (w|t, uk)P (uk|u) + log
∑

uk

P (t|uk)P (uk|u)

(2.8)

We refer to Equation 2.8 as,

yu,i,t =
∑

w∈Wi

log
∑

uk

P (w|t, uk)P (uk|u)

+ log
∑

uk

P (t|uk)P (uk|u)
(2.9)

Then, given a user u and an item i, our algorithm will rank the tags by the value

yu,i,t. If we define the probability P (u|u) as α or pu,u and environmental effects

P (uk|u) as puk,u, then split the ego-centric effect part and environmental effects

part and Equation 2.9 can be rewritten as

yu,i,t =
∑

w∈Wi

log(
∑

uk 6=u

puk,u · P (w|t, uk) + α · P (w|t, u))

+ log(
∑

uk 6=u

puk,u · P (t|uk) + α · P (t|u))
(2.10)
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where
∑

uk 6=u puk,u + α = 1 and
∑

uk 6=u puk,u can be also called the weight of envi-

ronmental effects and α can be called the weight of ego-centric effect or ego weight.

To avoid zero probability, for P (w|t, uk), we use simple Laplace smoothing in our

experiments.

2.3.2 Parameter Estimation and Optimization

In our model, Equation 2.9, we have already introduced the unigram language model

for P (w|t, uk). Another P (t|uk) can be calculated through the number of occurrence

of tag t within the posts of user uk. The hard problem is to estimate the ego-centric

effect and environmental effects P (uk|u).

Intuitively calculating P (uk|u)

Given a user u, to calculate the probability of another user’s influence—P (uk|u),

we consider that users can be represented in tag space. In the set of past posts S,

each user has a set of tags, which describes the interests of the user. In other words,

each user has a distribution of tags. The vector of tag occurrences can be used to

represent to the user. For the user uk,

Vuk
= [nuk,t0 , nuk,t1 , ...nuk,ti, ...nuk ,tm]

Here, nuk,ti means the number of times of user uk uses tag ti. For the user uk, the

prior probability of the tag tj can be calculated by

P (tj|uk) =
nuk,tj

∑m
i=0 nuk,ti

If two users have similar interests, then they may have similar distributions of tags

and there will be a higher probability of affecting each other. Here, for user u, if

we assume that the similarity of interests between user u and user uk is directly
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proportional to the probability of uk affecting u—P (uk|u), then

P (uk|u) ∝ sim(u, uk) =
Vu · Vuk

|Vu| × |Vuk
|

Where sim(u, u) = 1, the ego weight will be always larger than the weight of other

individual users. After normalizing similarity, we can simply set the

P (uk|u) =
sim(u, uk)

∑

ui
sim(u, ui)

(2.11)

We refer to this calculation as user-tag-user similarity. We can also manually cut off

users by using a threshold. For experiments, the number of neighbor users can be

set as runtime parameter k. Only the most similar k neighbor users will be counted.

Learning algorithm

Our intuitive estimation is only a rough method of estimating P (uk|u). In some

cases, it may not be precise. For example, user uk may use the same tags that user

u used on item i, to tag another item ik, while the content i and ik are completely

different. Thus, different users may use the same tags with different intents or

perspectives for tagging web pages. Our previous method will over-estimate the

probability P (uk|u) in this situation. To solve this problem, we design a learning

algorithm to calculate P (uk|u) iteratively. For a post (u, i), the algorithm ranks tags

by yu,i,t. We use the similar objective function as in [112], which uses the “post-

based ranking interpretation” and maximizes the ranking statistic AUC (area under

the ROC-curve).

AUC(θ̂, u, i) =

1

|T+
u,i||T

−
u,i|

∑

t+∈T+
u,i

∑

t−∈T−
u,i

H0.5(yu,i,t+ − yu,i,t−)
(2.12)
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where

Hβ =























0, x < 0

β, x = 0

1, x > 1

(2.13)

T+
u,i is the set of tags which the user u adds on the item i while T−

u,i is the set of tags

which the user u does not add on the item i. The overall optimization task with

respect to the ranking statistic AUC and the observed data is then:

argmax
θ̂

∑

(u,i)∈Ps

AUC(θ̂, u, i) (2.14)

Then, we use the continuous sigmoid function to replace H :

s(x) =
1

1 + e−x
(2.15)

Then using gradient descent, AUC has to be differentiated with respect to all model

parameters and for each post (u, i) ∈ Ps the model parameters P (uk|u) are updated

and renormalized.

∂

∂puk ,u

AUC(θ̂, u, i)

=
∂

∂puk,u

1

|T+
u,i||T

−
u,i|

∑

t+∈T+
u,i

∑

t−∈T−
u,i

s(yu,i,t+ − yu,i,t−)

= z
∑

t+∈T+
u,i

∑

t−∈T−
u,i

wt+,t−
∂

∂puk,u
(yu,i,t+ − yu,i,t−)
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with:

wt+,t− = s(yu,i,t+ − yu,i,t−)(1− s(yu,i,t+ − yu,i,t−))

z = |T+
u,i||T

−
u,i|

yu,i,t+ − yu,i,t− = (
∑

w∈Wi

log
∑

uk

P (w|t+, uk)P (uk|u)

+ log
∑

uk

P (t+|uk)P (uk|u))

−(
∑

w∈Wi

log
∑

uk

P (w|t−, uk)P (uk|u)

+ log
∑

uk

P (t−|uk)P (uk|u))

And

∂

∂puk ,u
(yu,i,t+ − yu,i,t−) =

∑

w∈Wi

P (w|t+, uk)
∑

uk
P (t+|uk)P (uk|u))

+
P (t+|uk)

∑

uk
P (t+|uk)P (uk|u)

−
∑

w∈Wi

P (w|t−, uk)
∑

uk
P (t−|uk)P (uk|u))

−
P (t−|uk)

∑

uk
P (t−|uk)P (uk|u)

Then, the derivation of puk,u is

∂AUC

∂puk ,u
= z

∑

t+∈T+
u,i

∑

t−∈T−
u,i

wt+,t−Yt+,t−

where

wt+,t− = s(yu,i,t+ − yu,i,t−)(1− s(yu,i,t+ − yu,i,t−))

z = |T+
u,i||T

−
u,i|

Yt+,t− =
∂

∂puk,u
(yu,i,t+ − yu,i,t−)

Thus, for each post (u, i) ∈ Ps the model parameters P (uk|u) are updated as follow.

p̂uk,u ←
p̂uk,u + γ · ∂AUC

∂puk,u

η
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where η is a normalization factor η =
∑

uj
(p̂uj ,u + γ · ∂AUC

∂puj,u
) and γ is a learn rate.

2.3.3 Processing New Users

Our model is designed for personalized tag prediction, especially for existing users.

However, in the real world, we still may face users who have not been seen by the

tagging system previously. A simple method to predict tags for new users is to just

use the general model Equation 2.3.

A better option is that instead of using the general model, we can build a lan-

guage model for the new user unew from the item i. Given a new user and an item

(unew, i), even if we do not know the past information of the user, we can still get

some implication from the content of item i. For existing users, a similar language

model is extracted from the items which the users tagged previously. Then the

language models are used to represent users’ interests. For user uk,

Wuk
= [nuk,w0, nuk,w1, ...nuk,wi

, ...nuk,wm
]

Here, nuk,wi
means the number of times of user uk has used the word wi. Similarly,

P (uk|unew) ∝ sim(unew, uk) =
Wunew ·Wuk

|Wunew |×|Wuk
|

Where sim(unew, unew) = 0, for new users, there will be no ego effect. All the infor-

mation should be from environmental effects and item content. After normalizing

similarity, we can simply set the

P (uk|unew) =
sim(unew, uk)

∑

ui
sim(unew, ui)

(2.16)

We refer to this calculation as user-lan-user similarity. For new users, we cannot use

learning algorithm to refine P (uk|unew).
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Table 2.1: Offline Statistics

Training Data Test Data

Total Posts 262,336 Total Posts 668
Total Records 914,162 Total Records 2,307
Total Users 2,677 New/Total Users 2/169
Total Items 234,764 New/Total Items 564/668
Total Tags 56,370 New/Total Tags 54/1,224

2.4 Experiments

In this section, we describe the details of datasets and experiments. We also compare

our approach with two other algorithms.

2.4.1 Dataset

In our experiments, we use the bookmark dataset of the ECML PKDD 09 Challenge

Workshop1. The dataset S includes 2,679 users, 263,004 items, 56,424 tags, 262,336

posts and 1,401,104 records. All of the posts contain timestamps. We uniformly

sample 668 posts along the time line as our test dataset Stest and the remaining

posts constitute the training dataset Strain.

In Figure 2.1 we show the tag and item frequencies over the full dataset. In the

plot on the right, the large vertical gap between the two leftmost points means that

93.6% items appear only once and only 6.4% of items appear more than once. Thus,

most graph-based methods which require more than CORE-2 (users, tags and items

appear at least twice) cannot work on it. For tags, 49.4% of tags appear only once;

50.6% of tags appear more than once.

In comparison, if we ignore time information and assume a traditional fixed

training and test split (e.g., use the dataset as an “offline” dataset), a test post may

1http://www.kde.cs.uni-kassel.de/ws/dc09/
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Figure 2.1: Dataset Statistics.
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Table 2.2: Online Statistics

Total Posts 668
Total Records 2307
Old/Total Users 627/668
New/Total Users 41/668
Old/Total Items 66/668
New/Total Items 602/668
Old/Total Tags 1,986/2,307
New/Total Tags 321/2,307

have occurred prior to some training posts, effectively using the future to build a

model to predict the past. Table 2.1 provides statistics regarding the training data

and the number of “new” items seen in the test data. We find that there are only

2 new users out of 169 users and 54 new tags out of 1,224 tags in the test dataset.

However, there are 564 new items out of 668 items even in the offline statistics. Here,

“new” means that it does not exist in training data. While the offline analysis can

give us some impression of the dataset, it is different from the real world, because

in the real world, we cannot use future data as training data to recommend tags for

users.

2.4.2 Online Evaluation

Besides the offline test, another testing method which is often used in tag prediction

evaluation is that of fixing a time point—posts whose timestamp is earlier than that

time will be used as training data while posts whose timestamps are later than that

time will be used as test data. The ECML PKDD Challenge Workshop employed

this approach. There are still some problems for this method. For example, if a user

never tagged items before that time point and then tagged M posts after that time

point, in this test mode, the all M posts of this user will be treated as the posts of a

new user to training data. Thus, there will be too many “new user cases” which in
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Figure 2.2: Online framework.

the real world is actually existing users. In the real world, after the user tagged his

first item, the system should know this user and be able to retrieve the list of tags

which this user has previously used. In addition, for users who tagged items both

before and after the time point, their interests may not always stay the same and

may even change frequently; in the real world, the system can again retrieve the

latest tags which can represent the latest interests of this user. Such information

should also be considered to make better prediction of tags.

We introduce a better evaluation method which is much closer to the real world

and call it the “online” framework in this chapter. Figure 2.2 illustrates the online

framework. Like online machine learning [16] which has been used widely, in our

online mode2, the tagging system operates in an incremental mode and the test posts

are randomly sampled from the whole dataset along the timeline. In other words,

for users and items in our test dataset, we only use the training posts which have

earlier timestamps than the test posts, and the available training data is different

2In this chapter, online mode means a incremental mode of real tagging system rather than

real-time tag prediction.
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for each test post. Under this setting, for items tagged early in time, fewer training

data is available. The online statistics (shown in Table 2.2) demonstrate that we

still face a new user (a user which is not in the training set) in 6.1% of the cases,

and in 90.1% of the time users are trying to bookmark a new item. In addition,

there is .139 probability that users would use new tags (which do not appear in the

system before). Thus, in the real world, the principal difficulty is to process cases in

which existing users which try to tag new items. Overall, this online mode is more

like a real tag prediction system, permitting the system to learn user behaviors

incrementally rather than existing evaluation procedures with a fixed dataset split.

To evaluate performance of predictive model, we use the common evaluation

scheme of F-measure in Top N lists, where N = 5 is mainly used as our measurement.

The precision, recall and F-measure are calculated as follows.

Prec(Stest, N) = avg
(u,i)∈PStest

|Top(u, i, N) ∩ {t|(u, i, t) ∈ Stest}|

N

Rec(Stest, N) = avg
(u,i)∈PStest

|Top(u, i, N) ∩ {t|(u, i, t) ∈ Stest}|

|{t|(u, i, t) ∈ Stest}|

F1(Stest, N) =
2× Prec(Stest, N)× Rec(Stest, N)

Prec(Stest, N) + Rec(Stest, N)

2.4.3 Comparison

From our analysis, in the real world, the graph-based method cannot work on

most posts. Most graph-based algorithms require that users, tags and items ap-

pear at least twice in training set. We compare our approach with Liczak’s method

[84], which took the first place in the “content-based” recommendation task, and

took third place in “graph-based” recommendation task in ECML PKDD Discovery

Challenge[39]. They have two versions respectively for the “content-based” task

and the “graph-based” task. In this chapter, we call their “content-based” version

LHKM-C and their “graph-based” version LHKM-G, corresponding to the authors’
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Figure 2.3: Comparison with offline.

initials of [84]. For LHKM-C and LHKM-G, we use the same parameters as they

used in the Challenge Workshop. For our model, we only use the most similar 30

neighbors for each test user. In the P (uk|u) part, we use user-tag-user similarity

mode to estimate ego-centric effect and environmental effects for existing users and

user-lan-user similarity mode for new users.

In Figure 2.3 and 2.4, we show the comparison between online and offline tests.

For each we also show the difference between performances whens recommending

various number of tags (known as Top N). We see that as expected, the results

of the offline test are always better than the results of the online test, because in

the offline test, more training data (even future data) can be used. The results of

LHKM-G are slightly better than the results of the LHKM-C, because in LHKM-G,

“graph-information” is used. Our method outperforms both LHKM-C and LHKM-

G. In offline test, the F-measure of our model is around 11% higher than LHKM-G
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Figure 2.4: Comparison with online.

and 14% higher than LHKM-C. In online test, the F-measure of our model is 12%

higher than LHKM-C and LHKM-G. In the following experiments, all the evaluation

of F-measure in Top N lists will be based on N = 5.

2.4.4 Optimization Analysis

In this section, we use gradient descent to optimize parameters which can more

accurately represent the environmental effects and ego-centric effects. We run the

learning algorithm on the offline test. In our optimization, although it shows some

improvement on the results, it is very time-consuming. For each user, we only use

10 training items to optimize the environmental effects of 30 neighbors and the

ego-centric effect—α. The learning rate is set to 1.

There are two versions: the first is opt-Alpha which only tries to optimize α, the
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Figure 2.5: Results on iterative optimization.

second is opt-Alpha+30N which tries to optimize α and all 30 neighbors; that means,

in total 31 parameters will be optimized. The initial values of P (uk|u) are the same

as the section 2.4.3, using user-tag-user similarity for old users and user-lan-user

similarity for new users.

Figure 2.5 shows the results of the iterative learning algorithm. The x-axis is

the number of iterations and y-axis is F-measure. As expected, both optimization

methods can improve the results of initial value a little (2-3%) and opt-Alpha+30N

always outperforms opt-Alpha. This is because in opt-Alpha+30N, 31 parameters

can be optimized while in opt-Alpha, only Alpha is optimized. From Figure 2.5, we

also notice that after 1 or 2 times iteration, both opt-Alpha+30N and opt-Alpha

get the best results and then the F-measure decreases slightly and converges. We

hypothesize that this situation may be caused by overfitting. Another possible

reason is that the learning procedure is time consuming, and we only use 10 items
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to optimize the parameters. Some users tagged thousands of items, so 10 training

items may not be sufficient. In addition, better objective function and optimization

methods are necessary for further improvement on both F-measure and running

time.

2.4.5 Parameter Analysis

Compared to individual neighbors, the user’s ego weight α should be the most

important part. It decides the ego weight and relative impact of environmental

effects. We consider that usually user’s ego weight should be very high. Also the

number of neighbors may affect the results of our model.

We find that the optimization process always generates higher α. In this exper-

iment, we fix the number of neighbors to 100 and tune the ego weight alpha, from

0 to 1. The weights of neighbors will be normalized as follow.

pu,uj
← (1− α) ·

pu,uj
∑

uj 6=u pu,uj

(2.17)

Ego-centric effect analysis

For P (uk|u), we use user-tag-user similarity for existing users and user-lan-user

similarity for new users. We use the most similar 100 users as environmental effects.

Figure 2.6 shows the results. In this figure, the straight lines are from LHKM-C

and LHKM-G for comparison. (In the online test, the F-measure of LHKM-C and

LHKM-G is quite similar, so they only show a single line in the figure.) Our results

on the offline tests and on the online tests are highly consistent. When α = 0, that

means, all information is from the most 100 similar neighbors, the F-measure is

still slightly better the LHKM-C and LHKM-G on online test, but slightly worse on

offline test. When α is set to 0.05, F-measure dramatically increases, and become
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Figure 2.6: Ego-centric effect analysis.

higher than that of LHKM-C and LHKM-G in offline test. As α increases, the F-

measure increases and achieves the best result when the α is set to 0.7. In offline

test, it is around 37.8% (16% higher than LHKM-G) and in online test, it is 27.3%

(12% higher than LHKM-G). Another interesting point is that even if α is set to

1, the performance of our model is still much better than LHKM-C and LHKM-G.

In online test, regardless of how α is set, our model always outperforms Liczak’s

methods. These results verify our conjecture that the users’ ego weight should be

very important in tag prediction.

Environmental effects analysis

Then, we fix α = 0.5, and tune the number of effective neighbors from 0 to

unlimited—that is, we use all possible users and in our model, for existing users,

as long as user-tag-user similarity is non-zero, then this user will be treated as an
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Figure 2.7: Environmental effects analysis.

effective neighbor. The results are showed in Figure 2.7. The straight lines are also

from LHKM-C and LHKM-G. From Figure 2.7, in the beginning, as the number of

neighbors increase, the F-measure increase. When the number of neighbors is set

to 100, our model achieves the best F-measure on both offline test and online test,

which are 37.5% and 27.1% respectively and also much better than LHKM-C and

LHKM-G. We also notice that compared to α, the number of neighbors affects the

results less. Thus, the number of neighbors is less important than the ego weight α

and it can be simply set to 100 to get the best performance.

Online experiment

Based on the manually tuned α, we also try to optimize the ego weight to get

the highest F-measure on the online test for real world performance. In this case,

the manually tuned α and P (uk|u) will be used as initial values for the learning
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Figure 2.8: Online Experiments.

algorithm. For each test user, we still use 10 training items to optimize the ego

weight. The learning rate is 1. The results are showed in Figure 2.8 opt-Alpha is

the optimization version while the “initial value” is the same as the one in 2.4.5.

The straight lines are also from LHKM-C and LHKM-G. From Figure 2.8 we can see

that at some points, e.g., α = 0.05, 0.1 and 0.9, opt-Alpha improves the F-measure

and there are also some points where the performance of opt-Alpha and initial value

are similar. Here, we also get the highest F-measure 27.9% on the online test which

is 13% higher than LHKM-C (an improvement of more than 85%). Comparing to

the results of learning algorithm, the results of manually tuned α are good enough

and it runs much faster. At this moment, we suggest to manually tune α.
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Table 2.3: 5-Fold Cross Validation

LHKM-C LHKM-G our model

Test 1 0.193 0.202 0.348
Test 2 0.194 0.213 0.348
Test 3 0.193 0.210 0.347
Test 4 0.194 0.211 0.347
Test 5 0.195 0.211 0.348
mean 0.1938 0.2094 0.3476

2.4.6 Five-Fold Cross Validation

Because our test set is relatively small, in order to show the robustness of our

model, k-fold cross validation was used to compare the performance of our model vs.

LHKM-C and LHKM-G. In k-fold cross-validation, the original sample is randomly

partitioned into k subsamples. Of the k subsamples, a single subsample is retained

for testing the model and the remaining k−1 subsamples are used as training data.

The cross-validation process is applied a total of k times (the folds), with each of

the k subsamples used exactly once as the test data. In our experiment, k = 5

and we do offline testing. The number of neighbors is set to unlimited and alpha

is set to 0.5. The parameters of LHKM-G and LHKM-C are the same as previous

experiments. For each part of test and training data, the training data contains

around 210,000 posts, 2,400 users, 190,000 items and 50,000 tags. and test data

contains around 52,000 posts, 1,600 users, 50,000 items and 24,000 tags. Among

them there are around 300 new users, 45,000 new items and 63,00 new tags. This

is also consistent with our small test set.

In Table 2.5, we can see that our model outperforms the LHKM-C and LHKM-

G by more than 10% on F-measure. The 5 results are quite similar and this also

demonstrates that our model can generate better results than LHKM-C and LHKM-

G stably.
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2.5 Temporal Factors Analysis

In this section, we systematically investigate the temporal dynamics of user interests

in social tagging systems and propose a novel approach for the tag prediction prob-

lem by modeling temporal preferences in a principled manner. Our method stands

on techniques introduced to address “concept drift” [77], which imposes a contin-

uous smoothing scheme over the timeline. However, we show that this smoothing

scheme may lead to sub-optimal predictions due to the phenomenon that users may

suddenly change interests and topics while using social bookmarking systems, as we

suggest in Yin et al. [155]. We tackle the problem by explicitly modeling session-like

behaviors and incorporate such models into our prediction process.

2.5.1 Data Sets

We use three public datasets. The first is the Bibsonomy dataset of the ECML

PKDD 09 Challenge Workshop3 which includes item content. The remaining two

datasets are Delicious and Flickr datasets crawled by Gorlitz et al. [49]4. There is no

item content in the Delicious and Flickr datasets while all three contain timestamps.

In order to observe the versatility of user interests on three datasets, for each user,

we calculate and plot the total number of tags, and the total number of posts. In

Figure 2.9, we can see that the three datasets have different properties and users

form three clusters. In Bibsonomy, users typically apply a larger variety of tags

across fewer posts, suggesting that their interests are more varied. In contrast, the

users in Flickr use fewer tags and their interests are more focused, by reusing their

tags many times. This implies that it may be easier to track the user interests in

3http://www.kde.cs.uni-kassel.de/ws/dc09/
4https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/

Research/DataSets/PINTSExperimentsDataSets/
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Figure 2.9: The number of tags against the number of posts.

Flickr.

2.5.2 Time-Sensitive Sampling

As in Section 2.4, we employ online evaluation, in which only training posts which

have earlier timestamps than those of the test posts are used. Note that this implies

that the available training data is different for each test post and for items tagged

earlier in the timeline, fewer training data are available. While the online evaluation

approach naturally fits the real-world case in which every post is used for testing a

model trained on all prior posts, its feasibility depends highly on the efficiency of

the training method as a new model may be necessary for each post. Instead, we

can estimate the performance of the complete system by performing evaluation on

only a sample of test posts, and largely avoid model-building efficiency concerns.
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Table 2.4: Fractions of new users, items, or tags

Bibsonomy Delicious Flickr
New/Total Users 41/668 16/1000 23/1000
New/Total Items 602/668 712/1000 1000/1000
New/Total Tags 321/2207 181/2920 175/4123

Similarly as in Section 2.4, we also use the common F1-measure as our principal

metric.

Here, we utilize the online evaluation model and conduct time-sensitive sam-

pling experiments (which are similar to the experiments in Section 2.4 ) on three

data sets. For the Bibsonomy dataset, we use the same sampling dataset as in Yin

et al. [159] which includes 668 test posts. For Delicious and Flickr, we randomly

choose 1000 posts. In all cases we effectively simulate a system running—the tag-

ging system operates in an incremental mode. The Bibsonomy data set statistics

(shown in Table 2.4) stay the same as Section 2.4. The other two datasets also

show similar distributions. This shows that most of the time (i.e., 86.1% of posts)

it is feasible to predict tags based only on past tags. Thus, in the real world, the

principal difficulty is to handle cases in which existing users try to tag new items

and therefore strictly graph-based recommenders (e.g., [112, 114] ) will not be able

to make recommendations most of the time.

2.5.3 The Baselines

Let U be the set of users u, I be the set of items i being tagged, T be the set of

tags t and M be the set of timestamps τ . Additionally, S is the set of all records

s, representing the relations among the four types of objects, S ⊆ U × I × T ×M .

Each record (u, i, t, τ) ∈ S means that user u has tagged an item i with the tag t

at time τ . Here, we also define Ps as all the distinct user-item-time combinations:
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Ps = {(u, i, τ)|∃t ∈ T : (u, i, t, τ) ∈ S}.

Long-Term Interests Model. If we assume that users’ interests are not drift-

ing over time, then users’ interests can be modeled as long-term interests. We

assume that the users’ interests—P (t|u) the probability of tags occurring—follows

a multinomial distribution, from which the MLE gives us a simple representation

of Pτp(t|u) =
∑

p′∈P ′
u
c(t,p′|u)

∑
t′
∑

p′∈P ′
u
c(t′,p′|u) , where c(t′, p′|u) is the number of times that tag t′

occurs on post p′, and typically users use a tag only once per post. P ′
u is the set of

u’s posts whose timestamps are earlier than the current time. Long-term interest

models simply recommend the most frequent tags used in the past.

Short-Term Interests Model. Users’ interests may change over time; thus users’

recent behaviors can better represent users’ current preferences. We model short-

term interests using a sliding window which is common in temporal methods. Pτp(t|u)

will be calculated only based on recent data (e.g., within three days). The size, σ,

of the time window corresponds to the lifetime of short-term interests. Based on

this Short-Term Interests model, we tune the parameter—the size of the time win-

dow.5 The results are shown in Figure 2.10. We find that in Bibsonomy, the best

performance is achieved when σ = 30 days. Overall, the more recent the data, the

more accurate the estimate of users’ interests.

2.6 Temporal Interests Model

The experiments using the Short-Term Interests Model show that the users’ interests

are continuous and similar within a time slot. However, the above time window

methods may not fit the real case in which their interests are drifting over time,

that is, Pτ (t|u) varies with changing τ . If we assume that the tagging behaviors

of different users are independent, then for a specific user, we can only focus on

5Dataset and evaluation are the same as in Yin et al. [159]
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Figure 2.10: F-measure as a function of the time window size.

the user’s past behaviors. The occurrences of tags P (t|u) can be generated by a

multinomial distribution or n-gram extension. We further make the assumption

that the lifetimes for different tags are independent. Then, in post p, the tags are

generated by a multinomial distribution and from a definite set T . Let θt,u refer to

P (t|u).

Pτ (p|u) ∝
∏

t∈Tp

θ
c(t,p|u)
t,u

To model the dynamics of users’ interests, we use the standard kernel smoothing

technique and the likelihood at time τ is smoothed or weighted on users’ data Du by

a non-negative smoothing kernel K : R→ R. By further assuming that the number
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of tags on posts is independent of t, the local likelihood can be written as

lτ (η|Du)
def
=

∑

τ ′∈M
K(τ − τ ′)

∑

p′∈Pτ,u

logP (p′; η)

=
∑

τ ′∈M
K(τ − τ ′)

∑

p′∈Pτ,u

∑

t∈Tp′

c(t, p′|u) log ηt

At each time τ , for user u, the estimation of each θ is derived by maximizing the

local likelihood.

θ̂τ,u = argmax
η∈Θu

lτ (η|Du)

There is a closed form expression for the local likelihood maximizer θ̂τ,u which can

be obtained by setting the gradient of the Lagrangian to 0.

0 =
1

[θ̂τ,u]t

∑

τ ′∈M
K(τ − τ ′)

∑

p′∈Pτ,u

c(t, p′|u) + λt

By solving the above equation, we obtain

[θ̂τ,u]t =

∑

τ ′∈M K(τ − τ ′)
∑

p′∈Pτ,u
c(t, p′|u)

∑

τ ′∈M K(τ − τ ′)
∑

p′∈Pτ,u

∑

t∈T ′
p
c(t, p′|u)

(2.18)

We can see that the present distribution [θ̂τ,u]t is actually the fraction of occur-

rences weighted by the kernel function. There are several choices for the kernel

function [89, 77]. Usually, the kernel function is symmetric, like the uniform kernel

(K(τ) = 1{|τ |<σ}) and the Gaussian kernel. Because our task is to estimate the

user’s present distribution [θ̂τ,u]t based only on the past data, the kernel is only the

right half of the symmetric kernel function and it can be also considered as decaying

of interests. The speed of decay measures the probability of the user staying on the

same topic over time. Unlike traditional approaches to concept drift which try to

track global trends across the whole dataset and use a fixed kernel function, a very

essential problem in social tagging systems is personalization. In particular, different
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users may have different decay speeds for short-term interests. Even for the same

user, the behaviors on different tags are different. Thus, we propose a personalized

method and moreover a personalized tag-specific model. It is more reasonable to

model the problem as tag lifetime rather than as a simple kernel smoothing prob-

lem. Intuitively, once an interest appears, it will stay for a while and then become

weaker and weaker. Assuming that the lifetime of the short-term interests follow the

exponential distribution, then at time τi, the topics emerged and the probability of

interests still staying at time τj is Pτ (t stay|u) =
∫∞
τ

1
σu,t

e−τ ′/σu,t = e−τ/σu,t . Using

this equation as the kernel function results in:

Kt(τ |u) = e−τ/σu,t (2.19)

where σu,t is the user-tag specific parameter. For each user-tag pair, there will be

a specific σu,t to control the decay of this tag for the user. Equation 2.18 can be

interpreted as the fraction of the weighted remaining interests. If we make the

assumption that the same user has the same decay and lifetime distribution on all

different tags, that is, σu = σu,t1 = σu,t2 ... = σu,ti , the model becomes a personalized

model.

For simplicity, we rewrite Equation 2.18 as follows.

Pτp(t|u) =
c′(t, p|u)

∑′
t c

′(t′, p|u)

where c′(t, p|u) =
∑

p′∈Pu,p′ 6=p,τp≥τp′
c(t, p′|u)Kt(τp − τp′ |u) and τp is the timestamp

on post p. The problems is how to estimate the parameters σu,t.

2.6.1 Estimation of Parameters

From the assumption that the lifetime of the short-term interests follow the expo-

nential distribution, we know that σu,t is the mean lifetime of tag t for user u. We
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will consider a continuous sequence of posts where user u keeps using t as an event

of topic t occurring.

Formally, for user u, let p1, p2, ..., pi, ..., pn represent the sequence of u’s posts

in chronological order so far. Their timestamps τ1 ≤ τ2 ≤ ...τi ≤ ... ≤ τn. Let

s = (pi, pi+1...pj−1, pj) be a subsequence with maximum length where all posts

contain tag t. At time τi, user u starts to use tag t, and at τj , and the user stops

using tag t. In this event, the lifetime of tag t is τs = τj − τi. Let Su,t represent the

set of all such subsequences of tag t for user u. The parameter σ can be estimated as

σ̂u,t =
1

|Su,t|
∑

s∈Su,t
τs. It is consistent with the intuition that in the past, once user

u starts to be interested in tag t and the interest always stays for a long while, then

recent use of tag t will hold a strong signal that t will be used again. However, the

above estimation may cause too much emphasis on personalization and so smoothing

and controlling the weight of personalization are required:

σ̂u,t = λ
1

|Su,t|

∑

s∈Su,t

τs + (1− λ)τa + ǫ

In the above equation, λ is a factor which controls the tradeoff between person-

alization and non-personalization and τa is the average tag lifetime over all users

and all tags. ǫ is a smoothing factor and is usually set to a small value. In fact,

it is not only a smoothing factor, but also controls the tradeoff between short-term

and long-term interests. If it is infinity, the model will be equivalent to the long-

term interests model. The larger the ǫ, the smaller the differences of decays among

different tags. In Figure 2.11, 2.12 and 2.13, we track 20 tags for a random user

in Flickr. The x-axis is the time (day), and the y-axis is the Pτ (t|u). Three tags

“2005”, “rockandroll” and “livebands” are highlighted. From Figure 2.11, we can

see the change of Pτ (t|u) of these tags. Because the data is from 2004 to 2005, we

can see from the middle, the tag “2005” emerged and because of continuous usage

of “2005”, Pτ (2005|u) grows higher and higher. The tag “livebands” in first half
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Figure 2.11: Tracking users interests ǫ = 100.

is zero, because the user never uses that tag before 2005, and later user u became

very interested in “livebands”. Comparing the three figures, we notice that from

ǫ = 100, ǫ = 10 to ǫ = 1, the tracking become more and more detailed. Because

as ǫ becomes lower, the local interests start to outperform the global interests and

Pτ (t|u) becomes more sensitive to the short-term behaviors. For larger ǫ, it can

capture the long-term trends of tags, and for smaller ǫ, it may better predict tags

for current posts. It is difficult to determine which one is better and it depends on

the task: when you try to capture trends of user interests, larger ǫ is suitable, and

when you want to find the accurate tags on the test posts, smaller ǫ may be more

suitable.

Similarly, for the non-tag-specific model, σ is the overall mean lifetime on all
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Figure 2.12: Tracking users interests ǫ = 10.
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Figure 2.13: Tracking users interests ǫ = 1.
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Figure 2.14: Estimated probability density of personalized topic lifetime.

tags, resulting in:

σ̂u = λ
1

∑

t |Su,t|

∑

t

∑

s∈Su,t

τs + (1− λ)τa + ǫ

When considering the whole data set, the variance of tag lifetime is large, mak-

ing it difficult to determine a single lifetime for all users. Thus, we calculated a

personalized tag lifetime for each user. Figure 2.14 shows the probability density

of personalized tag lifetime. We can see that more users in Flickr hold longer tag

lifetimes.

2.6.2 Capturing Topic Switches

From our observations, in personal tagging data, there often exist some topic switches—

session-like behaviors as users switch between several subtopics. For the task of
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capturing the trends of users interests, the effects of topic switches are not so im-

portant as in task of tag prediction which require more accurate models of short-term

interests.

Users may become interested in some new topics suddenly or switch back to

some older topics because of some unknown external effects. We first assume that the

current post (from the test set) is not a topic switch post, meaning the user continues

the most recent session of tags on a particular topic. As in Yin et al. [155], we use a

threshold on the tag similarity as measured by Jaccard’s coefficient to define topic

switches. For a given user, let pi−1, pi be two consecutive posts, whose timestamps

are τi−1 ≤ τi and tag sets are Ti−1 and Ti. Use Jpi−1,pi as the measurement of the

possibility of a topic switch at post pi: Jpi−1,pi =
|Ti−1∩Ti|
|Ti−1∪Ti| . The personalized session

lengths for each user are controlled by a global threshold κ. If Jpi−1,pi < κ, the

post pi is considered to be a topic switch. For each test post p, our method will

find the post pi from which the latest session begins, and then the kernel smoothing

will be only effective from pi. Although κ is a shared parameter among all users, it

generates personalized session lengths for users.

In the above session model, we made an assumption that the current test post is

not a topic switch post; however, in fact, the current post may be the start of a new

session. We believe that the time interval from the current test post to the most

recent post can help predict such a case. Intuitively, the longer the interval is, the

higher the probability of a new session starting. To measure whether the current

post pc is the start of a new session, we propose a function Jpc = f(τc),R → R

where Jpc is the predicted tag similarity between the current test post pc and the

most recent post based on the elapsed time. For the current test post pc of user u,

we have all past posts of user u—Pu. For every two consecutive posts pi−1, pi, we

have a time interval τi = τpi,u − τpi−1
and their similarity value Ji = Jpi−1,pi. Then

we have a set of samples (τ1, J1), (τ2, J2), ..., (τn, Jn), from which we need to learn
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Table 2.5: Validation Results

Method Bibsonomy Delicious Flickr
Long-term model .245 .161 .369
TIM .325 .258 .726
User-tag TIM .334 .283 .733
User-tag TIM (w/o κ) .302 .276 .726
LZ (uniform) .291 .191 .448
LZ (triagular) .301 .237 .616

the function Jpc = f(τc). While there are many regression methods, we use a non-

parametric technique—the nearest neighbor method. Compared to kernel methods,

the nearest neighbor method defines points local to τc not through the fixed kernel

bandwidth, but instead on a set of points closest to τc, measured by the distance

di,c = |τi − τc|. Then the regression at τc is calculated as Jpc =
∑

i wi·Ji∑
i wi

where wi is

a tri-cube weight function

wi =







(1− (
di,c
dk,c

)3)3 di,c ≤ dk,c

0 di,c > dk,c

where only k of n points closest to τc are considered as the neighborhood and dk,c

is the distance of the furthest τc. Following the previous definition: if Jpc ≥ κ, the

current test post will still stay in the current session and the session-based prediction

method will be employed while if Jpc < κ, we will treat this test post as the start

of a new session and so at this moment, other methods which do not depend on

temporal information can be employed, such as content-only methods [84]. In the

following experiments, we will also discuss combinations of methods.

2.7 Experiments on Temporal Factor

On all three data sets, we split the whole data into two parts: earlier data and

test data (the last 30 days data). Validation data in which 1000 posts are sampled
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from earlier data at random is used to tune and analyze the parameters. Then

based on the last 30 days data, we perform completely online evaluation to simulate

the tagging system running (evaluate each post over time and after that the post

will be treated as an additional training post). In our interests lifetime model,

there are two models: the personalized temporal interests model which assumes the

users’ behaviors on different tags are the same, and the personalized user-tag-specific

temporal interests model in which users have different behaviors on different tags.

We call them TIM and User-tag TIM.

We compare our method with three kinds of leading algorithms, which are from

Lebanon and Zhao’s [77] method of temporal document modeling (LZ), Yin et al.’s

[159] method of personalized tag prediction (YXHD, also described in Section 2.3),

and Lipczak et al.’s [84] method of content-only tag prediction (LHKM). Lipczak’s

method took the first place in the “content-based” recommendation task in ECML

PKDD Discovery Challenge [39]. We use the common F-measure function of pre-

cision and recall to evaluate prediction performance as we used previously [159].

F-Measure is measured in break even point.

2.7.1 Parameter Analysis

Here we describe the parameter tuning process using the validation data (prior to the

final month). In the predictive model, there are three parameters: ǫ is a smoothing

factor, λ controls the personalization weight and κ is the factor of session detection.

If ǫ =∞ and κ =∞, the model is exactly the long-term interests model. On all three

data sets, the effects of the three parameters are similar: for the tag prediction task,

smaller ǫ is more suitable and can capture local interests better. λ tends to be better

near to one. In Bibsonomy, the maxima appears when λ = 1.0, ǫ = 0.001, κ = 0.1.

In Delicious and Flickr datasets, the maximas appear at λ = 0.8, ǫ = 0.0001, κ = 0.3
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Table 2.6: Results on 30 day test data

Method Bibsonomy Delicious Flickr
Long-term model .118 .163 .312
User-tag TIM .501 .267 .835
LZ (uniform) .431 .203 .419
LZ (triangular) .497 .232 .701

and λ = 0.9, ǫ = 0.0001, κ = 0.6 respectively.

We also compare several variations of our methods to analyze the effects of each

part. At first, we compare user-tag TIM with TIM where all tags of the same user

share the same σ. In Table 2.5, the results show that user-tag TIM can outperform

the default personalized model. Because the computational cost for the two algo-

rithms is the same, we will use user-tag TIM in the following experiments. We also

find that session-like behaviors are an important factor. In the tag prediction task,

performance can be improved significantly over the version without topic switch

detection (w/o κ).

The comparison method LZ is also carefully tuned, resulting in h = 5 in Bibson-

omy and h = 1 in Delicious and Flickr. The triangular kernel and uniform kernel are

used in local likelihood: the uniform kernel—Kh(τ) = 2−1 ·1{r<h} and the triangular

kernel Kh(τ) =
(1− r

h
)

h
· 1{r<h}.

2.7.2 Simulating the Real System

We simulate the real tagging system running on the last 30 days of data—performing

completely online evaluation on the test data. There are 4,742 posts and 17,785

records in Bibsonomy, 21,916 posts and 76,213 records in Delicious and 110,551

posts and 517,949 records in Flickr. The results are shown in Table 2.6.

The results on test data are better than the results on validation data because the

system has more historical information. It show that our user-tag TIM is better than
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Table 2.7: Results on Bibsonomy

Method F1 Method F1 p-value
LZ .306 User-tag TIM .341 .0498
LHKM .136 LHKM w. TIM .369 7.56e-004
YXHD .309 YXHD w. TIM .357 .0033

the baselines and LZ on all three data sets. In Flickr, the performance achieves over

80% which is consistent with the fact that Flickr users’ interests are more focused

and easier to be tracked. Interestingly, it suggests that in real tagging systems, we

can make effective recommendation through users’ temporal interests analysis only.

2.7.3 Incorporating Content

In this section, we compare our temporal interests model with two successful content-

related methods—YXHD (described in Section 2.3) and LHKM [84]. We use the

Bibsonomy data set—the same data set as in Section 2.3, the same evaluation meth-

ods6 and the same parameter tuning. Table 2.7 presents the results. Our temporal

interests model can outperform the two content-related methods. The p-value is

also calculated by two-sample t-test, compared to the state-of-art YXHD. We can

see that TIM gets significant improvement.

YXHD treats the tag prediction problem as the reverse problem of web searching

and start from the basic Bayes rule, integrating three factors—an ego-centric effect,

environmental effects and web page content. Because users’ preferences on each tags

are drifting over time, intuition suggests that temporally adjusting the prior can get

better results. To incorporate the content, we combine the two methods by replacing

the P (t|u) with the temporal prior Pτ (t|u) which has already been shown to better

capture users’ current preferences. The combined methods achieve an F-measure

6Under online evaluation mode, we also calculated Top-5 F-measure, and the results are similar.
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of 0.357, which is significantly better than either YXHD or our temporal interests

model.

LHKM only uses content to recommend tags. The advantage of the LHKM al-

gorithm is when processing new items and during topic switches. Because it is a

content-only method, it does not distinguish whether the item has appeared in train-

ing data or not. Even if the current user suddenly changes interests, the algorithm

can also obtain stable performance. In the detecting topics switches section, we de-

scribe a non-parametric method for simply combining TIM with other method. The

results show that the combined LHKM can achieve the best performance. We also

notice that because YXHD has already involved a high weight on the ego-centric

effect, the improvement is not as high as LHKM.

2.8 Summary

In this chapter, we suggest that social tagging by nature is an incremental process,

and perform a time-sensitive sampling on an existing public dataset. Our analysis

shows that in the real world, the problem of tag prediction is dominated by the

need to predict tags for existing users when they tag new items. Most graph-based

methods require CORE p, and thus may simply not function in such situations.

We proposed a novel probabilistic model for personalized tag prediction. Our

online experiments and 5-fold cross validation experiments indicate that our model

achieves over 30% improvement on F-measure compared to a leading method, in the

“real-world” test scenario.

We then investigated the temporal dynamics of user interests in tagging sys-

tems, and proposed a user-tag-specific temporal interests model for tracking users’

interests. Using three public datasets we showed the impact of personalization and

user-tag specification.
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Based on our experiments, we are able to conclude that our temporal user in-

terests model, generated only from the temporal tag sequence, can achieve an F-

measure of 0.341 and outperform the state-of-the-art which is 0.309 for Bibsonomy

data. Combining with existing methods YXHD and LHKM, performance further

improved to 0.357 and 0.369, respectively. All three methods incorporating TIM

can outperform the state-of-the-art as well as a leading algorithm addressing con-

cept drift.

2.9 Bibliographic Notes

Personalized tag recommendation, as a special case of collaborative filtering, is a

recent topic in recommender systems. The two main directions for these systems

are content-based approaches and graph-based approaches.

Content-based methods, which usually encode users’ preferences from textual

information (e.g., web pages, academic papers, tags), can predict tags for new users

and new items. One state-of-the-art content-based tag recommendation system [84]

utilized several tag sources including item content and user history to build both

profiles for users and tags.

Graph-based approaches, which usually have stronger assumptions than content-

based ones (e.g., requiring every user, every item and every tag to occur in at least

p posts), can provide better performance. Earlier work like FolkRank, introduced

by Hotho et al. [62], is an adaptation of PageRank that can generate high quality

recommendations which are shown empirically to be better than other previously

proposed collaborative filtering models [64]. Guan et al. [51] proposed a framework

based on a graph Laplacian to model interrelated multi-type objects involved in

the tagging system. Recently, factorization models (also considered as graph-based
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approaches) show very successful evaluation results on personalized tag recommen-

dation problems [112, 114, 130].

Non-personalized tag recommenders—i.e., for a given item they recommend to

all users the same tags—have also attracted a lot of attention (e.g., [58, 127]). Garg

et al. [42] propose a personalized interactive tag suggestion system which suggests

tags based on the ones that a user entered most recently. They employ a naive

Bayes classifier which is only based on tag co-occurrences.

An important factor not considered by any of the above methods is the temporal

dynamics of users’ short-term interests. Recent research also shows that users are

much more likely to use their recently used tags. Zhang et al. [165] investigate

the recurrence dynamics of social tagging. Time information is also important to

recommend high-quality tags to users. In recommender systems and collaborative

filtering, temporal information has already shown its success. Ding et al. [35] simply

add a time weight on collaborative filtering through a decay function. Koren [73]

demonstrates that users’ interests evolve and presents a model which can track

the temporal behavior to better recommend items for users. Xiang et al. [146]

model long-term and short-term preferences by creating a session node on user-item

graph and then use temporal personalized random walk to recommend items for

users. Modeling long-term and short-term interests is also related to the problem

of concept drift which needs to find the balance between temporal effects and long-

term trends [120, 144]. Lebanon et al. [77] introduce a local likelihood model for

concept drift which weights the local likelihood by using a kernel function. Another

similar method is positional language model which is proposed by Lv and Zhai [89].

Both models are proximity-based methods. In this kind of method, the smoothing

actually models the lifetime of users’ short-term interests.
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Chapter 3

Structural Link Analysis and

Prediction in Microblogs

In the above chapter, we study the personalized tagging prediction and temporal

dynamics in social tagging systems. In this chapter, we will investigate another

popular system—microblogging system. We first analyze the link structure in Twit-

ter, and then by analyzing data collected over time, we compare most popular and

recent methods and principles for link prediction. Finally, we propose novel struc-

tural methods to calculate the probability of a link being created by examining the

current user’s local network structure. Our experiments on both static and dynamic

data sets show that our methods noticeably outperform the state-of-the-art.

3.1 Introduction

The use of online social networks and social media in general has surged in recent

years. In this chapter, we focus on the understanding of the use of one particular

type of social service—that of the microblogging network. In microblog services such
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as Twitter, Yammer and Google Buzz, participants form an explicit social network

by “following” (subscribing to) another user and thus automatically receive the

(short) messages generated by the target user. Unlike some online social networks

such as Facebook, LinkedIn or Myspace, a followed user has the option but not the

requirement to similarly follow back. Thus, relationships in these social networks

may be asymmetric, leading to three kinds of link relationships between users A and

B. If A follows B, we say that A is a follower of B, and that B is a friend of A.

If A and B both follow each other, we consider them mutual friends or reciprocal

friends.

Thus, user B in a microblog service can generate messages, which are generally

public and searchable, and any followers of B, such as A, will automatically receive

those messages along with messages generated by all other users that A follows.

The combination of multiple message intentions and asymmetry of connections has

led some to call microblogging services such as Twitter “hybrid networks” [76, 117].

They are hybrid not just because they can carry multiple types of messages, but

also because participants create links for multiple reasons—to be social (e.g., to

connect online to existing offline social contacts) or to link to information sources.

With multiple types of users, it may be difficult to understand how microblogging

networks grow and evolve. In a hybrid social-information network, there are two

viewpoints to consider. In an information network, the link prediction problem is

like the recommendation problem, which is to recommend an information source

to an information consumer. In a social network, the problem is to recommend

friends to the users, as introduced by Liben-Nowell and Kleinberg [80]. If we can

predict the next link that a user will likely create, we will 1) have a model of

the user’s interests that may be of value in recommending new links (e.g., as in

Twitter’s recently introduced “Who to follow” friend suggestions, and many third-

party suggestion services) and in detecting communities; 2) be closer to modeling
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the network’s overall growth processes; and, 3) be able to simplify the task of adding

that link when the user wishes to do so.

In this chapter, we analyze link structures in Twitter to predict future links.

Our contributions are as follows.

• We analyze real Twitter data collected over time to answer the question of

from where the new links come. We additionally compare three sampling

methods for the link prediction task.

• We are the first to experimentally compare many popular link prediction meth-

ods in a microblogging network. Furthermore, we also compare with matrix

factorization—the most popular method of recommender systems.

• We propose a novel structure-based link prediction method. Empirical results

on ego-centric networks of Twitter users show that our methods can outper-

form state-of-the-art methods on this task.

3.2 Link Analysis

In this section, we define concepts and examine characteristics of the Twitter rela-

tionship graph.

3.2.1 Definitions and Data Sets

As with any network, it is convenient to model the hybrid network as a directed

graph G(V,E). Users in the network are represented as nodes V and the links are

represented as directed edge E. If user vu follows vc and vc does not follow back in

a microblogging system, there will be an edge (vu ⇒ vc), we call vc is a friend-only

of vu. If user vu is followed-only by vc in the microblogging system, there will be
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an edge (vu ⇐ vc)—we call it vc is a follower-only of vu and if user vu and vc follow

each other, then (vu ⇔ vc), and we call it vu is a reciprocal friends of vc.

In our experiments, we randomly sampled 1000 English-tweeting users out of

9,026,165 active users between early February and the end of March 2010. Though

users may appear multiple times in the public timeline, we sampled by name, not

by tweets, so highly active users had no additional selection advantage. In the

end, we had 979 users as our target users.1 We monitored daily the changes in

the selected users’ ego-centric networks on Twitter. That means that each day we

recorded changes to their friends and followers. The number of immediate friends

and followers of the 979 target users was nearly 200,000. Since it was not possible to

monitor daily such a large number of users, we decided to crawl the ego-networks of

this group of users monthly. The data we used in this dissertation is from April 5th

to May 12th, 2010.2 This data set helped us better and more accurately understand

from where new links come.

Our background data is the Twitter data set collected by KAIST researchers

[76]. To build their data set, they crawled the entire Twitter site in July 2009

and obtained 41.7 million user profiles and 1.47 billion social relations. For some

analysis, we use this data set and assume it represents the whole Twitter network.

3.2.2 Links Formation Analysis

By examining the changing networks on a daily basis, we can determine from where

new links come. We monitored the changes of ego-networks for each of the 979

users. We collected a total of 18,777 new friends for the 979 users. Most new users

1 During monitoring, 21 users changed their privacy setting to “protect”, preventing us from

continuing to collect their information.
2 The data is prior to the introduction of Twitter’s friend recommendation system which may

introduce a link formation bias.
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type Dynamic Static ForestFire Uniform

Unknown 0.08126 0.05939 0.90350 0.64741
⇔⇔ 0.48712 0.49710 0.00028 0.16158
⇔⇒ 0.03974 0.02341 0.00102 0.03321
⇔⇐ 0.04082 0.06068 0.00264 0.03823
⇒⇔ 0.01636 0.05391 0.00155 0.03582
⇒⇒ 0.03706 0.06889 0.04457 0.01684
⇒⇐ 0.01112 0.03830 0.01955 0.01213
⇐⇔ 0.17471 0.12875 0.00087 0.03312
⇐⇒ 0.02700 0.00869 0.00456 0.00769
⇐⇐ 0.08477 0.06084 0.02141 0.01392

Table 3.1: The distribution of relationship types for new links.

are friends of friends. In particular, 17,251 (91.78%) new friends were second level

neighbors within the target user’s ego-network and the remaining 1,526 (Punknown =

8.12%) new friends were of unknown relationship (i.e., more than two hops away).

We also find that only 12% follower-only users appear in the new friends, thus

it is reasonable to use the follower-only users as negative samples in some learning

algorithms. For each of the new friends, we further check their relationship type

with the 979 target users. Table 3.1 shows the distribution of relationship patterns

for each new friend, prior to link creation where ⇔⇔ means target users ⇔⇔ new

friend. For example, ⇔⇔ means the new friend is the reciprocal friend of some

reciprocal friend of the target user. Similarly, ⇒⇒ means the new friend is the

following-only friend of some following-only friend of the target user. It is similar

for other types. Based on the results shown in Table 3.1, if we use two-hop neighbors

in the ego-network as candidates to recommend as friends, we will only miss 8.12%

of new friends. In previous research, researchers typically [9] only use second hop

users as candidates for link prediction, and here we verify that that choice in hybrid-

network also works.

Our observation confirms that it is reasonable to only use second hop neighbors
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(a) Degree analysis of new friends that were
two hops from the ego.
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(b) Degree analysis of new friends that were
more than two hops from the ego.

Figure 3.1: Scatterplots of friend-degree versus follower-degree.

as candidates for link prediction. Another interesting result is that even if two

users share an audience, it does not suggest that they are interested in each other.

Among two-hop users, most of the new friends have relationships ⇔⇔, ⇐⇔, ⇐⇐.

In Romero and Kleinberg [117], they only find ⇒⇒ as an factor in link formation.

We extend their observations and find ⇔⇔ is by far the most important indicator

for future link formation. We also compare two-hop new friends with those more

than more than two hops away, assuming that those nearby neighbors would be more

likely to be social connections and the far-away connections would be to information

producers. However, Figure 3.1 (Scatterplots of friend-degree versus follower-degree

for friends that were two-hops away and for new friends that were more than two

hops away) shows that from degree analysis, two-hop new friends and more remote

new friends are very similar.

3.2.3 Age Analysis

We analyze the relationship between the changes in the size of a user’s network and

user’s account age. We compare two snapshots (April 5th 2010 and August 20th
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(a) Change in number of friends. (b) Change in number of followers.

Figure 3.2: Account age analysis in Microblogging system.

2010) of profiles of 200,000 users. The results are shown in Figure 3.2 (the changes

in the median number of neighbors as a function of account age). The x-axis is the

user’s account age and y-axis is the median change in the number of neighbors. We

find that in early participation (accounts no older than 100 days), users add many

friends and for more experienced users (100-400 day account ages), their friends

become more stable. For long-time users (more than 500 days), we surprisingly

find that their number of new friends is larger and larger. For followers, Figure

3.2(b) shows a rich get richer pattern; the older the user, the larger the increase

in followers. A more detailed analysis (not shown for space) reveals that young

accounts (e.g., less than two years) have a larger (but decreasing over time) change

in followers and friends, while more established accounts (from about two years on)

have a more consistent relative growth rate.

3.2.4 Comparing Sampling Methods

Link prediction experiments are usually based on a sampled graph rather than the

whole graph before deploying it on a real system. However, real dynamic data

usually is not available, in which case, artificial data is necessary, and is used in
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many studies that attempt to “predict” links that have been removed from a static

graph [28, 160, 161]. We consider three sampling approaches. ForestFire [79] is a

popular sampling method, preserving many graph properties of the sampled graph,

such as some static properties (e.g., degree distributions, clustering coefficients),

temporal properties (e.g., shrinking diameters) and cascading properties (shown

in [33]). We crawled a graph by ForestFire, which contains 1,607,178 users, and

2,900,516 links and remove 10% links at random as test data. Another data set

is sampled from the whole twitter network of the KAIST data[76]: we randomly

select 1,600,000 users, and then put the links back—total 2,008,519 links and also

remove 10% links at random as test data, which we call Uniform data. The last data

set is based on the April 5th snapshot of ego-centric network. For 1000 egos, we

remove 10% of the links at random as test data, which we call Static data. Treating

those removed data as the new links, we perform the same analysis experiment as

Section 3.2.2 to analyze whether the artificial data can retain properties consistent

with real data. The results are also shown in Table 3.1. The static data keeps the

consistent distribution among all kinds of the two-hop relationships. For ForestFire

and Uniform, the properties are quite different from Dynamic: fewer than 10% of

the candidates are found on the second hop in ForestFire and fewer than 40% of

the candidates are found on the second hop in Uniform, causing ego-network based

structural methods, such as common neighbors and Jaccard coefficient to fail on

such cases.

Furthermore, we find that the distribution of two-hop relationships in ForestFire

are also changed. The fraction of ⇔⇔ becomes very low and ⇒⇒ becomes higher.

We also draw the distribution of the number of 2-hop paths from the target users to

the ’new’ friends after removing links, and Figure 3.3 shows how to count the 2-hop

paths. The distributions of four data sets are shown in the Figure 3.4 (Distribution of

links with exactly x 2-hop paths in the graph generated by each sampling method).
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(a) l = 1 (b) l = 2 (c) l = 3

Figure 3.3: The counting of 2-hop paths l

We can see that the distribution of static data is very similar to the real data—

Dynamic, but the distribution of ForestFire is different from the real (dynamic) data.

That means that even when we only use the candidates which are still available via

two hops from the target users as our test data, the algorithms may still generate

different performance, compared with the real dynamic data. These experimental

results suggests that for the link prediction task, the common evaluation method

which is based on ForestFire sampled data may not produce the same results as

real data. Finally, we run a simple but popular method—Common Neighbors on

the fore data sets.3 The predictive performance results are 0.116 in Dynamic, 0.071

in Static, 0.0013 in ForestFire data and 0.011 in Uniform data respectively. As

we expect, prediction fails to be competitive with ForestFire data set and Uniform

data while the performances on Dynamic and Static data are significantly higher.

Although ForestFire and Uniform sample does keep some good properties for link

analysis such as PageRank, temporal properties, they may not be suitable for the

link prediction task.

3 We use the standard F1-measure in the break even point.
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Figure 3.4: Distribution of links

3.3 Link Prediction

In this section, we introduce our prediction framework based on link structures. In

a hybrid social-information network, structures can reflect many scenarios that may

be useful for capturing users’ interests and predicting potential links. In Figure

3.5, we can see some examples of various structural meanings: a) User vu may be

interested in vc, because other similar users with vu are following vc. b) User vu may

want to follow vc, because they may be friends with each other in real life and they

are willing to use microblog as social networks. c) User vu may want to follow vc,

because vu is following other users which are following vi while vc is also following

vi and they may share the same interests. With these three examples, we have

already seen some meanings of structures. We wish to design a model to exhaust

such structural information for predicting new links.
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(a) (b) (c)

Figure 3.5: Examples of relationships between user vu and candidate vc.

Suppose that we want to recommend other users which user u may know or be

interested in following. The problem we consider is that given a user u and the

whole network G, what is the probability that user vu follows user vc: P (vu →

vc|G). We will rank candidate users according to this equation, and the top N

users will be recommended to user vu. To calculate P (vu → vc|G), theoretically,

each intermediate user/vertex vi can contribute some structural information which

represents two parts: the link structure between vi and vc and the link structure

between vu and vi. Now let us define the set of target users to which we will

recommend some friends Vu, the set of intermediate users which we will exhaust the

structural information Vi, and the set of candidate users for recommendation Vc.

Assuming that P (vu → vc|G) is the linear combination of all possible intermediate

users/vertices’ contribution, we have

P (vu → vc|G) =
∑

vi∈Vi
bvi,vc · avu,vi

Let bvi,vc represent the contribution of the structural information between vi and

vc, which can be considered as the strength of vi’s recommendation for vc and

avu,vi represent the contribution of the structural information between vu and vi,

which can be considered as the score of vu liking a recommendation of vi. We will

denote with A the matrix with elements Avu,vi = avu,vi and with Avu the column
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of A corresponding to vu. Similarly, B ∈ R|Vi|×|Vc| with column vector Bvc . Let

Rvu = [rvu,v1, rvu,v2 , ...rvu,vn ] represent the current friends snapshot of vu in which

rvu,vi = 1 means vi is a current friend of vu and rvu,vi = 0 means vi is the current

follower-only of vu.

In section 3.2.2, we report that only 12% of follower-only users of all follower-

only users become new friends; thus it is perhaps reasonable to use follower-only

users as negative samples. Then,

R̂ = ATB

In probabilistic view, we define the conditional distribution over the current friends.

p(R|A,B, σ2) =
∏

vu∈Vu

∏

vc∈Vc

[

N (R|AT
vuBvc , σ

2)
]Ivu,vc

where N (R|AT
vuBvc , σ

2) is the probability function of the gaussian distribution with

mean AT
vuBvc and variance σ2. Ivu,vc is the indicator function for selecting observed

training data. For pair (vu, vc), if we use it as our training data, then Ivu,vc = 1,

otherwise, Ivu,vc = 0. We also place zero-mean spherical Gaussian priors on the two

structural parts A and B

p(A|σ2
A) =

∏

vu∈Vu

N (Avu |0, σ
2
AI)

p(B|σ2
B) =

∏

vc∈Vc

N (Bvc|0, σ
2
BI)
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The log of the posterior distribution over R,A and B is given by

ln p(A,B|R, σ2, σ2
A, σ

2
b )

= −
1

2σ2

∑

vu∈Vu

∑

vc∈Vc

Ivu,vc(Rvu,vc −AT
vuBvc)

2

−
1

2σ2
A

∑

vu∈Vu

AT
vuAvu −

1

2σ2
B

∑

vc∈Vc

BT
vcBvc

−
1

2

(

∑

vu∈Vu

∑

vc∈Vc

Ivu,vc

)

ln σ2 −
1

2
|Vu||Vi| lnσ

2
A

−
1

2
|Vc||Vi| ln σ

2
B + C

where σA and σB control the smoothing factor of A and B. Let σB = σA, and then

maximizing the log of the posterior distribution is equivalent to

min
A,B

∑

vu

∑

vc

Ivu,vc(Rvu,vc −AT
vuBvc)

2

+λ1(‖A‖
2
Fro + ‖B‖

2
Fro)

where λ1 = σ2/σ2
A, is actually the smoothing factor and ‖·‖2Fro denotes the Frobenius

norm. Next, we need to involve structural regularization into the objective function.

3.3.1 Structural Regularization

In section 3.2, we show that more than 90% of new links go to people two hops

away from user (the ego). Intuitively, if two users vi and vj are far away on the

graph, that is, the shortest path between vi and vj is too long, their structural

information can be ignored. We can define the set of the effective structures Se.

For example, if we define that the structures with only one hop are effective, the set

of effective structures will be Se = {⇐,⇒,⇔} and if we define that all structures
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with up to two hops are effective, then the set of effective structures will be Se =

{⇐,⇒,⇔,⇒⇒,⇒⇐,⇒⇔,⇐⇐,⇐⇒,⇐⇔,⇔⇐,⇔⇒,⇔⇔}. Let Svi,vj represent

the set of all possible structures from vi to vj and Se
vi,vj

represent the set of all

effective structures from vi to vj—Se
vi,vj

= Svi,vj ∩ Se. Thus, if Se
vu,vi

= ∅ where

vu ∈ Vu and vi ∈ Vi, then let avu,vi = 0 and similarly, if Se
vi,vc

= ∅ where vi ∈ Vi and

vc ∈ Vc, then let bvi,vc = 0.

Beginning at some user vu ∈ Vu, intuitively, if the structures of (vu ! vi) and

(vu ! vj) are similar or same, the contribution scores of avu,vi and avu,vj should be

similar. Following this intuition, we make constraints on structural scores matrix

A, and define a structural regularization function S(A) to constrain similar scores

on similar structures.

S(A) =
∑

vu∈Vu

∑
vi∈Vi

∑
vj∈Vi

Wvu (vi,vj)(avu,vi
−avu,vj

)2

∑
vu∈Vu

∑
vi∈Vi

∑
vj∈Vi

Wvu (vi,vj)

whereWvu(vi, vj) is the measurement of similarity on structures attached on vu: the

more similar the structures of (vu ! vi) and (vu ! vj) are, the higher value the

Wvu(vi, vj) is. There are many kinds of methods to measure the structural similarity.

Here, We list two:

Binary weighting if Se
vu,vi

= Se
vu,vj

, then Wvu(vi, vj) = 1, otherwise Wvu(vi, vj) =

0.

Cosine weighting let NSe
vu,vi

represent the vector of quantified effective structures

of (vu ! vi), that is, NSe
vu,vi

= [nvu⇒vi, nvu⇐vi , nvu⇔vi , nvu⇒⇒vi...], where

nvu⇒⇒vi is the number of ⇒⇒ path from vu to vi. Then, the cosine simi-

larity is calculated as Wvu(vi, vj) =
NSe

vu,vi
·NSe

vu,vj

‖NSe
vu,vi

‖·‖NSe
vu,vj

‖

We also notice that if we take Se = {⇐,⇒,⇔}, the two kinds of weighting are

equivalent, because nvu⇒vi , nvu⇐vi and nvu⇔vi only can be 0 or 1. Similarly, we add

the structural constraints to B, and we have

78



S(B) =
∑

vi∈Vi

∑
vc∈Vc

∑
vk∈Vc

Wvi
(vc,vk)(bvi,vc−bvi,vk )

2

∑
vi∈Vi

∑
vc∈Vc

∑
vk∈Vc

Wvi
(vc,vk)

The objective function O becomes

min
A,B
O =

∑

vu∈Vu

∑

vc∈Vc

Ivu,vc(Rvu,vc −AT
vuBvc)

2

+λ1‖Avu‖
2
Fro + λ1‖B‖

2
Fro

+λ2S(A) + λ2S(B) (3.1)

where λ2 is the structural factor tuning the weight of structural regularization. In

the above model, we see the two parameters λ1 controls the weight of smoothing and

λ2 controls the weight of regularization. The selected training links are represented

by Ivu,vc .

3.3.2 Prediction in Ego-centric Networks

We call the above model the global model because the prediction is from the global

network and performs collaborative filtering among all Vu. The global model will

run on the whole graph to make predictions for a specific user and it will take a

relatively long time to finish the computation; however, sometimes users perform

interactive behaviors—such as requesting lvingthemodan instant recommendation.

In this case, the global model may not work because of such long term computation.

Secondly, the friendship network of some users may be already stable [157] and they

may not want to add new friends.

It is necessary to make instant prediction for the users who are eager to get new

friends. Unfortunately, directly reducing the model to fit the local structures of user

vu will likely cause overfitting. Thus, here we introduce a local model.

Considering the extreme case that only one user vu requests new friends, the

matrix R and A will reduce to only vectors Rvu and Avu and a personalized method
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is necessary. We recall that the meaning of A and B, avu,vi can be considered as

the probability of vu trusting the recommendation of vi and bvi,vc can be considered

as the probability of vi recommending vc. For bvi,vc , because we know the current

friendship network of vu and also the structural information of vi, we can make B

personalized for vu—Bvu , that is, bvu,vi,vc means the probability of vi recommending

vc for vu, given the structure information of vi. For some specific user vu, we assume

that vu is interested in all his friends. Given the structure of some path between vi

and vc (vi ! vc), we can use the following equation to get the approximation value

of bvu,vi,vc :

βvu,vc,vi =
∑

vk∈Vvu→
Wvi

(vc,vk)
∑

vk∈V Wvi
(vc,vk)

where vu ∈ Vu, vc ∈ Vc and vi ∈ Vi. The above actually calculates the fraction of

the number of vu’s friends who share similar structures with vc over the number of

all users who share similar structures with vc. If the value βvu,vc,vi is larger, then

there will be a larger probability that vu will follow vc. Then similarly as in section

3.3, for some specific targeting user vu we let

p(Avu |σ
2
A) = N (Avu |0, σ

2
AI)

p(B|βvu , σ
2
K) =

∏

vc∈Vc

N (Bvc|βvu,vc , σ
2
BI)

Then we have the objective function Ovu for vu:

min
A,B
Ovu =

∑

vc∈Vc

Ivu,vc(Rvu,vc − AT
vuBvc)

2 + λ1‖Avu‖
2

+λ1‖B − βu‖
2
Fro + λ2S(Avu) + λ2S(B) (3.2)

3.3.3 Solving the Model

Solutions for Equations 3.1 and 3.2 are quite similar. One simple method is gradient

descent. Intuitively, the structure rarely contributes negative effects and usually a
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user vu likes some kinds of users or does not care about some other kinds of users.

In the quantified observed matrix R, we also use 1 for current vu’s friends and 0

to represent links that vu does not care about. From the Section 3.3.2, we also

involve a guidance value—β. All these reasons lead us to constrain A and B to be

nonnegative. Nonnegative matrix factorization has been researched for many years

[78, 21].

The objective function O and Ovu in Eq. 3.1 and Eq. 3.2 are not convex in

both A and B together and it is realistic to expect an algorithm to find the global

minima. The process we use for solving O and Ovu in Equations 3.1 and 3.2 is to use

an iterative algorithm following the methods in in [78, 21] to derive multiplicative

update rules. The proof by Lee and Seung [78] suggests that the objective function

will be nonincreasing under such update rules.

3.4 Experiments

In this section, we describe our prediction experiments. Our method is only based

on structural information of the social graph; thus for comparison methods, we also

mainly focus on structure-based methods which do not involve user properties or

content.

3.4.1 Data Set and Evaluation

In link prediction experiments, we use the same 979 Twitter users as in Section

3.2 and their immediate neighbors (979 ego users and their neighbors) that were

collected to build a network for the link prediction task. In total, there are 211,559

unique users. For our experiments, we employed two kinds of evaluation methods.

Static Evaluation. Based on the 979 users’ ego network snapshot on April 5th
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2010, for each target user whose number of friends is larger than ten, we remove

five links to friends. The prediction task is then to use the pruned networks to

find the missing links. This evaluation method is widely used in the link prediction

literature [28, 160, 161]. We use this process both for parameter tuning and for

model analysis.

Dynamic Evaluation. We also monitored the changes in the 979 users’ friend-

ships and recorded the new links established between April 5th and May 12th. Here,

the prediction task is based on the April 5th network snapshot to predict new friends

in the following months.

For validation purposes, we also run our experiments on a second static Twitter

data set (described below in Section 3.4.6). Precision, recall and F-measure are

calculated in the standard manner, and our main measurement is the F-measure

based in the break even point.

3.4.2 Baselines

In this section, we analyze and discuss simple predictors and principles to show the

difficulty of this problem. Golder et al. [46, 45] discuss link prediction in Twit-

ter, analyzing several principles for link prediction, such as shared interests, shared

followers, and mutuality. Romero and Kleinberg [117] also introduce the directed

closure process in Twitter tie formation. Here, we re-implement and compare the

simple predictors which are from the principles described in [117, 46, 45].

To represent the principle Shared Interests, we use the predictor: the number

of shared friends. A shared interest is best represented by the relationship chain

vu → X ← vc. Similarly, Shared Audience (vu ← X → vc) is measured by the

number of shared followers. For Transitivity [46, 45] or the Directed Closure Process

[117], we use Katz’s methods with degree length l = 2, which is equivalent to the
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Method Static Dynamic
Shared followers 0.078 0.119
Shared friends 0.061 0.083
Shared mutual 0.074 0.086
Common neighbors 0.071 0.116
Katz (l=2) 0.094 0.086

Table 3.2: Simple predictor analysis (F-measure).

number of paths vu → X → vc. We also test Shared Mutual Friends. Shared

Neighbors is just the count of the total number of neighbors (both friends and

followers) without considering direction. The results are shown in Table 3.2.

From Table 3.2 we can see that all simple predictors provide similar performance—

around .10 F-measure. We notice that the shared friends predictor performs worse

than others, and that implies that two users sharing the same interests may not

be particularly interested in following each other. Overall, simply using any single

predictor cannot generate good results. Better methods are necessary.

3.4.3 Parameter Analysis

In this section, we analyze our two models, and tune parameters on static data.

In the experiments, we use the snapshots of the target user’s friendship network to

construct the observation matrix R: if user vc is a friend of vu, we will set the entry

rvu,vc = 1 and if user vc is a follower-only of vu, we will set the entry rvu,vc = 0.

Because we already know that more that 90% of new links are from second level

neighbors, our effective structures are defined in one-hop; that is, each edge will

have two parameters a and b respectively in A and B, and in the global model, it

will generate prediction in two hops. In the local model, full structural information

is captured in vu’s two-hop ego network. Initial values of A and B are all set to

the same value. We finally find that when smoothing parameter λ1 = 100 and
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Figure 3.6: F-measure as a function of λ1(λ2 = 0) and λ2(λ1 = 0)
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regularization parameter λ2 = 100 in the local model and λ1 = 1000, λ2 = 100 in

the global model, the best performance is achieved. The model usually can converge

within 10 iterations, and Figure 3.7 shows the performance changes as a function

of iteration number. Because the current network is an ego-centric network which

can provide full structural information, but the set of target users—Vu—is relatively

small and may not provide good collaborative filtering, the performance of the local

model is .197, which is better than the global model—.15. In the following, we use

the local model for comparison.

Based on the local model and static data, we also analyze the effects of λ1 and

λ2. Figure 3.6 shows the results. For the curve for λ1, we set λ2 = 0, and then

tune λ1 from 0 to infinity. We can see that it achieves the best performance when

it is set to 100. We also note that when λ2 is infinite, the model is reduced to

the simple methods where links of the same type will share the same value. The
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performance of this model is still competitive, although its F-measure is lower than

the best performance. Similarly, the performance of tuning λ2 is shown in the same

figure.

3.4.4 Comparing to Link Prediction Methods

In this section, we compare recent and popular methods which have been already

used widely in link prediction problem. Six methods are implemented for com-

parison. The Common neighbors method simply counts the number of common

neighbors. The Jaccard coefficient is calculated through dividing the number of

common neighbors by the total number of neighbors. Adamic/Adar [2] refines the

simple counting features by weighting rarer features more heavily. Preferential at-

tachment scores are the product of vc in-degree and vu out-degree. We also compare

the latest method—PropFlow [82]. In both Katz’s method [68] and PropFlow, we

tune the parameters l from 1 to 5 in static data.4 Finally, we compare them on real

dynamic data. The results are shown in the Static and Dynamic columns of Table

3.3.

In static evaluation, the results of PropFlow, Common Neighbors, Jaccard Co-

efficient and Adamic/Adar are similar and PropFlow which is a relatively newer

method, gets better results than the other five competitors. Jaccard Coefficient

shows competitive results which is similar with PropFlow. Preferential Attachment

fails to predict missing links. For Preferential Attachment, because it only depends

on the in-degree of the candidates, in the case of the information producers (with

higher in-degrees), it may work. However, in real world, we know that individual

4 In their paper, they also proposed a supervised method. Here, we select PropFlow for two

reasons: First, for Lichtenwalter et al.’s supervised methods, there are many parameters to tune

and selecting features is also a problem. Second, in their paper, PropFlow is used as a feature,

and for most supervised methods, our method can also be used as a feature.
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users are more prevalent than information producers. Thus, we can imagine the

failure of Preferential Attachment. In dynamic evaluation, a point which we have to

note is that unlike in static evaluation, the Jaccard coefficient works very well and

even better than PropFlow. Within ego-networks, the Jaccard coefficient is a com-

petitive method and also simple to calculate. We also find the failure of Preferential

Attachment. Our method outperforms all other methods in both static evaluation

and dynamic evaluation.

3.4.5 Comparing to Matrix Factorization

As mentioned earlier, another direction to solve the link prediction problem in a

hybrid network is to use the techniques of the traditional recommender systems.

Matrix Factorization is a popular method which is widely used in recommender

systems [73, 75]. Here we employ the standard matrix factorization methods with

smoothing. The observation matrix R is the same as the one in our model and the

objective function is as follows.

minA,B

∑

vu∈Vu

∑

vc∈Vc
Ivu,vc(Rvu,vc −AT

vuBvc)
2 + λ(‖A‖2Fro + ‖B‖

2
Fro)

To solve this optimization, we used stochastic gradient descent. Based on the

static data, we tune the number of hidden features from 20 to 300, find the opti-

mal parameter for comparison and set λ = 0.05. The results are shown in the last

row of Table 3.3. On the static data, matrix factorization only achieves around .09

F-measure but the performance of matrix factorization on real data is also compet-

itive at .163. Our model can outperform the standard matrix factorization in both

static data and dynamic data because our method essentially incorporates matrix

factorization techniques with structural information.
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3.4.6 Validating Results

To test for sensitivity to our data set and sampling methods, we also ran our ex-

periments on a subset of the large Twitter follow graph collected by Kwak et al.

at KAIST [76]. We randomly sample 2,000 test users and extract their ego net-

works as in Section 3.4.3. There are, in total, 81,580 users and almost 10 million

edges within this second test network. We again compared our methods with the

other seven methods using the static dataset methodology. The results are shown in

the rightmost column of Table 3.3 and are consistent with our earlier experiments.

PropFlow is also better than other comparison methods. Our approach consistently

outperforms all other tested methods.

3.4.7 Discussion

We have demonstrated many of the challenges of link prediction in a hybrid net-

work and also noticed that the overall performance is relatively low, compared to

results presented in some link prediction papers on other datasets. However, even

when considering “social networks”, most existing work does not directly examine

online social networks, but rather networks of co-authorship or similarly constructed

Method Static Dynamic KAIST
Our model 0.197 0.190 0.127
PropFlow 0.124 0.099 0.081
Katz 0.094 0.086 0.077
Jaccard coefficient 0.098 0.169 0.079
Adamic/Adar 0.090 0.128 0.069
Common neighbors 0.071 0.116 0.051
Pref. Attachment 0.012 0.012 0.023
Matrix factorization 0.082 0.163 0.074

Table 3.3: Comparing link prediction methods (F-measure).
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networks reflecting some social relationship or record of activity.

On the other hand, the links in an online social network may reflect relationships

(friends, family) that are not visible in a record of activity, and in a microblogging

network with hybrid characteristics is even more complex.

As a result, previous methods which may work well on traditional social networks

or co-authorship networks may not work as well on hybrid networks. Our results

shows that the F-measure of many popular methods on our real-world data is only

around 0.10.

Another cause for low performance of link prediction is that the microblogging

network continues to grow. Each day, there may be many new links created [157].

In our experiments, we only evaluate new links within the following one month, so

performance may be underestimated. It is possible that users are actually interested

in those predicted links but they may not create those links within the following

one month due to the fact that users may not discover those potential friends in

a short period of time. In other words, users may create those links later, after

our initial evaluation period. We conduct a simple experiment to test this: we

make predictions based on the same training data—the 04/05/2010 snapshot, but

we evaluate on different snapshots from different times. Figure 3.8 shows the results,

and we find that after 05/12/2010, target users continue to create links which we

had predicted, so measured performance grows higher and higher.

Another thing we can notice is that performance on the three test sets are differ-

ent. For example, matrix factorization works well on the dynamic data but not well

on the static data. We can imagine that static evaluation and dynamic evaluation

have different properties such that some methods are better suited for one or the

other. For the prediction task, dynamic evaluation is a more accurate estimate of

future performance than static evaluation. However, if recommendation is the true

end goal, it is difficult to tell which (if any) is better without involving a user study.
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3.5 Summary

In this chapter, we examined the link structure and link prediction task within

the Twitter microblogging network. In daily monitoring experiments, we analyzed

properties of new links and saw from where in the network those links come and

compared three sampling methods for the link prediction task. We proposed a

novel personalized structure-based link prediction model and compared its predictive

performance against many fundamental and popular link prediction methods on

real-world data from the Twitter microblogging network. Our experiments on both

static and dynamic data sets show that our methods noticeably outperform the

state-of-the-art.

3.6 Bibliographic Notes

There are several fundamental kinds of link prediction methods, such as structural

methods, random walk methods and supervised methods. Liben-Nowell et al. sur-

veyed an array of methods for link prediction in online social networks [80, 81].

One branch of structural methods is based on the local structure, such as common

neighbors, Jaccard coefficient and Adamic/Adar [2] which refines the simple count-

ing features by weighting rarer features more heavily. The preferential attachment

method supposes that the likelihood that a new edge involves node v is propor-

tional to Γ(v), the number of neighbors of v. Based on global structure information,

Clauset et al. [28] present a general technique for inferring hierarchical structure

from network data and show that the existence of the hierarchy can simultaneously

explain and quantitatively reproduce many commonly observed topological proper-

ties of networks.

Another approach utilizes random walk methods such as Rooted PageRank [80,
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81] which is a variation of PageRank [105] that measures the stationary probability

of each node in a random walk that returns to the root with some probability in each

step. Weng et al. [141] try to identify influential users of micro-blogging services by

using LDA to analyze user interests. Yin et al. propose a method which augments

the original graph with attribute nodes, and then uses random walk to calculate link

relevance [160, 161]. SimRank [65] recursively defines the similarity of two nodes

and can also be interpreted in terms of a random walk. The most recent random

walk-like method is PropFlow [82] which calculates the probability that a restricted

random walk starting at node vi ends at vj in l steps. Katz [68] proposes a path-

based method, which defines a measure that sums over the collection of all paths

from vi to vj, and assigns more weight to shorter paths. Recently, Backstrom et

al. [9] proposed a supervised random walk method which combines information from

the network structure with node and edge level attributes. Supervised learning then

adjusts the weights on different attributes to guide a random walk on the graph.

In supervised methods, the link prediction problem is usually considered as a

classification problem. Such methods extract features from training data and can

include both topological features (as in [67]) and node features. Hasan et al. [57]

use different kinds of features, such as proximity features, aggregated features and

topological features, and also compare different kinds of classifiers. More recently,

Lichtenwalter et al. [82] examine important factors in the link prediction problem

and present a classification framework which employs their PropFlow as a feature.

If you consider link prediction as a recommendation problem, a popular method

is matrix factorization [75, 73, 72, 92] where the algorithms find hidden features

for users and items by factorizing the observation matrix. However, those methods

are designed for a user-item pair, and never before used for link prediction in social

network.
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There is other related research about link prediction [100, 136] and hybrid net-

works. Kwak et al. [76] find that the relationship of following and being followed

on Twitter is not reciprocal, unlike most other social networking sites such as Mys-

pace and Facebook. Romero and Kleinberg [117] also introduce the hybrid network

concept and explore the directed closure process in Twitter. Recently, Golder et

al. [46] discuss prediction specifically in Twitter. They analyze several principles for

link prediction, such as shared interests, shared followers, and mutuality. They also

discuss their user study results in [45].
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Chapter 4

Multi-Relational Data Analysis in

Online Social Media

In previous chapters, we have studied tag prediction and link prediction in social

tagging systems and microblogging systems. However, they are focused on a single

task or view. In this chapter, we will systematically investigate the coupled activities

of users and their mutual effects in online social media. Our explanatory analyses

demonstrate three principal challenges: coupled high order interaction, data sparsity

and cold start on items. We tackle these problems by using a generalized latent factor

model and Bayesian treatment. To evaluate performance, we test our methods on

three real-world data sets—Flickr, Bibsonomy and MovieLens. Our experiments on

these data sets show that to achieve best predictive performance, one can employ

a fully Bayesian treatment in modeling high order relations in social media. Our

methods noticeably outperform state-of-the-art approaches.
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4.1 Introduction

Online social media services, such as Facebook, Flickr, YouTube and Twitter are

designed to provide many opportunities for user engagement. Thus, in addition to

being able to share content, users can often 1) rate content, 2) declare friendship

with other users, 3) tag content with keywords, 4) comment on content, and 5)

send personal or public messages to other users. Each of these activities provides

valuable data to the service that can be used to model and predict future actions.

For example, in a photo sharing site like Flickr, users of the service can add photos

shared by others to their favorites. This is a form of rating, and so the service could

examine a collection of user-photo pairings and build a model to predict whether

the user would mark this photo as a favorite (e.g., what photos are preferred).

The second activity (declaring friendship) is similar to the more general activ-

ity of indicating the existence of a link between two entities (e.g., user-user rather

than user-photo). Two-entity relations (or equivalently, relations of order two) are

a common context for recommender systems [22, 30, 93, 73]. In fact, each of these

activities could be approached as a recommendation or prediction problem by pre-

dicting zero (absence) or one (presence) of the link. The third activity (tagging)

produces a non-numeric value, but it can also be viewed as a generalization of

two-entity relations to three-entity relations. For example, when considering only

the user-item relation, it might be more simply represented as a triple: user-item-

tag, and the relation then signifies the use of that tag by that user for that item.

The fourth type of behavior (commenting) is similar, but suggests an even harder

problem: predicting a user’s comments. The last activity type reveals relationships

among users, as well as a potential message content prediction task.

Thus, all five activities provide contexts for prediction or recommendation, in-

cluding rating prediction [3, 6, 75, 90, 119], tagging prediction [114, 112, 113] or
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link prediction [9, 80]. The existence of multiple activities across a single site (e.g.,

as can be found in YouTube) suggests that a model of the full system might be

valuable to provide prediction or recommendation across multiple contexts [5]. The

desire to provide recommendations even when the user or item is new (i.e., the cold

start problem) provides additional rationale to co-relate relations of variable order.

Thus, modeling multiple social media activities in a unified framework will not only

solve multiple recommendation tasks simultaneously, but address data sparsity and

cold start problems as well.

We have briefly discussed the challenges of analysis of data from social media

services in Chapter 1 such as high order relations, high sparsity of the data, and

co-related (coupled) activities. While past research has considered each of these

issues separately, the work presented in this chapter addresses them together under

a new, high-performing model.

To address such coupled higher order relations simultaneously as is often required

for social media services, we propose a probabilistic generative model with the aim

of inferring missing relation instances. Two problems are studied and analyzed

by our methods: 1) connecting comments and tags in social tagging systems. We

systematically investigate the coupled activities of users and their mutual effects in a

social tagging system. Our explanatory analyses demonstrate three main challenges

in modeling tagging systems: coupled high order interaction, data sparsity, and

cold start on items. We tackle these problems by proposing a generalized Bayesian

probabilistic latent factor model which can be tailored to fit the tagging system. We

conduct empirical evaluations on two public data sets—Flickr and Bibsonomy. The

experiments show that in social tagging systems, a user’s commenting behaviors on

item and user’s tagging behaviors are highly correlated and can be mutually inferred,

which has not been explored previously. 2) Incorporate temporal factor and external

information in collaborative filtering, such as MovieLens and Netflix. Extensions to
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traditional recommender systems based on second order coupled entities fit naturally

into our higher order relational model, such as temporal information [73, 148], user

profile and item features [4, 152, 125, 163]. Our model can do so simultaneously

and demonstrate superiority over state-of-the-art methods [119, 125, 148].

Before presenting the details of our proposed model and algorithm, we summarize

the contributions of this chapter:

1. We propose a generalized probabilistic framework for high-order and multi-

context relational data which is common in social media services.

2. By using our proposed framework, we can jointly model multiple activities,

such as tagging logs, user comments, temporal rating history and social net-

works. Two application problems (social tagging system and temporal collab-

orative filtering) are analyzed and solved effectively by adopting our methods.

3. Experiments show that our Bayesian inference can achieve much better perfor-

mance than the point estimation (MAP) of the parameters of our model, due

to the sparsity of the high-order relational data in social media. Our model

significantly outperforms state-of-the-art methods.

This chapter is organized as follows: we first present an application problem in

Section 4.2. Sections 4.3 and 4.5 present the proposed model, followed by describing

an efficient and scalable approach developed for estimating the model parameters

in Section 4.4. Section 4.6 describes the fully Bayesian treatment for the model.

Section 4.7 presents the empirical evaluations of the proposed approach on three

data sets. Section 4.8 summarizes this chapter. Section 4.9 discusses related work.
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4.2 An Application: Connecting Comments and

Tags

In this section, we take social tagging as an example. At first, we review the char-

acteristics of social tagging systems and describe the challenges and problems in

modeling user behaviors across multiple contexts such as tagging and commenting.

Personalized tag prediction has been studied for several years, but personalized com-

ment prediction, which is quite different from traditional opinion mining, is rarely

investigated. For example, while Agarwal et al. [6] developed personalized comment

recommendation via factor models, they do not predict the content (e.g., term fre-

quency) of personalized comments which could potentially help in the interpretation

of comments and improve sentiment analysis of comments. On the other hand, little

is known about the connection and correlations among these behaviors and contexts

in social tagging systems.

In addition to user-generated tags and comments, users are also able to denote

friendship (via links) with other users. All of these activities provide potential hints

for tag prediction, comment prediction and prediction of other user behaviors. By

analyzing all of these activities, we can better capture users’ preferences and make

more accurate recommendations, but many of these activities are coupled and that

coupling is not easily modeled.

4.2.1 Comparing with Traditional Collaborative Filtering

Unlike traditional collaborative filtering and recommendation tasks, in social tagging

systems, a user’s tagging and commenting activities generate relations involving

more than two types of entities. In contrast, most traditional work focuses on

second order relations that involve just two types of entities (e.g., user-item). In
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(a) Clique relations among the entity types serve as contexts

(b) Bipartite graph between relations and entity types

Figure 4.1: An example of four relations on five entity types.
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social tagging systems, the posts (that is, each tag produced by a user for an item)

are by nature third order data [114, 112, 159, 158] that we consider as a triple

(user-tag-item). Figure 4.1(a) show that in a tagging system, users, tags and items

pairwise interact and compose a clique. C1 is the tag post context (user-tag-item), C2

is the item-content context (item-content feature), C3 is the social network context

(user-user) and C4 is the comment context (user-comment-item). Similarly, users,

tags and comments also interact pairwise. For tag/comments prediction task, we

cannot drop any one of user, tag/comments, or item. By involving the temporal

factor, it even becomes fourth order data [158]. However, these types of higher order

relations have rarely been studied due to the complexity and difficulty in modeling

and inference.

On the other hand, the relational data from different contexts are coupled to-

gether. In Figure 4.1(a), we can see the social tagging entity relations: there exist

four cliques in this social tagging system (user-tag-item, user-comment-item, user-

user, item-content). Within these cliques, all involved entities interact with all

others. Among these cliques, they are strongly correlated with each other: for in-

stance, activities where users comment on items or where users rate items share two

of the same types of entity—user and item. With Figure 4.1(a), after recognizing the

cliques, we can define them as contexts. Each context can be considered a type of

observation individually and generated by the associated entities. In Figure 4.1(a),

we see the directed bipartite graph, which describes which entities contribute to the

process of generating each context. These contexts are frequently coupled together

by sharing the same entities, increasing the difficulty of tackling the problem.
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Figure 4.2: The number of tags as a function of the number of posts.

4.2.2 Data Sets

In this section, we conduct some simple analyses on two data sets: Flickr and

Bibsonomy. The main data set is from Flickr. We crawl the data from Flickr

by using the Flickr API1. This data set includes 2,866 users, 60,339 tags, 32,752

comment terms and 46,733 items (e.g., images), leading to the four relations shown

in Figure 4.1(b). The other dataset is the Bibsonomy dataset is from the ECML

PKDD 09 Challenge Workshop2 which includes two relations: user-tag-item and

item-content. The Bibsonomy data sets are the same as the data sets in Chapter

2. In Figure 4.2, we can see that the two datasets have different properties and

users form two clusters. Similarly as in Chapter 2, Bibsonomy, users typically apply

a larger variety of tags across fewer posts, suggesting that their interests are more

1http://www.flickr.com/services/api/
2http://www.kde.cs.uni-kassel.de/ws/dc09/
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varied. In contrast, users in Flickr use fewer tags and their interests are more

focused, by reusing their tags many times. This suggests that it may be easier to

track user interests in Flickr.

4.2.3 Coupled Higher-order Systems

We conduct some analysis experiments for different relations. First, we examine

the distribution of tags and terms in the comments. Figure 4.3 shows a linear

relationship between the of number of tags/terms and the frequency of tags/terms

in log scale. We can see that the distributions over both tags and comment terms

are very similar and show two straight lines with essentially the same slope in the

log-log plot. In the (user-comment-item) relation, among the 21,881 records in

which a user comments on an item, 8,307 records show that the user also tags the

same item, meaning that if a user comments on an item there will be around a 1/3

chance that the user will also contribute a tag for that item. This evidence shows

the strong connection between the relation (user-comment-item) and the relation

(user-tag-item).

Figure 4.4 (For each user, number of friends as a function of the number of

commented items in Flickr) shows the coupling between user-user interaction and

commenting activity. From the figure, we can see that most users are located in the

upper left half of the Figure. Some users with many friends may NOT comment at

all (or very little) but users who frequently comment on items usually have many

friends. We also note that the inverse does not apply.

4.2.4 Cold Start

As in Chapter 2, we employ online evaluation in which only training posts which

have earlier timestamps than those of the test posts are used. Note that this implies
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Figure 4.3: Distribution of tag/comments frequency in Flickr.

Table 4.1: Fractions of new users, items, or tags in samples from each data set.

Bibsonomy Flickr
New/Total Users 41/668 23/1000
New/Total Items 602/668 1000/1000
New/Total Tags 321/2207 175/4123

that the available training data is different for each test post and, for items tagged

earlier in the timeline, fewer training data are available. While the online evaluation

approach naturally fits the real-world case in which every post is used for testing a

model trained on all prior posts, its feasibility depends highly on the efficiency of

the training method as a new model may be necessary for each post. Instead, we

can estimate the performance of the complete system by performing evaluation on

only a sample of test posts, and largely avoid model-building efficiency concerns for

the purpose of evaluation of effectiveness.
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Figure 4.4: The number of friends against the number of commented items.

We utilize the online evaluation model and conduct time-sensitive sampling ex-

periments on two data sets. For the Bibsonomy dataset, we use the same sampling

dataset as in Yin et al. [159] which includes 668 test posts. For Flickr, we randomly

choose 1000 posts. In all cases we effectively simulate a system running—the tagging

system operates in an incremental mode. The data set statistics (shown in Table

4.1) demonstrate that in Bibsonomy data, we face a new user (a user which is not

in any prior data) in 6.1% of the cases, and in 90.1% of the time users are trying

to bookmark a “new item” not previously seen by the system. In addition, there

is 13.9% chance that users would use new tags (which do not appear in the system

before).

This shows that most of the time (i.e., 86.1% of posts) it is feasible to predict

tags based only on previously seen tags. The other dataset also shows similar dis-

tributions. Thus, in the real world, the principal difficulty is to handle cases in
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which existing users try to tag new items and therefore strictly graph-based rec-

ommenders (e.g., [112, 114]) will not be able to make recommendations most of

the time. This also suggests that incorporating external information, such as item

content or comments into the model might help process these cold start cases.

4.2.5 Data Sparsity

Another notorious problem in most social media systems is data sparsity. Here, we

define the number of observations over the total number of entries in the relations.

For comparison, in one MovieLens data set3, there are 1,000,000 ratings for 6,000

users and 4,000 movies, so the data density is 4.17%. The sparsity of data is even

more serious when the relations is higher-order and coupled in social tagging system:

in our Flickr data, there are 373,125 records in user-tag-item relation, so the density

is 4.6170 × 10−8 (373125/(2866 × 60339 × 46733)); in context user-tag-item and

for comments, there are 218161 records in user-tag-comments, so the density is

3.8518×10−8 (218161/(2866×60339×32752)). Similarly in our Bibsonomy data, the

data density is 3.52×10−8. Thus, data sparsity is considerably more severe in social

tag data than the traditional 2-dimensional recommendation problem. The serious

problem of sparsity in higher order relations strongly suggests Bayesian treatment.

Previous work has already shown the significant advantage of the Bayesian approach

in processing sparse data, such as in the comparison of LDA [15] to PLSA [60] and

BPMF [118] to PMF [119].
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c u t i f

Figure 4.5: A bipartite graph representation of Fig 4.1(b)

4.3 Multi-Relational Data Model

With respect to all problems described above in Section 4.2, in this section we

propose a latent factor model to model coupled higher-order data in the social

tagging system. To handle the data sparsity, Bayesian treatment is employed to

learn the parameters in the model.

An activity performed by a user in a specific social tag context induces a relation;

for instance, the activity consisting of the triple (user-comment-item) is a 3-order

relation with three types of entities. Let us consider a coupled higher order relational

dataset with K types of entities. There are V possible relations among the entities

and, for each entity type k ∈ {1, . . . , K}, there areNk possible entities. Each relation

v ∈ {1, . . . , V } is associated with the list Sv of the entity types involved in relation

v, that is Sv = (Sv1, . . . , Sv|Sv|) with Svj ∈ {1, . . . , K}. Relations are then encoded

by multi-dimensional arrays, where dimension j is indexed by entity type Svj . The

data associated with relation v are the observed triplets D = (vm, im, rm)
M
m=1 where

for the mth observation, vm ∈ {1, . . . , V } is the index of the relation and im =

(im1, . . . , im|Svm |) is a list of entity indices identifying the observation with value

rm ∈ R.

Our probabilistic multi-relational data model assumes that each entity can be

represented by a latent (i.e., unobserved) continuous feature vector in R
D, where

3http://www.grouplens.org/node/73
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K Number of entity types.
Nk Number of entities of type k.
D Latent feature dimension.
V Number of relations.
Θk Latent features for entities of type k.
Rv Set of Mv values corresponding to relation v observations.
Mv Total number of observations of relation v.
Sv List of indices identifying the types of relation v.
α−1
v Variance of the observations of relation v.

Table 4.2: Summary of the notation used in Figure 4.7.

D is typically small (e.g., of the order of 10 or 100). The low-dimensional latent

features are denoted by Θ = (Θ1, . . . ,ΘK), where Θk = (θk1, . . . , θkNk
)T ∈ R

Nk×D

contains the feature vectors associated to entity type k.

A summary of notation is shown in Table 4.2. To facilitate understanding of

the notation, we consider the example described in Figure 4.5 where there are four

relations and five entity types: u for users, i for items, f for item features, t for

tags and c for comment terms. The four relations are coupled together by linking

the same types of entities. Two of these four relations linking different entity types

forms a 3-dimensional array, while the other two relations are encoded as two 2-

dimensional arrays. To this end, we can define S as {S1, S2, S3, S4}, where S1 =

{u, i, t}, S2 = {i, f}, S3 = {u, u} and S4 = {u, c, i}.

Figure 4.6 shows the graphical model for multi-relational data factorization. The

model assumes multi-linear links in order to predict the mean of the observations

given the latent features of the corresponding entities. Formally, this means that

for an observation of relation v with indices i = (i1, . . . , i|Sv|), the mean of the
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observation r is a multi-dimensional dot-product 〈., · · · , .〉 defined as

〈Θi〉 = 〈θi1 , · · · , θi|Sv|〉 =
D
∑

d=1

∏

k∈Sv

θkikd .

Note that for binary relations, this is equivalent to a standard vectorial dot-product.

In this chapter, the distribution of the observations is assumed to be Gaussian with

relation-dependent variances α−1
v . This assumption can be relaxed easily to model

other types of generalized linear models such as Poisson, Bernoulli distributions or

other exponential family distributions[29]. Assuming independent observations, the

likelihood is given by

p(D|Θ) =
∏

(v,i,r)∈D
p(r|θSv1i1 , . . . , θSv|Sv |i|Sv|

, αv)

=
∏

(v,i,r)∈D
N (r|

D
∑

d=1

∏

k∈Sv

θkikd, α
−1
v )

=
∏

(v,i,r)∈D
e−ℓ(

∑D
d=1

∏
k∈Sv

θkikd,r;αv),

where ℓ(r̄, r;α) = α
2
(r − r̄)2 − 1

2
log α

2π
is the quadratic loss.

We also assume that the prior distributions over Θ1, . . . ,ΘK are independent

isotropic Gaussian distributions with type-dependent variances σ2
1 , . . . , σ

2
K :

p(Θk|σ
2
k) =

Nk
∏

j=1

N (θkj|0, σ
2
kI).

Distribution of the Response (Loss function)

In reality, there are several types of the response such as term frequency, rating,

binary case. Here, we propose the corresponding distribution assumption for these

types of the response.
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Figure 4.6: Probabilistic multi-relational data graphical model.

If the response is the real number such as item feature, we can make an assump-

tion of Gaussian distribution

r ∼ N (〈Θi〉, α
−1
v )

If the response is the positive integer, such as term frequency, we can make an

assumption of Poisson distribution

r ∼ P(〈Θi〉)

If the response is binary 0/1, such as link prediction, we can make an assumption

of Bernoulli distribution

r ∼ B(s(〈Θi〉))

where s is logistic function s(x) = 1
1+e−x . All these distribution assumptions are

equivalent to specific loss functions.
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Temporal Factor

Social media by nature are incremental processes. For a number of data sets, there

is temporal structure in the data. In this section, we process the temporal factor,

which is slightly different from the regular factor. Let t be the type of temporal

factor among all K types, t ∈ {1, ..., K}. Because the time factor represent the

evolution of global trends, a reasonable assumption is that they change smoothly

over time rather than independently. Therefore we further assume that each time

factor depends only on its immediately predecessor and use the following prior for

time factor:

θtj ∼ N (θtj−1, σ
2
t I), j = 2...Nt

θt1 ∼ N (µt, σ
2
t I)

p(Θt) = N (θt1|µt, σ
2
t I)

Nt
∏

j=2

N (θtj |θtj−1, σ
2
t I)

4.4 Parameter Estimation

Now that we have presented the model, the remaining problem is to infer the la-

tent variables Θ given the observations. We first derive the Maximum a Posteriori

(MAP) estimator ofΘ. As the MAP estimator is easy to scale to very large datasets.

The problem is therefore a simple minimization problem of a smooth and differen-

tiable objective function equal to the negative log-likelihood:

min
Θ
O ,where O := − log p(D|Θ,α)− log p(Θ|σ), (4.1)

and α = (α1, . . . , αV ) and σ = (σ1, . . . , σK).
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Two approaches to solve the optimization problem are stochastic gradient descent

(SGD) and alternating least squares (ALS). ALS is a block-coordinate descent algo-

rithm which minimizes Equation (4.1) with respect to one of the types, say Θk by

fixing all others and repeats the same procedure for each Θk sequentially, ensuring

that each step decreases the objective function. The procedure is repeated until con-

vergence. The inner optimization problems are ordinary least squares which can be

solved optimally. However, there is evidence from the tensor factorization literature

that this procedure is not always effective because there are often strong dependen-

cies between the feature values of the different types [109]. In addition, our method

targets very large data sets for which even one pass through the data can be slow.

This setting favors SGD-type algorithms since every gradient estimation is much

cheaper than their batch counterpart (i.e., using standard unconstrained optimiza-

tion tools such as L-BFGS [104]). This type of first-order optimization technique

can be formally justified by a bias-variance argument, remarking that the ultimate

goal of the estimation procedure is not the minimization of the objective (4.1), but

the minimization of its expectation E [O] under the sample distribution [17].

4.4.1 Parameter Learning for Θ

The SGD algorithms minimize large sum functions of the form O =
∑M

m=1Om

where M is typically large. The idea is that at each iteration of the algorithm,

we only need the gradient of a single element of the sum, say Om. To apply this

algorithm to our case, we need to decompose the objective in terms of a sum. The

negative log-likelihood term − log p(D|Θ,α) = −
∑M

m=1 log p(rm|vm, im,Θ,α) has

a suitable form, but more care is needed when dealing with the penalization term

− log p(Θ|σ). Previous methods[152, 75] which are based on SGD algorithms set

the same penalization term. That will cause the problem that the parameters will
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receive the different weights of the penalization. Here, we derive the exact the

penalization term for each parameter. Denoting νkn the number of observations for

the nth entity of type k, that is to say

∑

(v,i,r)∈D

|Sv|
∑

j

I(Svj = k, ij = n)

νkn
= 1, ∀(k, n).

Hence, we can combine the penalization term and the individual likelihood terms

to obtain the following expression:

O =
∑

(v,i,r)∈D
ℓ

(

D
∑

d=1

∏

k∈Sv

θkikd, r;αv

)

+
K
∑

k=1

Nk
∑

n=1

log p (Θkn)× 1

=
∑

(v,i,r)∈D
ℓ

(

D
∑

d=1

∏

k∈Sv

θkikd, r;αv

)

+

∑

k,n

∑

(v,i,r)∈D

|Sv|
∑

j

I(Svj = k, ij = n)

νkn
log p (Θk)

=
∑

(v,i,r)∈D

(

ℓ

(

D
∑

d=1

∏

k∈Sv

θkikd, r;αv

)

+

|Sv|
∑

j

∑

k,n

I(Svj = k, ij = n) log p (Θk)

νkn





=
∑

(v,i,r)∈D



ℓ

(

D
∑

d=1

∏

k∈Sv

θkikd, r;αv

)

+

|Sv|
∑

j

log p
(

ΘSvjij

)

νSvjij



 (4.2)

where I(·) is an indicator function. Our objective function (4.2) has the form of

O =
∑M

m=1Om =
∑M

m=1O(vmimrm) required by SGD if we set

O(v,i,r) := ℓ(

D
∑

d=1

∏

k∈Sv

θkikd, r;αv) +

|Sv|
∑

j=1

‖θSvjij‖
2

2σ2
Svj

νSvjij

. (4.3)
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It is now straightforward to compute the gradient with respect θkn for every obser-

vation (v, i, r):

∇θknO(v,i,r) = ℓ′(
D
∑

d=1

∏

k∈Sv

θkikd, r;αv)

∏|Sv|
j=1 θSvjij

θkn
+

θkn

σ2
Svj

νkn

if k ∈ Sv and n ∈ i, and 0 otherwise. The function ℓ′ denotes the first derivative of

the loss with respect to the first parameter, i.e. ℓ′(r̄, r;α) = ∇r̄ℓ(r̄, r;α) = α(r̄− r).

Note that this gradient can be efficiently computed since it only requires the latent

feature values of the entities involved in the current observation (i.e., with indices

given by i). If observations are chosen at random irrespective of the relation, on

average we recover the exact gradient (up to a M−1 factor) of the full objective

function defined in Equation (4.1):

E
[

∇θknO(v,i,r)

]

=
1

M
∇θknO .

4.4.2 Parameter Learning for α and σ2

Under the Gaussian distribution assumption, the hyperparameters α1, · · · , αV cor-

respond to a weighting of the different relations and the hyperparameters σ2
1, · · · , σ

2
K

correspond to a weighting of the regularization. We can manually set αv and σ2
k, or

they can be learned as follows:

Like in alternating least squares, for α and σ2, if we fix Θ, we take the derivative

respect α and σ2 and set to zero respectively. Solving the equations, we can get

α−1
v =

1

Mv

∑

(v,i,r)∈D
(

D
∑

d=1

∏

k∈Sv

θkikd − r)2. (4.4)

σ2
k =

1

Nk

Nk
∑

j=1

θTkjθkj . (4.5)

Eq. 4.4 and Eq. 4.4 suggest an algorithm to learn α and σ2 as well when Θ is

estimated by swiping the observations.
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4.4.3 Learning Algorithm

The pseudo-code of our learning algorithm is summarized in Algorithm 2. Given a

properly chosen step size sequence η = (ηl)l≥1, SGD updates the latent features Θ

for which the gradient is non-zero at every step l. Each update can be interpreted as

follows. For the m-th training observation, SGD predicts the rating r̄m and makes

a small gradient step ηℓ(rm − r̄m)θkij for each entity ij involved in the observation

in order to minimize the future prediction errors for this training observation.

The proposed method can be viewed an extension to PARAFAC tensor factor-

ization [71]. PARAFAC tensor factorization algorithms are also based on gradient

descent schemes and are only guaranteed to converge to local minima, but there is no

global guarantee of the solution. Note that recently, several authors proposed con-

vex formulations of tensor completion, but their decomposition into low-rank factors

(and hence equivalence with the PARAFAC model) is still an open problem[131].

To avoid being trapped in a local minimum, we considered multiple random restarts

(we can refer to some experiments with and without multiple random restarts).

The time complexity of updating the latent parameter θkn per observation is

O(KD). A single pass on the data is of O(KDM). Assuming the maximum number

of sweeps is L, then the total time complexity is O(KDML). Hence, since K and D

are constants, the time complexity is linear in the number of observations, O(ML).

In the experiments, we use early stopping to decide the number of iterations for SGD

where an empirically experiment on validation data split (20%) from training data

is conducted. For example, on the Flickr data set this occurs after approximately

100 sweeps of the training data.
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Algorithm 1 SGD for Multi-Relational Database Factorization

INPUT: prior parameters σ2
1, σ

2
2 . . . σ

2
K and α1, α2 . . . αV

OUTPUT: model parameters Θ1,Θ2, . . .ΘK

1: INITIALIZE model parameters Θ1,Θ2, . . .ΘK

2: for ℓ = 1, ..., L, do
3: SHUFFLE the sequence of observations (v, i, r) at random.
4: for all (v, i, r) ∈ D do
5: UPDATE all associated Θk,t at parallel.

θ
(ℓ+1)
kn ← θ

(ℓ)
kn − ηl∇θknO

(ℓ)
(v,i,r),

where α(ℓ) is used to calculate ∇θknO
(ℓ)
(v,i,r).

6: end for
7: UPDATE α1, α2 . . . αV according to Eq. (4.4) [optional]
8: UPDATE σ2

1, σ
2
2 . . . σ

2
K according to Eq. (4.5) [optional]

9: if the stop criterion is satisfied then
10: BREAK
11: end if
12: end for

4.5 Bayesian Treatment

The performance of the probabilistic model is tied to the careful tuning of the

hyper-parameter when model parameter Θ are estimated by Maximum a Posterior

probability (MAP) [118]. When hyper-parameter are not properly tuned, such a

point estimation—MAP—is often vulnerable to overfitting, especially when the data

is sparse.

Like BPMF [118] to PMF [119], instead of using MAP, an alternative estimation

scheme that may avoid these problems is a fully Bayesian treatment, which integrates

out all model parameters and hyper-parameters, arriving at a predictive distribution

of future observations given observed data. Because this predictive distribution is

obtained by averaging all models in the model space specified by the priors, it is less

likely to over-fit a given set of observations.
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A graphical overview of our entire model is in Figure 4.7, where R1, . . . , RV

are the observed relations. Θ1, . . . ,ΘK are the latent features associated to the K

entity types. α1, . . . , αV are the unobserved precisions (inverse variances) associated

with the observed relations, and similarly µ1, µ2, . . . , µk and Λ1,Λ2, . . . ,Λk are the

unobserved mean and variances associated with latent features. Each component

is described below. Like MAP version of our model, this assumption can also be

relaxed easily to model other type of generalized linear model such as Poisson or

Bernoulli distribution[98] where a more sophisticated inference is necessary, such

as Hybrid Monte Carlo method. Here we assume the observations follow Gaussian

distribution. For each observation (v, i, r) ∈ D, we have

r|Θi ∼ N (〈Θi〉, αv), where (v, i, r) ∈ D

The prior distribution for hidden feature Θ is assumed to be Gaussian too, but the

mean and the precision matrix (inverse of the covariance matrix) may take arbitrary

value:

θkj ∼ N (µk,Λ
−1
k ), j = 1...Nk

The key ingredient of our fully Bayesian treatment is to view the hyper-parameter

Φk ≡ {µk,Λk} also as random variable, leading to a predictive distribution for an

unobserved rating (v, i, r̂)

p(r̂|D) =

∫ ∫

p(r̂|Θi, αv)p(Θi, α,Φi|D)d{Θi, αv}, d{Φi}

For convenience, we also define Φi = {Φi1 , . . .Φi|Sv |
}. We then need to choose prior

distribution for the hyper-parameters. For the Gaussian parameter, we choose the

conjugate distribution as priors that facilitate subsequent computation:

p(αv) =W(αv|W ′
0, v

′
0)

p(Φk) = p(µk|Λk)p(Λk) = N (µ0, (β0Λk)
−1)W(Λk|W0, v0)
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Here W is the wishart distribution of a D×D random matrix Λ with v0 degrees of

freedom and a D ×D scale W0:

W(Λ|W0, v0) =
|Λ|(v0−D−1)/2

C
exp

(

−
Tr(W−1

0 Λ)

2

)

where C is a normalizing constant. There are several parameters in the hyper-priors:

µ0, ρ0, β0,W0, v0,W
′
0, v

′
0, which reflect our prior knowledge about the specific problem

and can be treated as constants during training. In fact, Bayesian learning is able

to adjust them according to the training data, and varying their values (within in a

reasonably large range) has little impact on the final prediction, as often observed

in Bayesian estimation procedures [148].

4.6 Inference

One can represent the predictive distribution of the relation value r given observation

(v, i, r) ∈ D by marginalizing over model parameters:

p(r̂|D) =

∫ ∫

p(r̂|Θi, αv)p(Θi, α,Φi|D)d{Θi, αv}, d{Φi}

Often the exact predictive distribution is intractable, thus one relies on approx-

imate inference such as sampling method based on Markov Chain Monte Carlo

(MCMC) [96, 101]. For instance, MCMC can be used to approximate the predictive

distribution of Eq. 4.6:

p(r̂|D) =
1

L

L
∑

l=1

p(r̂|Θ(l)
i )

where the sample Θ
(l)
i is generated by running a Markov chain whose stationary

distribution is the posterior distribution over the model parameters and hyperpa-

rameter Θ,Φ.
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One of the simplest MCMC algorithms is Gibbs sampling [43], which cycles

through the latent variables, sampling each one from the conditional distribution

given the current values of all other variables. Gibbs sampling is typically used

when these conditional distributions can be sampled from easily. In this section we

give a detailed derivation for the conditional distributions of model parameters and

hyper-parameters, which are required for implementing Gibbs sampling. Note that

with our model assumptions, the joint posterior distribution can be factorized as

p(Θ, α,Φ|D) ∝
∏

(v,i,r)∈D
p(r|θSv1i1, . . . , θSv|Sv |i|Sv |

, αv)

∏

k

[p(Θk|Φk)p(Φk)]
∏

v

p(αv) (4.6)

4.6.1 Hyper-parameters

We start with the derivation of the conditional distributions of the model hyper-

parameters. For each v, αv follows the Wishart distribution. By using the conjugate

prior to αv, we have the conditional distribution of αv given Rv,Θ following the

Wishart distribution:

p(αv|Dv,Θ) =W(αv|W
∗
0 , v

∗
0) (4.7)

where

v∗0 = v′0 + |Dv|,

(W ∗
0 )

−1 = W ′
0
−1

+
∑

(v,i,r)∈Dv

(r − 〈Θi〉)
2.

Next, we derive the conditional probability for Φk. Our graphical model (Fig. 4.7)

assumption suggests that it is conditionally independent of all the other parameters

given Θk. We thus integrate out all the random variables in Eq. 4.6 except Θk, and

obtain the Gaussian-Wishart distribution:

p(Φk|Θk) = N(µk|µ
∗
0, (β

∗
0Λk)

−1)W(Λk|W
∗
0 , v

∗
0), (4.8)
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where

µ∗
0 =

β0µ0 +Nkθ̄k
β0 +Nk

, β∗
0 = β0 +Nk, v∗0 = v0 +Nk;

(W ∗
0 )

−1 = W−1
0 +NkS̄ +

β0Nk

β0 +Nk
(µ0 − θ̄k)(µ0 − θ̄k)

T ,

θ̄k =
1

Nk

Nk
∑

j=1

θkj, S̄ =
1

Nk

Nk
∑

j=1

(θkj − θ̄k)(θkj − θ̄k)
T .

4.6.2 Model-parameters

The remaining conditional distributions are for model parameters Θk, and we de-

scribe the derivation of these distributions in this section. According to the graphical

model (Fig. 4.7), its conditional distribution factorizes with respect to the individual

entities:

p(Θk|D,Θ−k, α,Φk) =

Nk
∏

j=1

p(θkj|D,Θ−k, α,Φk)

p(θkj |D,Θ−k, α,Φk) = N (θkj|µ
∗
kj, (Λ

∗
kj)

−1) (4.9)

where

µ∗
kj = (Λ∗

kj)
−1(Λkµk +

∑

v∈{v′|k∈Sv′}
αv

∑

(v,i,r)∈Dv,kj∈i
rQ(v,i,r))

Λ∗
kj = Λk +

∑

v∈{v′|k∈Sv′}
αv

∑

(v,i,r)∈Dv,kj∈i
Q(v,i,r)Q

T
(v,i,r)

Q(v,i,r) =

∏|Sv|
n=1 θSv,n,in

θkj

4.6.3 Temporal Factor

For the temporal factor which can capture the evolution of global trends , introduced

in Section 4.3, a reasonable prior belief is that they change smoothly over time. Let
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Figure 4.7: Bayesian multi-relational data graphical model.

t be the type of temporal factor among all K types, t ∈ {1, ..., K}, then

θtj ∼ N (θtj−1,Λ
−1
t ), j = 2...Nt

θt1 ∼ N (µt,Λ
−1
t )

p(Φt) = p(µt|Λt)p(Λt) = N (ρ0, (β0Λt)
−1)W(Λt|W0, v0)
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Next, we would like to derive the conditional probability for Φt.

p(Θt|Φt) = N (θt1|µt,Λ
−1
t )

Nt
∏

j=2

N (θtj |θtj−1,Λ
−1
t )

p(Φt|Θt) ∝ p(Θt|Φt)p(Θt)

our graphical model assumption suggests that it is conditionally independent of all

the other parameters given Θt. We thus integrate out all the random variables in

Eq. 4.6, except Θt. We obtain the Gaussian-Wishart distribution:

p(Φt|Θt) = N(µt|µ
∗
0, (β

∗
0Λt)

−1)W(Λt|W
∗
0 , v

∗
0), (4.10)

where

µ∗
0 =

β0ρ0 + θt1
β0 + 1

, β∗
0 = β0 + 1, v∗0 = v0 +Nt;

(W ∗
0 )

−1 = W−1
0 +

Nt
∑

j=2

(θkj − θkj−1)(θkj − θkj−1)
T

+
β0

1 + β0

(θk1 − ρ0)(θk1 − ρ0)
T ,

We consider the temporal features Θt. According to the graphical model, its

conditional distribution factorizes with respect to individual entities:

p(Θt|D,Θ−t, α,Φt) =

Nt
∏

j=1

p(θtj |D,Θ−t, α,Φt)

p(θtj |D,Θ−t, θ−j , α,Φt) = N (θtj |µ
∗
tj, (Λ

∗
tj)

−1)

where
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for j = 1

µ∗
t1 = (Λ∗

t )
−1(Λt(µt + θt2)

+
∑

v∈{v′|t∈Sv′}

∑

(v,i,r)∈Dv,tj∈i
αvrQ(v,i,r))

Λ∗
t1 = 2Λt +

∑

v∈{v′|t∈Sv′}
αv

∑

(v,i,r)∈Dv,tj∈i
Q(v,i,r)Q

T
(v,i,r)

for j = 2, ..., K − 1

µ∗
kj = (Λ∗

tj)
−1(Λt(θtj−1 + θtj+1)

+
∑

v∈{v′|t∈Sv′}
αv

∑

(v,i,r)∈Dv,tj∈i
rQ(v,i,r))

Λ∗
kj = 2Λt +

∑

v∈{v′|t∈Sv′}
αv

∑

(v,i,r)∈Dv,tj∈i
Q(v,i,r)Q

T
(v,i,r)

for j = K

µ∗
kj = (Λ∗

tj)
−1(Λtθtj−1 +

∑

v∈{v′|t∈Sv′}
αv

∑

(v,i,r)∈Dv,tj∈i
rQ(v,i,r))

Λ∗
kj = Λt +

∑

v∈{v′|t∈Sv′}
αv

∑

(v,i,r)∈Dv,tj∈i
Q(v,i,r)Q

T
(v,i,r)

Q(v,i,r) =

∏|Sv|
n=1 θSv,n,in

θkj

Given the conditional probability for model parameters Θ and hyper-parameters

Φ and α, the Gibbs sampler algorithms for BPRA are shown in Algorithm 2. For

each iteration of sampling Hyper-parameters α, we have swiped the data once to cal-

culate v∗0 andW ∗
0 , and the time complexity is O(KDM). For Φ, the time complexity

of sampling once is O(ND). Similarly, for Θ, the time complexity of sampling once is

O(KNMD2), where N =
∑

k Nk is the total number of entities. Assuming the max-

imum number of iterations is L, then the total time complexity is O(KND2ML).
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Hence, since K and D (e.g. D = 10) are constants, the time complexity for the

worst case is linear O(NML). In realistic, since N is usually much less than M , the

time complexity also gets linear O(ML) to the number of observations.

4.7 Experiments

We conduct systematic experiments to evaluate the two versions of our proposed

model, named PRA (Probabilistic Relational-data Analysis) and BPRA (Bayesian

Probabilistic Relational-data Analysis) on two data sets: Flickr and Bibsonomy4.

Among all the following three experiments, as there are different kinds of re-

sponses (such as binary, term frequency and real value) in our recommendation

tasks across multi-contexts, we employ Rooted Mean Square Error (RMSE) as our

main measurement for all contexts5. In our Bayesian probabilistic relational-data

model, we simply set µ0, ρ0, β0,W0, v0,W
′
0, v

′
0 all equal to one or identity vector and

D = 20 for the dimension of latent factors, on all three data sets. Our experiments

also show that the performance change affected by hyper-prior is very little.

In the following experiments, we compare our methods with the state-of-the-art

latent factor methods:

• Salakhutdinov’s Probabilistic Matrix Factorization (PMF) [119]: collabora-

tive filtering using probabilistic matrix factorization which treats activities as

independent.

• Bayesian Probabilistic Matrix Factorization (BPMF) proposed by Salakhut-

dinov et al. [118]: the Bayesian version of PMF.

4To facilitate replication of experiments, sourcecode and datasets are available upon request.
5For some contexts, more specific measurements might be preferred, but RMSE is one evaluation

which could be shared by all contexts
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• Rendle’s Tensor Factorization (TF) [112, 114] which handles high-order rela-

tional data for tag prediction and showed prior success in the graph-based tag

recommendation task.

• Bayesian Probabilistic Tensor Factorization (BPTF) proposed by Xiong et

al. [148] which models temporal collaborative filtering, and whose extension

is straightforward to model higher order relational data such as user-tag-

comments.

• Collective Matrix Factorization (CMF) [125] handles the 2-order problem in-

volving multiple matrix factorization tasks.

For fair comparison, we let D = 20 and set the hyper parameters equal one for the

comparison methods.

4.7.1 Flickr: Connecting Comments and Tags

Data set

The Flickr data has been briefly described in Section 4.2. This data set includes 2,866

users, 60,339 tags, 32,752 comment terms and 46,733 items (e.g., images), leading to

four relations. The relation S1 = (u, t, i) indicates that user u tags item i with tag t.

The relation S2 = (i, f) characterizes item i with a 1024-dimension feature vector f

extracted according to [107], which are of real numbers. The relation S3 = (u1, u2)

encodes a partially observed adjacency matrix representing the explicitly expressed

friendship relations among users. For instance, if user u1 and u2 are friends, then

the value at (u1, u2) and (u2, u1) are both equal to 1, 0 otherwise. The relation

S4 = (u, c, i) indicates that user u comments on item i using word c, and this

relation can be described by term frequency (positive integers).
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In the first relation, the problem of interest is tag prediction, that is, to predict

tags that users will assign to items. We need to model relation S1, for which the

Flickr data set has a total of 373,125 records with time stamps. The data is parti-

tioned into training and test sets based on the time stamp of April 1st 2010. In total,

there are 2,613,388 observations for training and 205,880 observations for testing.

Note that there are only positive samples of tags available for the Flickr data set,

so for each record we sample 50 tags at random as negative examples for training.

For the relation user-comment-item, where users could make some comments on a

specific item, we try to predict the term frequency in the comments and the data

also are split into training and test data set similarly, resulting in 1,366,068 training

observations and 341,043 testing observations.

As mentioned above, we also have two more contexts: for image content, we

characterize image i by a feature vector f of 1024-dimensional visual features ac-

cording to Perronnin and Dance [107]; the social context is also comprised of binary

typed observations, which contain 1,377,548 training observations and 342,576 test

observations.

Analysis of relations and their co-effects

Some explanatory analysis has been presented in Section 4.2. A social tagging

system is a coupled higher-order data system and multiple contexts are coupled

together. Here, we will show that by using our methods together with Bayesian

treatment, predictive accuracy can be mutually improved.

We first compare the two versions of the probabilistic multi-relational data

model: PRA for MAP version and BPRA for Bayesian version. In Table 4.3, Context

1 for users tagging items (user-tag-item), Context 2 for item content (item-feature),

Context 3 for social interaction (user-user) and Context 4 for users comments on

124



0 10 20 30 40 50 60 70
0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

epochs

R
M

S
E

 

 
C1(PRA)
C1(BPRA)
C4(PRA)
C4(BPRA)

Figure 4.8: BPRA vs. PRA on Flickr.

1 2
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

tag prediction                                           comment prediction

R
M

S
E

 

 
individually
+C2
+C3
+C2+C3
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item (user-item-comments), it can be seen that the Bayesian method clearly out-

performs the MAP version (in all scenarios), probably due to the high data sparsity.

In Figure 4.8, we show the convergence of our Bayesian model BPRA which starts

sampling with parameters based on the results of PRA. We can see that after around

50 epochs, the performance on two relations converge. In the following sections, we

will use Bayesian version for analysis and comparison.

Another interesting question is: do coupled relations lead to mutually improved

prediction performance? We conduct experiments on modeling different relations

with several combinations to study this question. The tasks are described in Section

4.7.1 for different relations and the results are shown in Table 4.3. The first four rows

of the table indicate that best performances are achieved for all four relations when

modeling them together. The following three rows (rows 5-7) of the table indicate

the performance of modeling three relations (C1, C2, C4). Similarly, the results

of modeling (C1, C3, C4) and (C1, C4) are shown in the remaining rows. Taking

the prediction of Context 1 (C1: user-tag-item) relation as an example: the best

performance is 0.3073 in modeling all four relations, 0.3177 in modeling the three

relations (C1, C3, C4), and degrades to 0.3465 when only modeling the relation (C1,

C4) together. Comparable results for comment prediction are also shown in Figure

4.9.

Comparison with existing methods

We report the evaluation of our models together with comparisons to state-of-the-

art approaches introduced earlier. Bayesian Probabilistic Matrix Factorization and

its Bayesian treatment are popular methods and have shown success in traditional

collaborative filtering. In our experiments with binary contexts, we compare our

methods with PMF and BPMF. Since TF and BPTF can model the tag prediction

126



and comment prediction tasks, we compare our methods with them in such higher-

order contexts.

We summarize the results in Table 4.3. While Section 4.2 showed that in our

three data sets, over 90% of real-world cases are cold start problems and the Graph-

based methods (such as Hotho’s Folkrank and Rendle’s tensor factorization) will

not work on such cases, we still compare to the state of the art method—tensor

factorization. The results show that Rendle’s TF performs the worst in tag predic-

tion, because it only models a single relation without encoding external information

of items. Intuitively the external information of items (e.g., comments, features)

is more critical to the tag prediction task. This result agrees with [159]. For the

cold start problem, the external information of items are essential for tag prediction

because the items do not exist in the training data.

In comment prediction context, we see similar results; tensor factorization per-

forms the worst because of lack of external information and data sparsity. Xiong’s

method—Bayesian Tensor Factorization—is much better, but our methods still

achieve the best performance. In both tag and comment prediction, the experi-

ments show that in such a real-world case, tensor factorization is insufficient and

Bayesian treatment on tensor factorization can improve performance significantly

because of the data sparsity. We also note that with more information in the model,

the performance of our approach improves, e.g., with social relation information

(C3), we can see that both tag and comment prediction improves.

Overall, we can see that for all methods, Bayesian versions always outperform the

MAP version respectively, due to the sparsity of the data. Our model outperforms all

four recent nontrivial methods—PMF, TF, BPMF, BPTF in the comments context,

social network context and tag context. We also notice that in the item feature

relation, our model is slightly worse than BPMF. That is because in our model, the

parameter estimation is based on the likelihood for all relations.

127



Table 4.3: RMSE of 4 relations for Flickr data set.

BPRA PRA PMF BPMF TF BPTF
C1 0.3073 0.3599 N/A N/A 0.8226 0.3520
C2 0.9215 0.9627 0.9913 0.9004 N/A N/A
C3 0.1828 0.2053 0.1841 0.1878 N/A N/A
C4 0.3478 0.3676 N/A N/A 0.4185 0.3593
C1 0.3449 0.4450 N/A N/A 0.8226 0.3520
C2 0.9198 0.9630 0.9913 0.9004 N/A N/A
C4 0.3516 0.3681 N/A N/A 0.4185 0.3593
C1 0.3177 0.3984 N/A N/A 0.8226 0.3520
C3 0.1858 0.2298 0.1841 0.1878 N/A N/A
C4 0.3482 0.4241 N/A N/A 0.4185 0.3593
C1 0.3465 0.7843 N/A N/A 0.8226 0.3520
C4 0.3530 0.3656 N/A N/A 0.4185 0.3593

4.7.2 Bibsonomy: Incorporate Content for Tag Prediction

The second data set used to evaluate our model is Bibsonomy—the bookmark data

set of the ECML-PKDD’09 Discovery Challenge. This data set involves 2,679 users,

263,004 items, 56,424 tags, 262,336 posts and 1,401,104 records. Clearly, this is also

a very sparse data set, whose density is only 3.52 × 10−8. Each post is associated

with a time stamp, and each item contains textual content. In this experiment, we

will show that the single graph-based model cannot work in the real world (where

the data set is split by time stamp). By incorporating content into the model,

prediction accuracy can be significantly improved. To generate a descriptor for the

items, we first use the bag-of-words language model and then use Latent Dirichlet

Allocation [15] to produce a latent factor for each item. There are only two relations

for this data set: S1 = (u, t, i), where user u tag item i with tag t, and S2 = (i, f),

where each item i is described by a 100-dimensional feature f . To model S1, we

use a time stamp of August 1st 2008 to distinguish training and testing sets with

7,214,426 and 1,585,179 observations respectively.
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Table 4.4: RMSE on the Bibsonomy data set.

BPRA PRA PMF BPMF TF BPTF
C1 .3097 0.3484 N/A N/A 1.0409 0.3455
C2 1.0088 1.0118 1.7387 1.1025 N/A N/A

We show the results for Bibsonomy in Table 4.4 where Relation 1 is for users

tagging items (user, tag, item) and Relation 2 is for item content (item, feature). At

first, we compare the two versions of our model: BPRA is still clearly much better

than PRA, benefiting from handling sparse data well. Similarly, in Figure 4.10,

we show the convergence of our Bayesian model BPRA which starts sampling with

parameters based on the results of PRA. We can see that after around 50 epochs,

performance converges. The convergence in Bibsonomy experiments is consistent

with our Flickr experiments. We also compare our methods with the baselines.

Similarly, BPMF and BPTF outperform PMF and TF respectively. The experiments

on this data set also verify the need of employing Bayesian treatment in social

relational data.

TF almost fails to solve the task specified by (user-tag-item) relation without

item external information, because as we have shown in Section 4.2, most items

in a tagging log are new items. The results of our model are consistent with the

Flickr data: our model noticeably decreases the RMSE for the tag prediction task.

The performance for both relations can lead to significant improvements: 0.3097 in

the (user-tag-item) relation and 1.0088 in the (item-feature) relation respectively.

This also confirms that the two contexts can mutually reinforce the performance

of the model. Overall, like in Flickr experiments, our Bayesian model noticeably

outperforms all other methods in the Bibsonomy data set.
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4.7.3 MovieLens: Temporal Factor and External Informa-

tion

Data set

In traditional movie recommendation, Xiong et al. propose Bayesian probabilis-

tic tensor factorization to model temporal information[148]. Here, we will show

BPRA outperform Xiong’s methods. This experiment is based on a public dataset—

MovieLens6 data set, which consists of one million ratings from 6,000 users on 4,000

movies with time stamps between April, 2000 and February, 2003. The temporal

factor is based on Month, and so the ratings fall into 35 months. The ratings are

integer scores ranging from 1 to 5. To these ratings is associated user demographic

information (e.g., age, gender, occupation, etc.), as well as movie information (e.g.,

movie title, release date, genres, etc.). We model the user features as the age, the

gender, and the occupation, and only consider the genre to describe movies. The

ages are partitioned into 7 groups: under 18, 18 to 24, 25 to 34, 34 to 44, 45 to

49,50 to 55, and over 56. The age information is encoded by 7-dimensional binary

vector with a single entry being equal to 1 to indicate which group the user belongs

to. The gender, user occupation and movie genre are also represented by binary

vectors.

Then we have three relations, the first is movie rating prediction for the relation

(user, movie, time) and the second relation is (user, profile) and the third one is

(movie, genre). For the first relation, we randomly select 100,000 ratings as training

data and the rest is test data. For the second and third relation, we randomly select

one out of every ten entries for testing and use the rest as training. Our objective

is to predict ratings, but also to predict unobserved user features and unobserved

movie genres.

6http://www.grouplens.org/node/73
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Table 4.5: RMSE on the MovieLens data set.

BPRA PRA PMF BPMF TF BPTF CMF
C1 0.9258 1.7234 1.399 0.9468 1.7798 0.9394 1.3451
C2 0.1877 0.267 0.266 0.1865 N/A N/A 0.2673
C3 0.2387 0.292 0.3463 0.2405 N/A N/A 0.2752

Experimental results

The results are shown in Table 4.5 where Relation 1 is for (user, tag, item), Relation 2

is for (user, profile) and Relation 3 is for (movie, genre). It shows that our methods

clearly outperform all other methods on all three relations. We also conduct a

temporal analysis: for each month’s data, we test the RMSE and the results are

shown in Fig 4.12 where the green bars are for monthly number of rating (left y-

axis) and lines are for monthly RMSE (right y-axis). We can see that for all monthly

data, our methods can get better results than BPMF. Comparing with BPTF, only

at time 26 and 30, the performance of BPTF is better, but that time, the test rating

is very few.

We now consider the question of when the training data become sparser, what

is the change of the error for BPRA and PRA. Fig 4.13 shows the results. As the

fraction of training data changes from 90% to 10%, RMSE of PRA grows significantly

while the RMSE of BPRA almost stays the same. This shows that the Bayesian

treatment is more robust and able to handle sparse relational data effectively. With

the fact that social network high order relational data are usually very sparse, full

Bayesian treatment is clearly necessary.
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Figure 4.12: MovieLens Monthly Experiments.
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4.8 Summary

In this chapter, we studied social media relations involving high order interactions,

sparsity and coupling of data across contexts. Our experiments show that in social

media, there exist three problems and challenges: coupled high order interaction,

data sparsity, and cold start. To make better predictions for a user in different

contexts, we tackled these problems by using a generalized latent factor model and

Bayesian treatment. For performance evaluation, we tested on three real-world data

sets from two domains. In social tagging systems, the user-comment-item and user-

tag-item can be mutually inferred based on common latent factors and thus improve

prediction performance, which has not been explored previously. In traditional

collaborative filtering, we investigated the combination of temporal information,

external information and user-item interaction. Our novel latent factor model could

handle multiple activities, such as commenting within tagging systems and could do

so simultaneously and demonstrate superiority over state-of-the-art methods [119,

125, 148]. Our experiments also show the advantage of employing a fully Bayesian

treatment to boost the performance of point estimation when modeling high order

relations.

4.9 Bibliographic Notes

The most related work that has been published in the literature is collective matrix

factorization from Singh and Gordon [125] which provides a general framework to

model multi-relational data, extending many previous approaches on matrix factor-

ization in the presence of additional features. These extensions of matrix factoriza-

tion/factor analysis tend to be limited to two or three relations to take into account
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contextual information (such as user-specific and movie-specific features) in a rec-

ommender system [172, 1, 3, 91]. For instance, Zhu et al. [172] proposes to make

use of links and content for web page classification. More recently, Agarwal and

Chen [4] incorporates explicit features of users and items into latent factor models,

and Ma et al. [91] proposes to improve recommendation quality based on social reg-

ularization. Other similar works [108] and [47] also incorporate side information into

the collaborative filtering. However, these methods only model two factor data and

cannot be directly used in a social tagging system which is naturally a higher-order

system.

More generally co-factorization models [55, 163, 167] make recommendations

across multiple contexts or domains. While the framework proposed by Singh and

Gordon [125] is fairly general, the key weakness is that it does not enable the han-

dling of high-order relations and it does not use Bayesian estimation to tackle the

problem of data sparsity.

Higher order data in social media is often neglected in existing research. For in-

stance, the user-comment-item context is naturally high-order, but existing opinion

mining or sentiment analysis studies [34, 63, 85] focus on summarizing and classify-

ing the comments, and discard higher-order relations for user-comment-item. Note

that the framework proposed in [153] can handle high-order coupled relations, but

it is restricted to problems of small scale, and it is not clear how it can generalize to

large scale applications such as social tagging or recommender systems. In contrast,

we focus on predicting users’ opinion texts (i.e., the terms used) for an item instead

of simply classifying the comment contents. Another typical problem for higher-

order contexts is social tagging prediction [114, 112, 159, 158]. One possible method

for this problem is tensor factorization proposed by Rendle et al. in a recommen-

dation framework [112], which factorizes a higher-order numeric array (a.k.a. data

cube) into a core tensor and one factor matrix per dimension. However, Rendle
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et al.’s method uses only tagging records, and does not address in the cold start

problem (i.e., for new items/tags/users), which occurs often in reality [158, 159].

Realizing the necessity of processing the cold start problem, our method combines

all other contexts to infer tags on new items/users.

Zheng et al. [169] propose a method on user-activity-location modeling in col-

laborative filtering. Their methods takes a joint tensor and matrix factorization

approach. However, their only study the relationship between a core tensor (third

order data) and matrices (second order data) and the mutual effects across tensors

are still unknown. Moreover, their point estimation of the model can not handle the

sparseness of the higher order data which is a serious problem in the social media

data.

We argue that to model the typical two factor data in traditional recommender

systems (e.g., as in movie/music recommendations) also requires one to develop

models for high-order relations due to the importance of temporal information in

analyzing dynamics. Koren [73] models temporal information in collaborative fil-

tering and achieves better performance on movie recommendations. However, this

method is based on concept drift instead of modeling the temporal information as

the third factor. More recently, Xiong et al. [148] introduce an additional dimension

of time to the traditional collaborative filtering problem but this method does not

consider the mutual effects across different contexts (e.g the mutual effects between

item content and ratings) and cannot handle the cold start problem effectively.

One of the most important points is to understand why Bayesian estimation,

also known as model averaging, is beneficial for the estimation. As stated earlier,

the core component of the proposed method is the Bayesian Matrix Factorization,

which involves the factorization of a single binary relation [118]. In this work, the

author showed that averaging over uncertainties significantly improves performances
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over pointwise estimation, a.k.a. MAP estimation. While the BMF solution was ini-

tially computed based on a sampling approach very close to what we proposed,

it seems that deterministic approximate inference also gives very similar empiri-

cal performance, as shown by the Matchbox model implemented in the Infer.net

framework [129].

Existing opinion mining or sentiment analysis studies [34, 63, 85] focus only on

summarizing and classifying the comments, and discard higher-order relations for

user-comment-item. In contrast, we focus on predicting users’ opinion texts on an

item instead of simply classifying the comment contents. Recently, Agarwal et al. [6]

develop personalized comment recommendation via factor models but they do not

predict the content (e.g., term frequency) of personalized comments.
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Algorithm 2 Gibbs sampler for Relational Data Factorization

INPUT: hyper-prior parameters {µ0, ρ0, β0,W0, v0,W
′
0, v

′
0}

OUTPUT: model parameters {Θ}

1: Initialize model parameters {Θ(1)}
2: for l = 1, ..., L, do
3: Sample the hyper-parameters according to Eq. {4.7, 4.8, 4.10}, respectively:

α(l)
v ∼ p(αv|D,Θ

(1)) where v = 1, . . . , V

Φ
(l)
k ∼ p(Φk|D,Θ

(1)
k ) where k = 1, . . . , K

4: Sample the model parameters in parallel
according to Eq. {4.9,4.11}:

5: for k = 1, . . . , K do
6: for regular factors

θ
(l+1)
kj ∼ p(θkj |D,Θ

(l+1)
1:k−1,Θ

(l)
k+1:K, α

(l),Φ(l))

where j = 1, . . . , Nkand k 6= t

7: for the temporal factors k = t

θ
(l+1)
t1 ∼ p(θk1|D,Θ

(l+1)
1:k−1,Θ

(l)
k+1:K , θ

(l)
t2 , α

(l),Φ(l))

θ
(l+1)
tj ∼ p(θk1|D,Θ

(l+1)
1:k−1,Θ

(l)
k+1:K , θ

(l+1)
tj−1 , θ

(l)
tj+1α

(l),Φ(l))

where j = 2, . . . , Nt − 1

θ
(l+1)
tj ∼ p(θk1|D,Θ

(l+1)
1:k−1,Θ

(l)
k+1:K, θ

(l+1)
tj−1 , α

(l),Φ(l))

where j = Nt

8: end for
9: end for
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Chapter 5

Understanding User Click

Behaviors in Sponsored Search

In this chapter, we study user click behaviors in sponsored search. We start with

the problem of predicting user click-through-rates (CTR) in the sponsored search

and then investigate the click yields of a group of ads displayed together. Our

extensive experiments on a large-scale real-world dataset from a commercial search

engine show that we achieve significant improvement by solving the sponsored search

problem from the new perspective.

5.1 Introduction

Sponsored search is the major business for today’s commercial search engines. Pay-

per-click (PPC) is an advertising model that has been adopted by sponsored search

markets. Under the PPC model, advertisers are charged when their advertisements

are clicked by search engine users. More clicks bring more revenue to search engine

companies [18], which has triggered research into related issues [13, 106]. However,
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since showing too many ads on search result pages may hurt the user experience,

search engine companies have to be conservative in the number of ads shown and

try to display those that earn the most money which is a function of click-through

rate (e.g., bid×CTR).

The current ad-delivery strategy is a two-step approach, which first predicts

individual ad click-through-rates (CTR) when user issued a query and then selects

the ads with top predicted CTRs. Therefore, estimating the click-through rate of a

search ad is an important problem for commercial search engines.

Following this strategy, we first analyze several factors influencing the CTR from

the perspective of context, including the number of displayed ads, the content of the

ads, the relationship between the query and ads, and the mutual influences between

ads. We then propose a novel Context-Aware Click Model for sponsored search. Our

extensive experiments on a large-scale real-world dataset show that our methods can

outperform state-of-the-art methods and make a noticeable improvement in both the

Description Oriented Task and the Prediction Oriented Task.

However, this two-step strategy is suboptimal. The learning problem is focused

on predicting CTR rather than click yield, which is the ultimate objective. We

thus further challenge the traditional approach and propose a novel framework that

can directly predict click yields for lists of ads when issued a query. Our approach

addresses a number of challenges for this problem, including depth effects, inter-

active influence, and cold start. Moreover, to best leverage textual features and

handle the sparseness in textual information, we embed a topic coding model into

our framework to learn the topical information of short text for ads. Our extensive

experiments on a large-scale real-world dataset from a commercial search engine

show that we achieve significant improvement by solving the sponsored search prob-

lem from the new perspective. Our novel click-yield methods noticeably outperform

existing approaches, including our context-aware approach.
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The chapter is organized as follows: we study the contextual factors which may

have influence on user click behaviors in Section 5.2. Then, we revisit the moti-

vation and challenge the traditional approach by directly estimate the ad group

performance in Section 5.3. Section 5.4 summarizes the chapter. Section 5.5 dis-

cusses related work.

5.2 Predicting Click-Through-Rate in Sponsored

Search

To better understand the challenges and difficulty of estimating click-through rate

in sponsored search, examine the search query “windows 8” in Figure 5.1. We see

that when a user issues a query, both a list of web pages (organic search) and a list

of ads (sponsored search) are displayed. Clearly, to estimate the click-through rate

of the target ad (say the ad on top position in Figure 5.1), there are many visible

factors: the query and the query’s content (e.g., term frequency), the target ad and

its content (e.g., term frequency), the adjacent ads (ads in position 2,3,4 in this

example) and their content, and ad depth (the total number of the ads displayed).

Behind these visible factors, we may also have some hidden interaction across the

visible factors, for example, the interaction between the target ad and query, and

the interaction between the target and the adjacent ads. We call all these factors

the context of the target ad.1

The problem of CTR prediction in sponsored search is challenging for several

reasons. As previous studies have shown, user clicks contain various biases [66,

24, 38, 31], which is both true in organic search and sponsored search [173]. But

1There may also be interactive influences between sponsored search and organic search re-

sults [32]. In this work, we focus on the contextual factors of sponsored search.
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unlike organic search, sponsored search has additional biases and characteristics.

For example, many people tend to skip ads and they are reluctant to click ads even

if they are related to the query. Previous Cascade Click Models [31] assume that

the top position is certainly examined by user (P (E1) = 1) and is thus not suitable

for modeling user click behavior in sponsored search. Intuitively, the probability of

a user examining the sponsored search results is related to two factors: the depth

of the ads (the number of ads displayed) and the commercial intent of a query. For

the depth of the ads, the more ads that are shown at the same time, the larger the

ad area is, the more attention from users is attracted. However, the search engine

usually should not simply show too many ads due to the poor user experience.

Moreover, with too many ads displayed together, the overall effect on the click-

through rate may not be positive. For the second feature, we notice that for some

queries with a high commercial intent, ads usually are more likely to be interesting

to users, while for other queries, showing ads may annoy users. This indicates that

the examination probability is likely to be query dependent. The effects of both

factors on examination and click-through rate are still not clear and have not been

systematically investigated.

Another key factor is interactive influence between the target ad and its context

(e.g., query and adjacent ads). The interactive influence between ad and query has

been studied by Shen et al. [123], but it only considers the query and ignores other

factors in the context. Previous research into mutual relationship between similar

ads [147] shows that there exists a mutually exclusive influence between similar ads.

However, in general, the mutual relationship between ads is not necessarily exclusive

and negative, but could also be positive [150]. Unfortunately, the relational click

model [147] fails to model positive effects between the ads. Xu et al. [150] study the

cases of the relationship between two ads displayed together, but the case of more

ads (e.g., 3 or 4 ads) is still unknown. No previous research has investigated the
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interaction between the target ad and its context, including both query and adjacent

ads.

Cold starts also occur frequently in the prediction of click-through rate in spon-

sored search [116, 140]. Search engines usually deliver at most four ads in a search

engine results page (SERP) and the CTR of ads is significantly lower than organic

search results. Both clicks and impressions are limited for most ads. Previous mod-

els [52, 31, 38, 87, 86] were essentially graph-based models; if the ads or queries do

not exist in the training data, these methods will not work.

Due to the above challenges, it is not trivial to model user clicks in sponsored

search and predict ad CTRs. Recent advances in click models have proven to be an

attractive method for representing user preferences based on user clicks [123, 27].

However, most of the models were designed specifically for organic search. Although

some could be used for sponsored search [173, 123], they fail to explore the specific

characteristics of sponsored search (e.g., depth, interactive influence). In this sec-

tion, we start with data analysis to understand the user clicks in sponsored search.

We investigate a number of contextual factors including ad depth, query diversity,

and ad interaction. To the best of our knowledge, this is the first work to examine

the effects of the above contextual factors in sponsored search together. Our ex-

periments show that these contextual factors play important roles in understanding

and predicting user clicks. Based on our analysis, we propose a novel context-aware

click model for sponsored search. Our model can handle the issues we have discussed

above in a principled way. It models specific biases as well as context information in

sponsored search. We conduct extensive experiments on a real world dataset. Ex-

perimental results show that our model can achieve the best performance compared

to three state-of-the-art baseline methods.

We summarize our contributions as follows,
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• We provide the first investigation of a combination of factors of ad context,

including depth, query influence and ad interaction in sponsored search.

• We propose a Context-Aware Click Model which incorporates ad context fac-

tors, and is specifically designed for sponsored search.

• Our experiments, based on a large-scale real-world dataset, show our methods

make noticeable improvements and outperform state-of-the-art methods.

5.2.1 Context Analysis

In this subsection, we introduce some explanatory experiments to verify our in-

tuitions and conjectures in sponsored search. We collected data from a commer-

cial search engine in the U.S. English market in April 2012. In total, there are

127,230,609 query sessions, where a session consists of an input query, a list of spon-

sored search results and a list of clicked position with time stamps. Since click data

is noisy, we filter out the low frequency queries and ads to remove noise and use the

high quality click through rate for evaluation.

Depth Analysis

We first try to answer the following question: is the number of ads related to ad

CTR? Table 5.1 shows the average CTR at different positions and depth. From the

bottom line, we can see that the relationship between CTR and position is consistent

with previous studies [116, 31]. Ads in the top positions usually receive higher CTR.

We can also make some interesting observations about the relationship between CTR

and depth: the CTR at the same position increases along with the depth. That is,

as Figure 5.2 shows, the CTR of position 1 and depth 4 is significantly larger than

the CTR of position 1 and depth 3, and CTR of position 1 and depth 3 is also

144



Figure 5.1: Example on query “windows 8”
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Table 5.1: Average ad CTR at different positions and depths

pos. 1 pos. 2 pos. 3 pos. 4 Depth Avg.
depth 1 0.1298 0.1298
depth 2 0.1568 0.0450 0.1009
depth 3 0.2158 0.0511 0.0306 0.0992
depth 4 0.2479 0.0711 0.0430 0.0341 0.0990
Pos. Avg. 0.1586 0.0547 0.0382 0.0341

larger than the CTR of position 1 and depth 2, etc. And these patterns also exist

for position 2 and position 3.

We conjecture that these observations, shown in Table 5.1 and Figure 5.2, may

be the result of four factors: first, greater ad depth typically means a larger ad area,

which attracts more user attention. Therefore, ads in a larger ad area have a higher

probability of user examination and higher CTRs should be expected. Second,

the probability of user examining higher position might be greater than the lower

position. Third, after a user examines all the ads, that user tends to click on the most

relevant one. More relevant ads absorb more user clicks. The bottom ads actually

play a supporting role, which has positive effects on the top ads. Finally, larger

depth may imply higher commercial intent of query and higher relevance of the ads

in the top position. To verify the conjectures, in Subsection 5.2.2, we incorporate

these factors into the click model and the experiments in subsection 5.2.4 show their

contributions on CTR prediction.

We also notice that the average CTR decreases as the depth increases (from

the right column of Table 5.1). This indicates that more ads being displayed may

dilute the CTR of specific ads. However, note that the total click yield (the CTR

summation of all ads for a given depth) becomes larger: for instance, the click yield

of depth 4 is 0.099× 4, which is much larger than depth 1.
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Query Analysis

Here we examine the relationship between query and click through rate. In Figure

5.3, we plot the distribution of click through rate for queries. The differences in click

through rate across queries are quite large. Some queries have a high average CTR

while for some other queries, there are no clicks. That means, in the past month,

regardless of the ads shown for such a query, no users clicked on any of them. This

large difference in average click-through rate of queries strongly implies that the

probability of examining the ad area for specific queries may also be different. In

previous methods [31, 52, 53], researchers only modeled these differences for query-

ad relevance and for each impression. They assumed that for any query session, the

probability of examining the top position was one, that is, P (E1) = 1. Generally,

this assumption may be suitable for modeling user click behavior for organic search

results because the organic search results are always the examination target when

a user issues a query. Unfortunately, the sponsored search results may not always

be a target of examination, especially for those queries with low commercial intent.

With this in mind, we conclude that the assumption that P (E1) = 1 is not suitable

for sponsored search and the probability of examining the ad area not only depends

on the depth, but also the query.

In Subsection 5.2.1, we considered the effect of depth on click through rate:

From Table 5.1, the average CTR over all positions (also averaged over ads and

queries) slightly decreases when the depth increases. If we take a micro-view on

queries, this may not be always true. For example, for some queries, the average

CTR of the larger depth is greater than of the shorter depth. To find the properties

of these queries, here we treat the average CTR of the query as the commercial

intent of the query (higher average CTR means higher commercial intent), and

investigate the relationship between the depth and the query’s commercial intent.
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Figure 5.4: Depth changed from 1 to 3

In our experiments, we change the depth from 1 to 3, and collected queries that

achieve higher CTRs and queries that achieve lower CTRs. In Figure 5.4, we plot

the queries whose average CTRs increase in blue and the queries whose average

CTRs decrease in red. We see that queries with an increasing CTR have lower

commercial intent while queries with a decreasing CTR have higher commercial

intent. We perform a two sample t-test on the two groups of CTRs, and the p-value

is 3.4710e-43 which is highly significant. This indicates that for queries with higher

commercial intent, a single ad has a higher probability of matching user intent,

and the user will more likely click this ad. However, when we show more ads, the

average CTR decreases. This is consistent with the analysis by Xiong et al. [147].

Similar ads shown together will have exclusive effects and the CTR can be diluted

by adjacent ads. On the other hand, for queries with lower commercial intent, if we

show more ads at the same time, we achieve higher average CTRs. We conjecture
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Table 5.2: CTRs of ads appearing in different depths

No. of ads depth 1 depth 2 depth 3 depth 4
588,619 0.0679 0.0736 0.0895 0.1161

that for these queries, the effects across ads are positive rather than exclusive or

negative. In [147], the authors neglect to consider and model the positive cases.

Ad Analysis

Now we analyze the CTR from the perspective of ads. For ads that appear at

different depths, we calculate their average CTR at different depths (dropping the

ads that only appear in one depth). Table 5.2 shows that in our data sets, there are

588,619 ads that appear in at least two different depths. As the depth increases,

the CTR (averaged over queries) also grows. This observation is consistent with the

results in Subsection 5.2.1. We then further investigate the averaged CTR changes

in specific positions and depths for these ads. The results are shown in Table 5.3.

Take the first line as an example. There are 464,633 ads that appear at both depth

1 and depth 2. For these ads, if we show them alone, the click through rate was

0.0589. When they are shown at depth 2, their CTRs are 0.0676 and 0.0469 at

position 1 and position 2, respectively. Similarly, the results of changing the depth

from 1 to 3 and 4 are also shown. We can see that if the ad is in position 1, it

achieves a higher CTR than when shown alone, but for position 2 and 3, a lower

CTR occurs on these ads. However, we also notice that when the depth changes

from 1 to 4, the ad CTR of all four positions at depth 4 are greater than the CTR

at depth 1, even for the bottom position.

Next, to find ads with mutual influences, we perform a similarity analysis for ads

that are shown together. Figure 5.5 presents the results. The similarity is calculated

the same as Xiong et al. [147]. The X-axis indicates the similarity buckets. The
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Table 5.3: CTRs of ads appearing in multiple positions

Depth No. ads shown alone pos 1 pos 2 pos 3 pos 4
1→2 464,633 0.0589 0.0676 0.0469
1→3 117,625 0.0609 0.0862 0.0558 0.0441
1→4 80,198 0.0547 0.1056 0.0778 0.0628 0.0555

Y-axis measures the difference CTRsim − CTRavg. In this box plot, the results

are similar to [147]. As the similarity becomes higher, it shows negative effects.

However, we also notice that for the majority of cases (similarity between 0 and 0.4),

this negative effect is almost trivial. The median shows that the positive influence

was also in half of the cases. We cannot only consider the exclusive influence between

the targeted ad and the adjacent ads, even for highly similar ads. In Subsection 5.2.4,

we will clearly see the improvement of our interaction model, which can model both

cases.

5.2.2 Context-Aware Click Model

We have seen some properties of ad context for predicting click through rate in

sponsored search. In this subsection, we propose the Context-Aware Click Model

for sponsored search, which is designed based on the above analysis and intuition.

Let us first define the notation. The records are presented by S = (qm, am, cm)
M
m=1.

For the single click log (q, a, c) ∈ S, q means the query in the record, a means the list

of ads a = {a1, a2, · · · , a|a|} and |a| is the ad depth of this record. i is the position of

the list of ads a, and c means the corresponding clicks c = {c1, c2, · · · , c|a|}, where

ci = 1 for clicked position i, otherwise ci = 0.

In the previous section, we have already seen some hints that for some queries,

the probability of users being attracted by a specific number of ads is different. Here

we introduce a new variable, E(q,a) to model the event that given a query q and the
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Figure 5.5: ∆CTR against Similarity

displayed ads list a, users will examine the ad area. Then following the classical

examination hypothesis, we have the model assumption: for a record (q, a, c) ∈ S,

ci = 1 ⇔ Ei = 1, E(q,a) = 1, Ni,(q,a) = 1

E(q,a) = 0 ⇒ Ei = 0

Ei = 0 ⇒ ci = 0

where Ei is the event that the user will examine the ad at position i and Ni,(q,a) is

the event that the user is interested in the ith ad, given the context (q, a). Ni,(q,a)

can also be considered as the variable of relevance. For a record (q, a, c) ∈ S, the

click is generatoted as

P (ci = 1) = P (ci = 1|Ei = 1, E(q,a) = 1)

P (Ei = 1|E(q,a) = 1)P (E(q,a) = 1)

The probability of examining position i P (Ei = 1|E(q,a) = 1) is well studied and can

be formulized as the existing versatile position bias model, such as cascade models

[52, 53, 31] and the examination hypothesis [38, 128]. In this section, we will not
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focus on investigating position bias and employed Position Model [128, 123]. We

will however study the context-related hypotheses: the examination model for ad

area P (E(q,a)) and the relevance model P (ci = 1|Ei = 1, E(q,a) = 1).

Examination Models

We now discuss several possible types of examination hypothesis in modeling spon-

sored search clicks.

Constant Examination (CE). A simple method for modeling the probability

of examining ad area P (E(q,a)) is assuming P (E(q,a)) is independent and does not

depend on either query or ad depth. Then we have P (E(q,a) = 1) = δ, where δ is a

corpus level parameter and shared by all queries and ad lists. Under this assumption,

we might notice that P (Ei = 1|E(q,a) = 1)P (E(q,a) = 1) = δ · γi. Clearly, the two

parameters can be merged. That is, the effects of the new parameter δ can be

absorbed by γi without changing prediction performance. Actually, this model is

equivalent to the position model [128, 123].

P (Ei = 1, E(q,a) = 1) = βi ≡ δ · γi

Depth Dependent Examination (DDE). In Subsection 5.2.1, we analyzed

the effects of ad depth on click through rate. As the analysis showed, a longer ad

list displayed usually meant there was a higher probability of the ad area being

examined. Following the intuition that the probability of examining the ad area is

highly related to the depth of the ad list, we assume that the probability of examining

the ad area P (E(q,a) = 1) is a depth dependent variable. That is P (E(q,a) = 1) =

δ|a|, where δ|a| is discriminated by each different depth. Then we have the joint

probability: P (Ei = 1|E(q,a) = 1)P (E(q,a) = 1) = δ|a| · γi. Alternatively, as in

Constant Examination, we can also merge the two parameters.

P (Ei = 1, E(q,a) = 1) = βi|a| ∼ δ|a| · γi
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The merged model, which can be considered as a depth-position bias model with

parameter βi|a|, actually has freer properties than the original one. If d is the maxi-

mum depth, then the model with merged γ,δ will have a total of d×(d+1)
2

parameters

rather than d× 2 parameters of the original depth dependent model. However, this

depth dependent examination model still cannot capture the query effects on the

probability of examining the ad area.

Query-Depth Dependent Examination (QDDE). As in Subsection 5.2.1,

we discussed that like depth effects, for queries with different commercial intent, the

ads area may also receive different examining probability. Following this intuition,

we propose a more delicate model, where we assume the P (E(q,a) = 1) is related to

both queries and the depth of ad list. Similarly, P (Ei = 1|E(q,a) = 1)P (E(q,a) =

1) = δq|a| · γi. Alternatively, as in the above subsection, we could also merge the two

parameters.

P (Ei = 1, E(q,a) = 1) = βiq|a| ∼ δq|a| · γi

Similarly to the Depth Dependent Examination, the merged model with parameter

βiq|a| has freer properties than the original δq|a| · γi. For every query q, we have a

depth-position bias model. Let m be the total number of queries and d be the max-

imum depth. The model with merged γ,δ will in total have md×(d+1)
2

parameters

rather than m × d × 2 parameters of the original Query-Depth Dependent Exam-

ination model. Although the two factors, query and depth are modeled here, one

potential problem of this model is overfitting, due to the large number of parameters

behind this model and sparseness of the ad data. We will test this method in the

following experiments on the real data.
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Relevance Models

Here we describe the possible methods for the relevance model P (ci = 1|Ei =

1, Eq|a| = 1) = αi,(q,a).

Non-Informational Relevance (NIR): As with previous methods [38, 128,

31, 173] for the click model, the relevance model can be trivially set to informational

constraint on αi,(q,a), that is,

αi,(q,a) ∼ U(0, 1)

αi,(q,a) can be valued from uniform distribution in the range zero to one, in order

to serve as the Bernoulli parameter of P (ci = 1|Ei = 1, Eq|a| = 1). The major

drawbacks of this model are three factors: first, since there is no informational

constraints on α, the model will more easily become overfitted to training data and

have worse generalization properties, especially for predicting click through rate of

the future data. Second, it cannot determine the hidden interactions across query,

user, and ads, such as the effect of CTR between ads. Finally, it cannot handle cold

starts. When new queries or ads (which do not exist in the training data) appear

in the test data, the model will fail to predict CTR.

To overcome the problems in the non-information relevance model, we could

add some informational constraints on the Bernoulli parameter α. Let fi,(q,a) be

the informational constraints, calculated from multiple resources of the context. By

placing Gaussian noise, we have

αi,(q,a) ∼ N (Φ(fi,(q,a)), σ
2)

where αi,(q,a) follows univariate gaussian distribution with mean Φ(fi,(q,a)) and vari-

ance σ2 and the link function Φ(x) could be Sigmoid function or Gaussian cumulative

distribution function to scale the scale the value (−∞,∞) into range (0, 1). Here,

we choose Gaussian cumulative distribution function (CDF) Φ(x) = 1√
2π

∫ x

∞ e−t2/2dt.
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Next, we will discuss several possible models to tackle the problem of informational

constraints fi,(q,a) which can be calculated ad/query features, latent bias or interac-

tion across ads/queries.

Latent Bias (LBM): One straightforward intuition is that whether the ad is

clicked or not depends on the average click rate: fi,(q,a) = µai where µai is the click

through rate of the target ad across all contexts. Certainly, this estimation is too

coarse and inaccurate, because as we mentioned before, the majority of ads are not

clicked and multiple factors of the contexts of the ads are not incorporated. We

can extend this basic estimation by incorporating a wider bias from the context:

1) Query bias µq, similar to ad bias, µq is the click through rate of the target ad

across all contexts. 2) Relevance position bias µi, usually, the position of the ad

in the ad list is also related to the query-ad relevance, the more relevant ads will

have relatively more probability of ranking higher. µi represents the average click

through rate over all contexts. 3) Alternatively, from the context, we may also have

ad list µa bias and global average bias µ0. Then we have

f
(1)
i,(q,a) = µ0 + µai + µq + µi + µa

Note that these biases are generally unknown. We treat them as latent variables to

be learned from the data set. Compared with Feature Model, which will be discussed

in the following sections, whose feature vectors are sometimes difficult to calculate

such as graph-based features and content-based features, this model is appealing

since to no extra information besides indicators is needed for learning.

Feature Model (FM): Another relevance model is linear estimation, which

predicts relevance by a linear combination of features. For a search session, we could

collect the features of the ads and their contexts. Given a record (q, a, c) ∈ S and

position i, the feature vector can be extracted from two aspects: Ad Feature: Let

xai be the feature vector of the target ad ai, which can be extracted from the terms
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of the shown title and body of the ad, the history click over expected clicks (COEC)

[166] or latent topic distribution of the ad content. Context Feature: Let x(q,a)

be the feature vector of the context of the target ad ai, which can be the terms of

query and the titles of the adjacent ads, user profiles, the depth of the ad list and

the similarity between the target ad and the query/adjacent ads. A simple linear

combination of ad features and context features can be defined as:

f
(2)
i,(q,a) = bT

1 xai + bT
2 x(q,a)

b1 and b2 are coefficients to be learned from the training set. The model is essen-

tially equivalent to the one where ad features and context features are combined into

a single feature vector x = [xT
ai
,xT

(q,a)]
T and a coefficient b = [bT

1 ,b
T
2 ]

T . Here, we

further place a zero mean Gaussian prior or Laplace prior on the coefficient b, corre-

sponding to the L1 and L2 regularization respectively. With Gaussian assumption,

we get: b ∼ N (0, σ2
bI)

Interactive Influence (IM): Although linear models are efficient, they are

usually over simplified and cannot capture interaction between the ad and the ele-

ments (e.g., query and adjacent ads) of the context. The interaction between the

target ad and its adjacent ads are studied by Xiong et al. [147]. However, they only

model the interaction between the target ad and adjacent ads which are shown in

the same impression and fail to model the interaction between the target ad and the

query. Moreover, the interaction between the target ad and adjacent ads in [147] is

an exclusive interaction; that is, similar adjacent ads will decrease the CTR of the

target ad through similarity weight (non-negative). Their model also fails to handle

positive interaction between the target ad and its adjacent ads.

To model the interactions between the target ad and the context, we use two

interaction matrices Q ∈ R
n×m andA ∈ R

n×n, where m is the number of the queries

and n is the number of ads. The entry Qaiq of Q represents the interaction between
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the target ad ai and query q, and the entry Aai,aj represents the interaction between

the target ad ai and its adjacent ad aj .

f
(3)
i,(q,a) = Qaiq +

∑

j 6=i,j≤|a|
Aaiaj (5.1)

The interaction matrix Q and A are unknown and their entries could be either

positive or negative. We treat them as latent variables to be learned from the data

set. However, the model has two serious problems: the observed pair (ai, q) and

(ai, aj) in the training data is extremely sparse, and the majority of entries in the

interaction matrix cannot be learned effectively. The second problem is that without

any constraints on the interaction matrix, this model may cause overfitting. To avoid

these two problems, we place low-rank constraints on the interaction matrix Q and

A. The low-rank approximation is widely used in recommender systems [74, 23]:

A ≈ ΘT Θ̃ Q ≈ ΘTΨ (5.2)

Let k be the dimensionality of the latent factor vector. Θ ∈ R
k×n is the latent factor

matrix for the target ads, Θ̃ ∈ R
k×n is the latent factor matrix for the adjacent ads.

Because the ads can act as both the target ad and the adjacent ad, for each ad,

there will be two latent factor vectors representing the ad’s two roles (the target ad

and adjacent ad) respectively. Similarly, Ψ ∈ R
k×m is the latent factor matrix for

queries. Plug Equation 5.4 back into the interaction model, and we get

f
(3)
i,(q,a) = θ

T
ai
ψq +

∑

j 6=i,j<|a|
θTai θ̃aj

As with the coefficients in the Feature Model, the latent factor vectors of ads and

queries θai , ψq, θ̃aj can be assumed to be generated from Gaussian or Laplace priors,

corresponding to L2 or L1 regularization respectively. In this section, we assume

the latent factors follow zero mean multi-variate gaussian distribution.
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Combined Models (CM): It is straightforward to consider combining the

three models LBM, FM and IM. Thus in the combined model, different parts of the

model will explain a variety of the ads and contexts. The combined model could be

simply: fi,(q,a) = f
(1)
i,(q,a) + f

(2)
i,(q,a) + f

(3)
i,(q,a) Obviously, the combination could also be

any two of the three aspects.

5.2.3 Inference

In this subsection, we will discuss the inference of this model. We take the Query-

Depth Dependent Examination and Informational Relevance with Combined Model

as the example. Other variations can be easily derived by pruning the models. To

learn the parameters, we adopt Maximum a Posteriori (MAP). Let

Λ = {α,β,µ,b,Θ, Θ̃,Ψ} represent all model parameters. Assuming independent

contexts, we get

p(S|Λ) =
∏

(q,a,c)∈S
p(c|Λ) =

∏

(q,a,c)∈S

∏

i

p(ci|Λ)

=
∏

(q,a,c)∈S

∏

i

[

(αi,(q,a) · βiq|a|)
ci · (1− αi,(q,a) · βiq|a|)

1−ci
]

With the assumption of independent α, we also have

p(α|µ,b,Θ, Θ̃,Ψ) =
∏

i,(q,a)

p(αi,(q,a)|µ,b,Θ, Θ̃,Ψ)
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As we describe above, we placed a zero mean Gaussian prior on the parameter b,

Ψ, Θ and Θ̃, which are also equivalent to L2 regularization.

p(b|σ2
b) =

∏

N (b|0, σ2
b)

p(Ψ|σ2
Q) =

∏

q

N (ψq|0, σ
2
QI)

p(Θ|σ2
A) =

∏

a

N (θa|0, σ
2
AI)

p(Θ̃|σ2
A) =

∏

a

N (θ̃a|0, σ
2
AI)

Then, the log-likelihood can be computed as

logL(Λ|S, σ2, σ2
b, σ

2
Q, σ

2
A)

=
∑

i,(q,a,c)∈S
ci log(αi,(q,a) · βiq|a|)

+
∑

i,(q,a,c)∈S
(1− ci) log(1− αi,(q,a) · βiq|a|)

−
1

2σ2

∑

i,q,a

(αi,(q,a) − Φ(fi,(q,a)))
2 − Ω(b,Θ, Θ̃,Ψ)

where

Ω(b,Θ, Θ̃,Ψ) =
1

2σ2
b

‖b‖2 +
1

2σ2
Q

‖Ψ‖2F +
1

2σ2
A

‖Θ‖2F +
1

2σ2
A

‖Θ̃‖2F

To solve the MLE and learn the model parameters, we employ Expectation Maxi-

mization (EM) algorithm with the event of examination as the hidden variable.

EM algorithms

E-Step: Let us define E as the unobserved events of examination. The EM algo-

rithm first finds the expected value of the log likelihood logP (S,E|Λ) with respect
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to hidden variable E given observed S and current parameter Λ

Q(Λ,Λt−1) = EE[logP (S,E|Θ)|S,Λt−1]

=
∑

i,(q,a,c)∈S

∑

C,E

[logP (C,E|)P (E|C,Λt−1)]

where Λ is the set of parameters following the tradition. We drop the indices

temporarily for notational convenience. Then based on the assumption of the ex-

amination model, the probability P (E|S,Λt−1) mentioned above can be simplified

to different cases. Then

P (E = 1|C = 1,Λt−1) = 1

P (E = 0|C = 1,Λt−1) = 1

P (E = 1|C = 0,Λt−1) =
βt−1(1− Φ(f))

1− Φ(f)βt−1
= C̃t−1

P (E = 0|C = 0,Λt−1) = 1− C̃t−1

where C̃t−1
i(q,a) can be interpreted as the probability of the ad ai being irrelevant of

the context (q, a), judged by users. Then the Q(Λ,Λt−1) can be computed as

Q(Λ,Λt−1)

= EE[logP (S,E|Θ)|S,Θt−1]

=
∑

S•

{

log(αi,(q,a)βiq|a|) +
1

2σ2
(αi,(q,a) − Φ(fi,(q,a)))

2

+Ω(b,Θ, Θ̃,Ψ)
}

+
∑

S◦

{

[log((1− αi,(q,a))βiq|a|)

+
1

2σ2
(αi,(q,a) − Φ(fi,(q,a)))

2 + Ω(b,Θ, Θ̃,Ψ)]C̃iq|a|

+ log(1− βiq|a|)(1− C̃iq|a|)
}

This competes the E-Step.
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M-Step: The M-step of EM iteration tries to maximize the expectation com-

puted above, that is, to find

Λt = argmax
Λ

Q(Λ,Λt−1)

s.t.0 < αi,(q,a) < 1, 0 < βiq|a| < 1

To solve this optimization problem, we adopt a method that mixes block co-ordinate

descent and stochastic gradient descent. Taking derivatives in respect to β, produces

the updating formulas.

βt
iqd =

S•
iqd +

∑

i,q,|a|=d S
◦
i,(q,a)C̃

t−1
i,(q,a)

Siqd

For other parameters, we perform stochastic gradient descent. For each impression

with the target ad ai and its context (q, a), we have the following update rule:

αi,(q,a) ← P

{

αi,(q,a) − η

[

−
S•
i,(q,a)

αi,(q,a)

+
C̃t−1

i,(q,a)S
◦
i,(q,a)

1− αi,(q,a)

+λWi,(q,a)(αi,(q,a) − Φ(fi,(q,a)))
]}

bk ← b1k − ηWi,(q,a)

[

−2λ(αi,(q,a) − Φ(fi,(q,a)))

·φ(fi,(q,a))xi,(q,a)k + 2λbbk
]

ψq ← ψq − ηWi,(q,a)

[

−2λ(αi,(q,a) − Φ(fi,(q,a)))

·φ(fi,(q,a))θai + 2λQψq

]

θ̃aj ← θ̃aj − ηWi,(q,a)

[

−2λ(αi,(q,a) − Φ(fi,(q,a)))

·φ(fi,(q,a))θai + 2λAθ̃aj

]

θai ← θai − ηWi,(q,a)

[

−2λ(αi,(q,a) − Φ(fi,(q,a)))

·φ(fi,(q,a))(θq +
∑

j 6=i

θ′aj ) +2λAθai ]

where Wi,(q,a) = (S•
i,(q,a) + C̃t−1

i,(q,a)S
◦
i,(q,a)) and P(x) is the projection which simply

truncates x into range (0, 1). In an efficient implementation, we first pass the data
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to calculate C̃i,(q,a), update β and next perform M-step in SGD style updating.

While performing M-step, C̃i,(q,a) are calculated for the next iteration. In this im-

plementation, for each iteration, the time complexity is O(dkM), where d denotes

max depth, k denotes the dimensions of latent factors and M is the number of

records. In practice, d and k usually are very small (e.g., d = 4, k = 10), and can be

treated as constants. Then, the time complexity for a single iteration will be O(M).

Assuming the algorithms need z iterations to converge, the total time complexity

will be O(zM) which allows the algorithms to handle large scale data.

5.2.4 Experiments

In this subsection, we conduct experiments on the data collected from a commercial

search engine and compare our model with state-of-the-art methods.

Experiment Setting

We collected the search log data from a commercial search engine in the U.S. English

market in April and the first two weeks of May 2012. The dataset from April 2012 is

the one we used in Subsection 5.2.1. We filter out low frequency (less than 40) queries

and ads to remove noise. In this work, we focus on head queries for three reasons:

1) Head queries hold the majority of the search traffic which is more important to

the search engine. 2) Due to high traffic of head queries, user behaviors are usually

consistent and we can mine the patterns of user behaviors effectively. 3) In this

work, since we investigate ad list effects rather than individual ads, we do not have

enough data to analyze tail queries.

In the end, the April 2012 data set contains 29,722,684 impressions and the May

2012 data set contains 13,160,289 impressions. The other data statistics are shown

in Table 5.8. In our experiments, we provide two types of evaluation: Description
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Table 5.4: Data sets

April 2012 May 2012 total
Impressions 29,722,684 13,160,289 42,882,973
Context (q, a) 112,084 52,814 135,445

Ads 62,423 34,214 72,959
Queries 49,483 26,104 53,730

Oriented Evaluation (DOE) and Prediction Oriented Evaluation (POE).

Description Oriented Evaluation (DOE): this task is to understand and

describe user’s click behaviors, based on the click log of the existing sponsored

search results. Thus, we sample one third of the click logs from April 2012 at

random as test data, and the remaining two thirds of click logs are used as our

training set. There are 19,829,420 impressions (query session) in the training data

and 9,915,760 impressions in the test data. In this setting, the cold start problem

(that is, the new query or ads of test data does not exist in the training data) will

be relatively alleviated. The evaluation aims to show how well the model fits the

data and understand user click behaviors on sponsored search results.

Prediction Oriented Evaluation (POE): this task is to predict the click-

through rate on sponsored search, based on the trained model. We use April 2012

data set as the training data, and the May 2012 data set as the test data. Since

the train/test data are split temporally, the cold start problem is serious. This

evaluation is more instructive for real applications.

The major measurement for performance evaluation is log likelihood of generat-

ing the test data, which is widely used in the CTR prediction problem [27].

LL =
1

S

∑

i,(q,a)

S•
i,(q,a) log(ŷi,(q,a)) + S◦

i,(q,a) log(1− ŷi,(q,a))

Additionally, we also report Relative Information Gain (RIG) [50] and Normalized
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Figure 5.6: Model analysis (Log-Likelihood)

Rooted Mean Square Error (NRMSE) for references. In our experiments, the di-

mension of latent factors for queries and ads is set at 10. We use term frequency

as the features of queries and ads. In the latent bias model, we adopt global bias,

query bias, ads bias, and position bias.

We conduct experiments to analyze the performance of the variations of our

context aware CTR prediction model. First, we check the examination hypothe-

ses by setting the relevance to Non-Informational Relevance (NIR). The results are

shown in Table 5.5. We can see that Depth-Dependent Examination (DDE) outper-

forms the Constant Examination (CE) as we expected. Figure 5.7 shows the relative

improvement of DDE over CE is around 10% RMSE on both the description and pre-

diction task. However, we also notice that the performance of the query-dependent

model QDDE is slightly worse than DDE. After examining the relevant data, we find

that more than half queries do not hold complete depth records, and so, for these
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queries, some specific depths data are not applicable in the training data while they

may appear in test data. In these cases, QDDE cannot make a better prediction

and a more advanced model that can effectively handle query dependent parameters

is necessary.

By using Depth Dependent Examination as our examination model, we can

try different relevance models. From Table 5.5 and Figure 5.7, we can see that

if we only use the Latent Bias Model (LBM), we get better results than NIR. It

shows around 10% and 20% RMSE improvement in Description Oriented Evalu-

ation and Prediction Oriented Evaluation respectively. After adding features to

the model (LBM+FM), the performance gets slightly better in both tasks too, but

the improvement is negligible. By using more delicate features such as Click Over

Expected Clicks (COEC) [166] or latent topic distribution of the ad, a larger im-

provement may be possible. Next, we use Combined Model, which combines the

three models: LBM, FM, and IM. As expected, the model achieve the best perfor-

mance on both POE and DOE. The improvement over LBM is much larger than FM.

We also test different examination models with the combined relevance model, and

the experiments show similar results for both evaluation task, the Depth Dependent

Model is always better than CE and QDDE.

Overall, the performance on Prediction-Oriented tasks is worse than Description-

Oriented tasks as expected, due to the cold starts on queries, ads and contexts. We

also check convergence of the EM algorithms on both PDE and ODE. Figure 5.8

shows that both curves converge quickly and achieve a saddle point. Next, we will

employ the combined relevance model (CM) and Depth Dependent Examination

model (DDE) to compare with other baselines.
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Table 5.5: Model Anlysis

Model DOE POE
Examin. Relev. LL RIG LL RIG

CE NIR -0.3556 0.1372 -0.4206 0.0250
DDE NIR -0.3500 0.1508 -0.4081 0.0539
QDDE NIR -0.3526 0.1443 -0.4123 0.0442
DDE LBM -0.3448 0.1634 -0.3789 0.1215
DDE LBM+FM -0.3441 0.1649 -0.3783 0.1229
DDE CM -0.3300 0.1991 -0.3543 0.1787
CE CM -0.3387 0.1782 -0.3633 0.1578
DDE CM -0.3300 0.1991 -0.3543 0.1787
QDDE CM -0.3527 0.1441 -0.3712 0.1395

Comparison with Existing Methods

We name our method CACM for Context Aware Click Model and compare our

model with three existing methods on both Description Oriented Evaluation and

Prediction Oriented Evaluation:

• User Browsing Model (UBM) is the baseline method and a classical click

model [38]. We adopt EM inference process for parameter α and β. To avoid

infinite values in log-likelihood, α is truncated into the range (0.0001, 0.9999).

• Matrix Factorization Click Model (MFCM) is proposed by Shen et al. [123].2

The dimensionality of the latent factor vector is also set at 10 for a fair com-

parison.

• Relational click model (CRF) is proposed by Xiong et al. [147]. They

adopt Conditional Random Field (CRF) to model the exclusive effects between

similar ads that are shown together in the same impression.

2In this work, we do not focus on the personalized model. Personalization could be a factor of

the ads contexts, and easily plugged into our framework.
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Figure 5.9: Comparing with baselines in DOE

The reason we choose these three methods is that UBM is a classical click model

while CFCM and CRF are very recent state-of-the-art methods. The overall results

of the Log Likelihood and the RIG of the four methods on DOE are shown in Ta-

ble 5.6. To accommodate the random factor in EM, we repeat the experiments many

times at different random seeds, and the performances stay the same. We see that

the performance of UBM is better than CRF which is a more recent method. As we

mentioned earlier, we also expect additional improvement for CRF and our Feature

Model by using more delicate features such as Click Over Expected Clicks (COEC)

[166] or latent topic distribution of the ad, because CRF and our Feature Model

are feature dependent models. Another reason UBM is better than CRF in DOE
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Table 5.6: Comparing with the baselines on DOE

UBM CRF MFCM CACM
Log Likelihood -0.3556 -0.3720 -0.3494 -0.3301
RIG 0.1372 0.0973 0.1522 0.1990

is because the UBM method is designed to understand the user browsing behaviors

and not targeting the prediction of the click through rate for new ads. Essentially,

CFCM is an extension of UBM, and CFCM gets around a 10% improvement over

UBM on RMSE. That is consistent with the results in [123]. We also notice that our

methods outperform all three existing methods in DOE. To analyze the performance

on different positions and depths, we plot Log Likelihood and Normalized RMSE of

the four methods categorized by position and depth. The performance for different

depths are shown in Figs. 5.9(b) and 5.9(d) and the results for different positions

are shown in Figs. 5.9(a) and 5.9(c) respectively. The results are consistent with

the overall results, except for depth 1 cases, in which the CRF is better than UBM.

In all cases, our method can achieve the best performance. Next, we compare the

Table 5.7: Comparing with the baselines on POE

UBM CRF MFCM CACM
Log Likelihood -0.4227 -0.39654 -0.38464 -0.3543
RIG 0.0201 0.08086 0.10844 0.1787

four methods in Prediction Oriented Evaluation. The overall results are shown in

Table 5.7. As expected, the results of the four methods is worse than the results

in DOE. In POE, we see that CRF achieves much better results than UBM. As

discussed, UBM cannot handle new query, ads or even the new pair query-ads with

the existing query and ad. Thus, CRF which is designed for prediction tasks, out-

performs UBM. For CFCM, we also consistently find that CFCM also outperforms
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Figure 5.10: Comparing with baselines in POE

UBM significantly as shown in [123]. Just like DOE, our method outperforms all

three baselines. Similarly, we also show the results on positions in Figs. 5.10(a)

and 5.10(c) and the results on depths in Figs. 5.10(b) and 5.10(d). For the cases

of Position 1 and depth 1, the performance of all four methods is worse than other

cases. Because the number of the cases of Position 1 and depth 1 are always much

larger than other cases, they have a greater variance on CTR which increases the

difficulty of predicting CTR. In all cases, our methods outperform all three other

methods. The improvement on RMSE over CFCM is more than 10%.

171



5.3 Estimating Click Yields in Sponsored Search

As we described in the beginning of this chapter, under the PPC model, advertisers

are charged when their advertisements are clicked by search engine users. Therefore,

user clicks is a key performance metric for sponsored search, which is directly related

to revenue. In order to deliver ads with high payoff, predicting user clicks plays a

critical role in sponsored search. Current ad-delivery strategies are two-step ap-

proaches, and work as follows. The system first predicts individual ad click-through

rates (CTRs) for the given query. Based on the estimated CTRs, the system se-

lects the ads as a ranking list by maximizing per search revenue subject to some

conditions such as user utility and advertiser ROI [20]. The underlying assumption

is that the rewards of ads are independent and clicks on the ads in a list is addi-

tive. However, this assumption does not hold in reality. For example, two similar

ads in the same list could reduce the CTRs of each [147]. Moreover, this strategy

is naturally suboptimal. The learning problem is focused on predicting individual

performance rather than group performance which is selecting the best list of ads

to obtain overall payoff. In this work, we consider click yield (the total number of

clicks for the list of ads per impression) as the group performance instead of revenue

for simplification.3 The motivation behind the proposal to change the objective is

based on nontrivial observations. That is, two systems that have similar precision

on predicting individual performance could behave very differently on group per-

formance. For example, we can have two models having the same CTR prediction

accuracy. However, the ads selected by the two models have huge differences on the

clicks obtained. Moreover, since the overall click yields are based on the delivered ad

list and the CTRs are not independent, the results could be suboptimal even when

3The simplification assumes the bidding prices are the same for all ads. Technically it could be

generalized to revenue by taking the bidding price into consideration.
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the individual ad CTR prediction is perfect. In fact, it is not necessary to know

accurately the CTRs of each individual ad, as long as we can select the best lists.

Sometimes estimating CTRs of all ads may be an even more challenging problem

due to the problem of sparsity.

Most previous research in sponsored search has focused on CTR prediction [50,

166]. In some recent work [147], context information has been take into consideration

in sponsored search. However, they are still working on the CTR prediction problem,

rather than the click yields prediction problem. In this section, we challenge the

traditional strategy for predicting group performance based on CTR prediction. We

propose a novel framework that could directly predict the click yield for a ranked

list of ads. We argue this is a more “correct” problem to solve. The problem

is essentially a ranking problem since we would like to judge which lists of ads are

better. However, unlike the problem of learning to rank that ranks single documents,

this ranks sets of ads. Additionally, we leverage a special constraint on the problem.

That is, the number of ads shown on a page is usually limited to a small number,

(e.g., four in most commercial search engine). Still, it is not realistic to explore all

possible combination of ads. Therefore, we simplify the problem to rank historically

presented ad lists only (that is, the ad lists which have been shown before).

To estimate the ad group performance in sponsored search and tackle these chal-

lenging problems, we combine heterogenous types of information into the learning

model. We first investigate several effects including latent biases, contextual fea-

tures, interactive influence and correlation over positions. We find that a unified

model can achieve the best performance. To best leverage the text features and

solve the sparseness issue in text information and cold start on ads, we embed the

topic coding model into our framework to learn the topic information of short ad

text. We also discuss the effects of various loss functions. We find that ranking

loss is preferred for this problem. Finally, we conduct extensive experiments on
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a large-scale real-world dataset from a commercial search engine. Our methods

achieve significant improvement by solving the sponsored search problem from this

new perspective.

We summarize our contributions as follows,

• We introduce a novel perspective for sponsored search—click yields—which

measures the group performance of ads displayed together.

• To solve the click yields prediction problem, we propose a Click Yields Predic-

tion framework which incorporates multiple factors, such latent bias, textual

features, interactive influences, and position correlation.

• Our experiments, based on a large-scale real-world dataset, show our methods

make noticeable improvements and outperform state-of-the-art methods based

on the traditional strategy.

5.3.1 Preliminaries

In this subsection, we conduct some exploratory experiments to verify our intuitions

and formalize the problem definition. We use the same search log data as in Section

5.2 (collected from a commercial search engine in the U.S. market in April 2012).

In total, there are 127,230,609 query sessions, where a query session consists of an

input query, a list of sponsored search results and a list of clicked ads with time

stamps. Since click data are noisy, we filter out low frequency queries and ads to

remove some noise and use the more confident click data for analysis.

Group Performance

Compared to individual performance, (e.g., individual ad CTR), ad group perfor-

mance is much closer to the real system performance. For instance, in sponsored
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search, given a query, we can decide which group of ads to display, according to the

estimated group performance. Here, we list two examples of group performance—

click yield and revenue.

Click Yield: We define the terminology of click yield (CY) as follows. Given

a query q and an ad list a = {a1, a2, · · · , a|a|}, the click yield is the ratio of the total

number of clicks on the ads in a over the total number of impressions:4

yq,a =

∑|a|
i=1Click(q, ai)

Impr(q, a)

where Click(q, ai) denotes the total number of clicks on the ad ai, with issued query

q and Impr(q, a) denotes the number of times showing the ad group a, with issued

query q. The concept of click yield differs from the click-through rate (CTR) in that

it measures the overall performance of ad lists rather than single ads. We see that

unlike the click-through rate of an individual ad, yq,a might be larger than one.

Revenue: Compared with CTR, click yield is more relevant to the revenue

of search engines under the PPC model. By incorporate biding price into the click

yields, we will get the revenue:

rq,a =

∑|a|
i=1Click(q, ai)× Bid(q, ai)

Impr(q, a)

where Bid(q, ai) denotes the biding price of the ad ai, with issued query q. If we

assume all biding prices equal one, we see that yq,a = rq,a. Because the bidding

prices are dynamic, and very sensitive data, in our following experiments, we will

focus on click yields, which is directly related to the revenue of search engines. Note

that it is straightforward to apply the methods designed for click yields in estimating

revenue.
4The definition of click yield is slightly different from the one used in some other papers [59],

where it is defined by the total number of clicks divided by the total number of search result page

views. In Hillard et al. [59], the click yield is only a global metric while in this section it is a metric

for ad lists.
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Problem Definition

With the definition of group performance, we formalized the problem as follows:

the records are presented by D = (qm, am, ym)
M
m=1. For a single click log entry

(q, a, y) ∈ D, q is the query in the record, a is the list of ads a = {a1, a2, · · · , a|a|}

and |a| refers to the number of ads (i.e., depth). y means the corresponding click

yield. In this work, we will try to solve the following problem: given a query q and

a collection of available ad lists Dq, we predict the click yields of the ad lists or rank

the ad lists and find the best ad list out of Dq that has the highest click yield.

Click Yields Analysis

A commercial search engine typically adopts a two-step approach. That is, the

search engine first predicts the click-through rate of ads given the query. Then, it

selects the ads with higher predicted CTR to display.5 However, this approach is

suboptimal even when the CTR prediction is perfect since it assumes the CTR of

individual ads are independent of each other and clicks are additive. In the following

analysis we will see this assumption does not hold in reality.

Fig. 5.11 shows the average click yields of specific depths (number of ads dis-

played together) over all queries. We can see that as the depth grows, the increase

in click yield slows. For instance, the click yield of depth 1 is 0.1798, but the

the click yields of depth 2 is only 27% more than depth 1. This shows that with

more ads displayed the clicks on individual ads may be diluted. As we can see,

the average click yield becomes larger with increasing depth. However, showing

more ads does not always get the best click yields. We find many examples like

the one in Table 5.8: for query “worldofwatches”, if we only display a single ad

5This is a simplified description. The real world is more complicated. It also needs to consider

the bidding price, the budget of advertiser, etc., but the major idea is still the same.
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Figure 5.11: Average Click Yields

“http://WorldofWatches.com”, the click yield is 0.2096, while if we display this ad

with two other watch-related ads, the click yield of those ads is only 0.1428, which

is even lower than the single ad. That is because with query “worldofwatches”,

although the users are interested in watches, the users’ intent is quite clear and

exactly want the website “http://WorldofWatches.com”. Showing more ads may

annoy users, and they are more likely to skip the ads area. In the case that some

specific ad exactly matches the user’s intent, it appears that less is more.

We further investigate the effects of the query’s commercial intent on click yield

and CTR. We treat the average CTR of the query as the measurement for com-

mercial intent of the query (higher average CTR means higher commercial intent),

and investigate the relationship between the depth and query commercial intent. In

our experiments, we let the depth change from 1 to 3 and then test whether the

commercial intent affects the changes of CTR or CY. We categorize the queries by
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Table 5.8: An example of query “worldofwatches”

Ad list 1 (Click Yields 0.2096)
world of watches (http://WorldofWatches.com)
Up To 80% Off On The World’s Finest Watches. Free Shipping,
Shop Now!

Ad list 2 (Click Yields 0.1428)
world of watches (http://WorldofWatches.com)
Up To 80% Off On The World’s Finest Watches. Free Shipping,
Shop Now!
Ashford - Luxury for Less (http://Ashford.com/Watches Sale)
Shop Top Brand Watches. Free Shipping. 100%Authentic w/Warranty.
Invicta up to 90% off (http://www.nextdaywatches.com)
Authorized Invicta Dealer. Large Selection. Free, Next Day Delivery.

two metrics, CTR and CY. Then, we obtain queries of four types: CTR increasing

query, CTR decreasing query, CY increasing query, and CY decreasing query. For

the majority of queries, with a larger depth, the average CTR of queries are diluted

while the click yields increase, but for some special queries, the average CTR of a

large depth is greater than a small depth, or the click yields of a small depth can

be larger than that of a large depth. In Figures 5.12(a) and 5.12(b), we see that

the majority of queries have higher commercial intent (average CTR). In our exper-

iments, there are around 1/10 queries whose average CYs decrease when changing

depth from 1 to 3. We see that the commercial intents of these queries are rela-

tively low. Note that even if the average CY of a query increases when changing

depth 1 to 3, the gain still may not be linear; that is, one cannot simply use addi-

tive CTRs to estimate CY. On the other hand, unfortunately, another type of the

unusual cases—CTR increasing (CY increasing obviously) queries—also shares the

same property (low commercial intent). That means, we cannot simply use average

CTR of ads to decide the number of ads displayed together. A more sophisticated

model is necessary to solve this problem.
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Figure 5.12: Depth changed from 1 to 3

5.3.2 Predicting Click Yields

To estimate the group performance (click yields) is an more complicated problem

than individual performance, due to extra factors: the number of ads, interactive

influences between query and ads, interactive influences across ads. In this subsec-

tion, we will propose a unified models for predicting the click yields of a, given query

q. yq,a represents the click yields. fq,a the score of relevance which can be used for

estimating click yields or ranking the ads lists.

Estimation Model

Latent Bias (LB): One straightforward intuition is that whether the ad is clicked

or not depends on the average click rate of the ads: f(q, a) =
∑k

i=1 µai where

µai is the click through rate of the target ad across all other factors. Certainly,

this estimation is too coarse and inaccurate, because as we mentioned before, the

majority of ads are not clicked and multiple factors of the contexts of the ads are

not incorporated. We can extend this basic estimation by incorporating a wider

biases from the multiple factors: 1) Positional Query bias, because for each query,
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the average CTRs on specific positions are different. Given a query q, for each

position i, one has a latent bias µ
(i)
q . The latent bias of query q can be expressed

in a vector form µq =
[

µ
(1)
q , µ

(2)
q , · · · , µ(d)

q

]T

where d denotes the max depth of the

ads area (the maximum number of ads shown in ads area). 2) For ad list a, the

average CTR of a specific ad depends on the both the position of the ad and the ad

itself. Similarly, one has a positional bias for an ad list, µa =
[

µ
(1)
a1 , µ

(2)
a2 , · · · , µ

(d)
ad

]T

,

where µ
(i)
a denotes the bias of ad a on position i. To compose the final bias of a pair

(q, a), an indicator Ia is also necessary. Ia points out the positions which are filled

by ad list a. We define Ia =
[

I
(1)
a , I

(2)
a , · · · , I(d)a

]T

the position indicator vector of

a, where I
(i)
a = 1 if some ad appears on position i otherwise I

(i)
a = 0. For instance,

if d = 4 and |a| = 2 which means the first two positions are filled by two ads, then

Ia = [1, 1, 0, 0]T . Then latent bias is

fLB
q,a = µ0 + I

T
a µq + I

T
a µa

where µ0 is the global bias. Note that these biases are the latent variables to

be learned from the data sets. However, this model is appealing since no extra

information is needed for learning, besides requiring indicators.

Features (FM): A more powerful model than the bias model is the feature

model, which predicts the relevance and harvest the information of features by a

linear function of features. For a search session, we could extract the features of the

ads and their contexts. Given a record (q, a) and click yields yq,a, the feature vector

can be extracted from two aspects:

• Query Features: Let xq be the feature vector of query q, which can be

extracted from the terms of the shown title and body of the query or latent

topic distribution of the query.

• Ad Features: Let xai be the feature vector of ad ai, which can be extracted

from the terms of the shown title and body of the ad, the history click over
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expected clicks (COEC) [166] or latent topic distribution of the ad content.

Like latent bias model, with position and depth information, we define

xa =
[

I(1)a xT
a1 , I

(2)
a xT

a2 , · · · , I
(d)
a xT

ad

]T

A simple linear combination of query features and ad features can be defined as:

fFM
q,a = bT

q xq + bT
axa

bq and ba are coefficients to be learned from the training set. The model is essentially

equivalent to the one where ad feature and context features are combined into a

single feature vector x = [xT
q ,x

T
a ]

T and a coefficient b = [bT
q ,b

T
a ]

T . Here, we further

place a zero mean Gaussian prior or Laplace prior on the values of coefficient b,

corresponding to the L2 and L1 regularization, respectively. With the Gaussian

prior, we have: b ∼ N (0, λ−1
b I)

Interactive Influence (IM): Although linear models are efficient, they are

usually over-simplified and cannot capture interactions between queries and ads.

The interaction between the query and ads are studied in Xiong et al. [147]. However,

their methods did not consider to model the interaction across ads. Moreover, their

models still are designed for CTR prediction rather than click yields prediction.

Similar to Rendle [111], we model interactions of click yields of a query-ad list

pair (q, a) through an additive function of ad positions. Let G(i) ∈ R
Na×Nq be the

interaction matrix on position i. The interaction can be modeled as follows.

f IM
q,a =

d
∑

i=1

I(i)a G(i)
aiq

(5.3)

The interaction matrix G(i) is query-position-ad dependent, which is unknown and

their entries could be either positive or negative. We treat them as the latent

variables to be learned from the data set. However, the model has two issues: the
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observed pair ai, q in training data are extremely sparse, meaning that the majority

of entries of interaction matrix cannot be learned effectively. The second problem

is that without any constraints on the interaction matrix, this model may overfit

due to large number of parameters. To avoid these two problems, we place low-rank

constraints on the interaction matrix G. The low-rank approximation is widely used

in recommender systems [74]:

G(i) ≈ Q(i)TA (5.4)

Let k be the dimensionality of the latent factor vectors. Q(i) ∈ R
k×Nq is the latent

factor matrix for the queries on position i, A ∈ R
k×Na is the latent factor matrix

for the ads. Plugging Equation 5.4 back into the interaction model, we get

f IM
q,a =

d
∑

i=1

I(i)a Q(i)
·q

T
A·ai (5.5)

Like the coefficients in Feature Model, the latent factor vectors of ads and queries

Q
(i)
·q and A·ai could be assumed generating from a Gaussian prior,

Q(i)
·q ∼ N (0, λ−1

Q I), i = 1, · · · , d (5.6)

A·ai ∼ N (0, λ−1
A I)

Correlations: However, the above model still fails to capture the connections

across positions/ads. To learn the relationships between different positions/ads, we

place a matrix-variate normal distribution [54] on

Q =
[

vec(Q(1)), vec(Q(2)), · · · , vec(Q(d))
]

where vec(·) denotes the operator which

converts a matrix into a vector in a column wise manner. Then,

p(Q|Ω) =MNNqk×d(Q|Q
′, INqk ⊗Ω)

where Q′ is the mean matrix (e.g., zero mean Q′ = 0Nqk×d), MN u×v(X|M,U,V)

denotes a matrix-variate normal distribution with mean M ∈ R
u×v, row covariance
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matrix U ∈ R
u×u and column covariance matrix V ∈ R

v×v. The probability density

function of the matrix-variate normal distribution is defined as

p(X|M,U,V) =
exp(−1

2
tr(U−1(X−M)V−1(X−M)T ))

(2π)uv/2|U|v/2|V|u/2

where tr(·) and | · | denote the trace and determinant, respectively, of a matrix. More

specifically, here the row covariance matrix INqk models the relationships between

query latent features, and the column covariance matrix Ω models the relationships

between different Q(i)’s. In other words, Ω models the relationships between posi-

tions. We can see that if Q′ = 0Nqk×d and Ω = λ−1
Q I, the model p(Q|Ω) is equivalent

to Eq. 5.6.

Combined Models (CM): It is straightforward to combine the three models

LB, FM and IM. The combined model could be simply:

fq,a = fLB
q,a + fFM

q,a + f IM
q,a

Obviously, the combined model is more expressive than any single model. With

more flexibility, there is also risk of overfitting using the combined model. Therefore,

regularization is more important for the combined model.

Historical CTR Regularization

Instead of using a zero-mean prior of matrix Q, that is Q′ = 0Nqk×d, we can incor-

porate historical CTR of pair query q and ad a into the prior information. Here,

all positional query latent factors Q
(i)
·q are generated from the same corresponding

query latent factor Q̃·q.

Q(i)
·q ∼ N (Q̃·q, λ

−1
Q I), i = 1, · · · , d

We call Q̃·q query latent factors and Q
(i)
·q query positional latent factors. Then, we

can place the matrix variate gaussian distribution on the Q
(i)
·q . We duplicate vec(Q̃)
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for d times Q′ = [vec(Q̃), · · · , vec(Q̃)], such that it can be shaped into the same

form ofQ. Similarly, we can further assume query latent factors Q̃ is generated from

a Gaussian prior. With query latent factors Q̃ and ad latent factors A, the click-

through rate can be incorporated into optimization framework through traditional

collaborative filtering techniques [75],

CTR(q,a) ∼ N (Q̃T
·qA·a, λ

−1
c I)

With the historical CTR regularization, we update the optimization problem as

follows,

Oc =
∑

q,a

ℓ(yq,a, fq,a) + λb‖b‖
2
2 + λQ̃‖Q̃‖

2
2 + λA‖A‖

2
2

+kNq ln |Ω|+ tr((Q−Q′)Ω−1(Q−Q′)T )

+λc

∑

q,a

(CTR(q,a) − Q̃T
·qA·a)

2 + const

Optimization

With the proposed prediction models, we can formalize the click yield prediction

problem into an optimization framework. The discrepancy between the estimation

fq,a and the true value yq,a can be measured by a loss function. We can formalize

the problem as an optimization problem as follows

Oc =
∑

q,a

ℓ(yq,a, fq,a) + λb‖b‖
2
2 + λA‖A‖

2
2 + kNq ln |Ω|

+tr(QΩ−1QT ) + const

The choice of the loss function ℓ(·) is also critical to the performance. We will

discuss several possible choices for the click yield problem in this section and show

the performance comparison of these loss functions on click yield.

One straightforward method is to treat the problem as a regression problem,

where we could use the following pointwise loss functions.
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Squared error loss (Gaussian): ℓ(yq,a, fq,a) = (yq,a − fq,a)
2, which is also

known as Gaussian response in regression problems.

Huber loss (Huber):

ℓ(yq,a, fq,a) =







1
2
(yq,a − fq,a)

2 if|yq,a − fq,a| < δ

δ(|yq,a − fq,a| − δ/2) otherwise

This function is quadratic for small values of |yq,a−fq,a|, and linear for large values,

with equal values and slopes of the different sections at the two points where |yq,a−

fq,a| = δ

ǫ-insensitive loss (SVR):

ℓ(yq,a, fq,a) =







0 if|yq,a − fq,a| < ǫ

|yq,a − fq,a| − ǫ otherwise

This loss function is used by support vector regression [36]. It has no penalty on

any training data whose prediction is close enough to the ground truth (within a

threshold ǫ).

The problem of click yields prediction essentially is to find the a which can

generate maximum click yields given a query q. From this perspective, learning to

rank methods are much preferable to the regression method.

Margin ranking criterion(MRC):

ℓM(a1, a2) =
∑

yq,a1>yq,a2

max[0, 1− fq,a1 + fq,a2]

MRC considers all pairs of yq,a1 > yq,a2, and assign each a cost if the negative label

fq,a2 is larger or within a “margin” of 1. This loss function has a problem that all

pairwise violations are considered equally if they have the same margin violation,

independent of their position in the list. For this reason the margin ranking loss

might not optimize precision at k very accurately.
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Weighted Approximately Ranked Pairwise loss (WARP): This loss,

proposed in Usunier et al. [138], has been successfully applied in image retrieval

tasks [142] and IR tasks [143]. The idea of WARP is to focus more on the top of the

ranked list where the top k positions are those we care about, comparing to MRC

where no notion of ranked list is introduced. By using the precision at k measure,

one can weigh the pairwise violations depending on their position in the ranked list.

WARP is defined as an error function as follows:

WARP =
∑

q,a

error(fq,a, yq,a) =
∑

q,a

L(rank(fq,a)) (5.7)

where rank(fq,a) is the rank of the ads list a, given by rank(f(q, a)) =
∑

a′∈S−
q,a

I[fq,a′ >

fq,a], where I is the indicator function, S−
q,a = {a′|yq,a′ < yq,a}. Here, rank measure

L(·) is the function which transforms the rank to a loss:

L(k) =

k
∑

j=1

αj ,with α1 ≥ α2 ≥ · · · ≥ 0.

The idea of the rank function is to compute the violations where negative instances

are ranked higher than the positive ones and the L function is to transform the

violations into loss. Different choices of α define different importance of the relevance

position: for αj = 1, ∀i, we have the same AUC optimization as margin ranking

criterion. For αj = 1 and αj>1 = 0, the precision at 1 is optimized and similarly for

αj<N = 1 and αj≥N = 0, the precision at N is optimized. For αi = 1/i, a smooth

weighting over position is given, where most weight is given to the top position.

It is also shown to be superior to other schemes of α and yields state-of-the-art

performance [138]. In this work, we will also adopt this setting αi = 1/i.

From the Eq. 5.7, we notice that it is difficult to directly optimize WARP due to

the discrete nature of indicator functions. In addition, since the number of negative

instances is significantly larger than positive instances, the rank function is inefficient
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to be calculated. As in [142], Eq. 5.7 can be readily re-written as

WARP =
∑

q,a

L(rank(fq,a))
∑

a′∈S−
q,a

I[fq,a′ > fq,a]

rank(fq,a)

with the convention 0/0=0 when the correct label y is top-labeled. The WARP

can be approximated by the hinge loss max(0, 1− f(q, a) + f(q, a′)) instead of the

indicator function, to make the loss function continuous [142]. To perform stochastic

gradient descent (SGD) updates, another difficulty is that the rank function is still

unknown without computing fq,a for all q, a. In order to approximate the rank

function, for a given pair q, a, one draws negative instances until one which violates

the indicator function. Thus, the approximate rank(fq,a) by using ⌊D
−−1
N
⌋ where

⌊·⌋ is the flow function, D− is the number of items in S−
q,a and N is the number of

trials of sampling until a violating pair is found. This approximation only requires

local knowledge of negative instances, making it possible for SGD style updating

rule.

A Efficient Implementation

To solve the problem, we adopt a hybrid optimization approach which mixes stochas-

tic gradient descent and co-ordinate descent. In each iteration, we first perform

stochastic gradient descent on b,Q,A, Q̃. Then, we update Ω by the rule Ω ←

1
Nqk

(Q−Q′)T (Q−Q′) which is obtained by taking the derivative Oc with respect

to Ω and setting it to 0. Thus, for each iteration, the time complexity is O(dkM),

where d denotes max depth, k denotes the dimensions of latent factors and M is the

number of records. In practice, d and k usually are very small (e.g. d = 4, k = 10),

and can be treated as constants. Then, the time complexity for a single iteration

will be O(M). Assuming the algorithms need z iterations to get converged, the total

time complexity will be O(zM) which allows the algorithms to handle large-scale

data.
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5.3.3 Harvesting the Textual Information of Ads

Although the click yield optimization framework proposed in the previous subsection

could utilize many features for the prediction task, there are still issues with leverag-

ing the content features, because the words representation of ad content is extremely

sparse. Usually, an ad body only contains around 10 to 20 words. Bag-of-words fea-

tures (e.g., term frequency or TFIDF) cannot effectively capture the underlying

semantics. On the other hand, a latent factor model does not explicitly incorporate

ad content, such that it cannot handle cold start ads (the ads do not exist in the

training data), which frequently occur in real systems. Topic models [15, 171, 61]

have been developed to learn the latent semantics of texts. A number of approaches,

such as LDA [15] and sparse topical coding [171], could be used in our problem. In

this work, we adopt the topical coding model [171] to incorporate ad content into

our click yield optimization framework. The reasons for using topical coding are as

follows: 1) the topical coding model is a non-probabilistic formulation of topic mod-

els for discovering latent representations of large collections of data. It can easily fit

into our optimization framework. 2) it can directly control the sparsity of inferred

representation by using an appropriate regularizer. 3) the integrated model can be

solved efficiently. We treat the content of each ad as a document. For simplicity,

we use a as the index of an ad. Let V = {1, ..., Nv} be the vocabulary with Nv

words. Then wan represents the raw word count of term n in ad a. Let θa ∈ R
k

represent the document code, playing a similar role as P (z|θ) in traditional topic

models like probabilistic latent semantic analysis (PLSA) [61] or latent Dirichlet

allocation (LDA) [15] . Similarly, β ∈ R
k×N be a dictionary with k bases, which can

be treated as P (z|w) in LDA or PLSA.

For θ, due to the connection with the click yield model, we can place either

Gaussian prior p(θ) ∝ exp(−λθ‖θ‖22) or Laplace prior p(θ) ∝ exp(−λθ‖θ‖1) for
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L2 and L1 regularization respectively rather than Dirichlet prior. Then let Θ =

{θa}
Na

a=1 denote the codes for a collection of ads {wa}
Na

a=1. We learn the parameter

by maximimum a posteriori (MAP) estimation. Unlike [171], since we only use ad

level topical coding in our methods, we remove word level coding. Then we have

Ot = min
θ,β

∑

a,n

− logPoiss(wan; θ
T
a β.n + δ · βb

n) + λθ

∑

d

‖θd‖
2
2

s.t. :θa ≥ 0, ∀a; βk ∈ P, ∀k, δ > 0, βb ∈ P,

where ℓ(θa, β) is Poisson loss, and alternatively we can place a background topic βb
n.

ℓ(θa, β) = − logPoiss(wan; θ
T
a β.n + δ · βb

n)

= −wan log(θ
T
a β.n + δ · βb

n) + θTa β.n + δ · βb
n

The optimization problem can be solved efficiently due to three facts: 1) the property

of multilinearity [111], which means that the model is linear with respect to each

model parameter when others are fixed, 2) Proposition 1 in [171] states that the

optimal value of a single parameter when others are fixed is the maximum between

zero and the value obtained by a non-constrained version of the same problem. 3)

efficient methods [37] exist to project real-valued vectors onto the simplex.

To incorporate the topical coding into our click yields model, we explore two

methods, one through features and the other through latent factors.

Topical Coding Through Features

In this form, we put the topical coding of ads into ad features and the new ad

features become x̃a = [xT
a , θ

T
a ]

T . With the shared model parameter θ, we connect

the two optimization problem Oc and Ot. This form is similar to the supervised

topic model [14] and MedLDA [170]. The final optimization problem is

Oc + λ · Ot
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where λ is a weight parameter for Ot. Then, we perform stochastic gradient descent

to update θ, referring to the total optimization.

When passing a sample of click yq,a and a ∈ a, we have the following updates

θa ← P

{

θa − η
∂Oc(yq,a)

∂θa

}

Similarly, when passing a sample of word count wan, we have

θa ← P

{

θa − η
∂Ot(wan)

∂θa

}

where P{·} is the projection function which truncates θa and guarantees θa ≥ 0

Topical Coding Through Latent Factors

An alternative method that can incorporate topical coding of ads is through latent

factors. Without constraints, the latent representations of an ad learned from Oc

and Ot are different. To connect the two problems, we can place constraints on

the two latent representations of ads, such that the information of ad content can

be incorporated into click yields optimization. One natural approach to require the

two latent factors be the same:

θa = A.a, ∀a

In this method, the objective function will be Oc+λ ·Ot that is the same as the one

in Sec. 5.3.3 and similar optimization methods (e.g., stochastic gradient descent) can

be used to solve the problem. Another more flexible approach is to use a regularizer

to keep the two latent factors similar rather than identical, as:

λθA‖θa −A.a‖
2
2, ∀a

The objective function will be Oc+λθA

∑

a ‖θa−A.a‖22+λ·Ot. We can also view one

latent factor as a sample drawing from a multivariate normal distribution with the
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mean of the other latent factor: A.a ∼ N (θa, λ
−1
θAI). This will produce the formalism

in Wang and Blei’s work [139]. Also, the SGD-style optimization can be used to

solve the problem. In our studies, we find the performances of the two methods are

comparable and we will use the first one in the following experiments.

5.3.4 Experiments

In this subsection, we analyze variations of the proposed model and compare our

model with the state-of-the-art methods.

Experiment Setting

We use the same search log data as in Section 5.2. (collected from a commercial

search engine in the U.S. market in April 2012 and the first two weeks of May 2012).

We used April 2012 dataset as training set, and the May 2012 dataset as the test

set. Similarly as in Section 5.2, the train/test data are split temporally rather than

randomly, and we avoid the problem of predicting the past using future data. This

evaluation is more consistent with a real application scenario. At the same time,

the cold start problem becomes serious.

To evaluate the performance of click yields prediction, we report the standard

ranking measurements—Mean Average Precision (MAP) and Precision@N for ref-

erences.

By using our click yields prediction framework, with an issued query, we can

reselect the group of ads to display with the higher predicted click yields, and it

will improve the performance of current search engine. To evaluate this relative

improvement, we present a novel evaluation metric, referred to as Relative Gain

of Click Yields (RGCY). The overall click yields of the current system is CY =

1
Imp

∑

q

∑

a yq,a · Imp(q, a). Given a query q, ideally, if we know the optimal a, which
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can generate the maximum click yield, that is for all impressions of q, one can always

show this optimal result aopt(q) which is defined aopt(q) ∈ {a′|∀a, yq,a′ ≥ yq,a}. The

maximum click yield which the system could have is CY = 1
Imp

∑

q ỹq
∑

a Imp(q, a)

where ỹq = yq,aopt(q)
denotes the optimal click yield for query q.

Given a query q and its ranked ad lists lq = {a(1), a(2), · · · , a(n)} where fq,a(1)
≥

fq,a(2)
· · · ≥ fq,a(n)

, CY@N = 1
Imp

∑

q ŷq
∑

a Imp(q, a) where ŷq is the average click

yields of top N ad lists for query q, ŷq =
1
N

∑N
i=0 yq,a(i)

. We define the relative click

yield gain (RCYG) to be

RGCY@N =
CY@N − CY

CY − CY

It is trivial to see that CY ≥ CY@N ≥ CY. The RGCY@N actually measures the

gap with the maximum click yields. More specifically, RGCY@1 is more critical to

the system since it can generate the maximum click yields.

Model Analysis

In this subsection, we detail the anatomy of the proposed model and systematically

analyze the contributions and effects of each part.

Estimation Model Analysis: we first test the scoring model. The results

are shown in the Figure 5.13. In this experiment, the performance is evaluated

by PREC@1 and MAP, and the loss function is WARP. We can see that the per-

formances shown are consistent in terms of PREC@1 and MAP. The bias model

performs the worst on the left. With the feature model added, the model performs

better. When we further incorporate the interaction model into the system, the

model achieve the best performance in both PREC@1 and MAP.

Convergence Check: We also show the learning curve of the combined in

Figure 5.14, where two loss functions are tested: Gaussian response and WARP.

The convergence of the two loss functions can be achieved after 100 iterations. We
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Figure 5.13: Model Analysis (Click Yields)
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Figure 5.14: WARP vs. Gaussian
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Figure 5.15: Co-relation across positions

can also see that the performance of the ranking loss (WARP) is much better than

the regression loss (Gaussian response).

Position Correlation Analysis: Matrix Ω is shown in Figure 5.15. We can

see from the figure that position 1 is positively correlated to the position 4, while

position 1 is negatively correlated to position 2 and position 4. This results are

consistent with our intuitions: if the ads in position 2 and position 3 are similar to

the ads in the top position, users are more likely to skip the ads due to information

redundancy, which may decrease click yields. On the other hand, the ads at the

bottom position (position 4) are positively correlated with position 1. One possible

reason is that position 4 is far apart from the top position, and similarity between

them is insensitive such that the click yields might increase.

Loss Function: From Figure 5.14, we have already seen the performance differ-

ences between different loss functions (WARP and Gaussian). In this experiment,

all five loss functions in Section 5.3.2 are systematically compared. The results are
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shown in Table 5.9. For pointwise regression loss, we can see that the least square

loss and ǫ-insensitive loss (SVR) can generate comparable performance. Huber loss,

which is quadratic for small errors and linear for large errors, can achieve slightly

better performance than the two other pointwise regression losses in this problem.

On the other hand, for pairwise ranking loss, WARP can be treated as a weighted

version of MRC, which emphasizes the top positions weight. From Table 5.9, we

can see that the overall performance (MAP) of WARP is similar to MRC, while

the performance of WARP on the RGCY@1 which only evaluates the accuracy of

top position (RGCY@1 can be considered as the weighted version of MRC) is much

better than MRC. Overall, comparing with the pointwise regression losses, the two

pairwise rank losses are preferable in click yields prediction problem in all three

evaluations (PREC@1, MAP and RGCY@1).

Side Information

For the topical coding model, we explore how topics are learned. The dictionary β

can be interpreted as a topic matrix as in standard topic models. We can describe

topics as in other topic models by ranking terms in probabilities. We show some

example topics in Table 5.10. We can see that these topics can be easily recognized.

Moreover, modeling ad content is not only useful for explanatory analysis, it indeed

improves the prediction tasks. From Table 5.9, we can see that by incorporating the

topical coding of ads, we get further improvement on RGCY@1.

Next, we examine the effects of two side information: historical CTR regular-

ization and topical modeling of ad content. The results are shown in Table 5.9,

where CTR represents historical CTR regularization, TCF represents topical model

incorporated through features, TCL represents topical model incorporated through

latent factors. We see that the performances get slightly improved across all loss
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Table 5.9: Predictive results of Click Prediction

Side loss PREC@1 MAP RGCY@1
N/A Gaussian 0.5683 0.6792 0.6475
CTR Gaussian 0.5689 0.6796 0.6510

CTR,TCF Gaussian 0.5789 0.6894 0.6592
CTR,TCL Gaussian 0.5771 0.6887 0.6701

N/A Huber 0.5694 0.6811 0.6617
CTR Huber 0.5695 0.6811 0.6618

CTR,TCF Huber 0.5714 0.6834 0.6627
CTR,TCL Huber 0.5730 0.6854 0.6679

N/A ǫ-Insensitive 0.5785 0.6886 0.6365
CTR ǫ-Insensitive 0.5787 0.6889 0.6401

CTR,TCF ǫ-Insensitive 0.5824 0.6925 0.6402
CTR,TCL ǫ-Insensitive 0.5833 0.6941 0.6416

N/A MRC 0.5839 0.6930 0.6641
CTR MRC 0.5848 0.6932 0.6661

CTR,TCF MRC 0.5849 0.6936 0.6697
CTR,TCL MRC 0.5859 0.6946 0.6732

N/A WARP 0.5841 0.6923 0.6685
CTR WARP 0.5845 0.6924 0.6782

CTR,TCF WARP 0.5851 0.6936 0.6829
CTR,TCL WARP 0.5859 0.6943 0.6882
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Table 5.10: Examples of topics are shown.

Shopping Video Travel Finance Game
low tv book online games
free order hotels credit play
order free rates apply store
shop time price card online

shipping watch insurance get free
quality college car university today
today live parts gift guarantee
orders 24 hotel degree official
high take great website fun
prices like best back enjoy
supplies sears auto earn favorite
site movies low college kids
state community quotes magazine better
official episodes deals cash toys

functions when adding historical CTR regularization into system. When adding

topical information, we see that the performance becomes much better than the

original model, due to alleviating the cold-start and sparseness problems. We notice

that WARP loss with CTR regularization and incorporated topical coding through

latent factors achieve relative better performance than other combinations (although

MRC is slightly better than WARP for MAP under CTR,TCL). In the following

sections, we will use it to compare with the other existing methods.

Comparison with existing methods

In this subsection, we name our methods CYP for Click Yield Prediction. Although

there is no previous work on the click yield prediction problem, some models could

be easily adapted to solve the problem. We compare our model with four existing

methods:
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• Probabilistic Matrix Factorization (PMF) is a popular method [119] in

collaborative filtering. Here, we treat queries as the users and ads as the items

to be recommended for users. CTR is the response in this framework.

• User Browsing Model (UBM) is the baseline method and a classical

click model [38]. We adopt the EM inference process for parameter α and

β. To avoid infinite values in log-likelihood, α is truncated into the range

(0.0001, 0.9999).

• Matrix Factorization Click Model (MFCM) is proposed by Shen et al. [123].

The model incorporates collaborative filtering techniques into the click model.

• Relational click model (CRF) proposed by Xiong et al. [147]. They adopt

Conditional Random Fields (CRF) to model the exclusive effects between

similar ads which are shown together in the same impression.

We choose these four methods to compare to various alternative methods to solve

this problem. PMF is a classical recommender method, UBM is a classical click

model while CFCM and CRF are very recent methods and the state-of-the-arts in

modeling clicks. We also compare it with Context-Aware Click Model (CACM)

presented in Section 5.2. All five methods follows the classical two-step approach,

that is, predicting CTR of individual ad at first and then compose the click yields

for ad lists and rank them. The comparison results (on precision, RGCY and MAP)

are shown in Table 5.11. We notice that the performances across five evaluations

are consistent: the two classical methods—PMF and UBM—shown similar per-

formance on this problem, and they are relatively worse than the two recent click

models—MFCM, CRF. MFCM which incorporates examination hypothesis into ma-

trix factorization, can get slightly better results than matrix factorization. CRF is

the first click model which tries to model the relational ad clicks on the ads displayed
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Table 5.11: Comparison with existing methods

Model PREC@1 PREC@5 MAP RGCY@1 RGCY@5
CYP 0.5859 0.7428 0.6943 0.6882 0.7438
PMF 0.5251 0.6828 0.6450 0.4991 0.5597
UBM 0.5338 0.6845 0.6647 0.4519 0.5015
MFCM 0.5553 0.6985 0.6754 0.5830 0.6293
CRF 0.5760 0.7320 0.6887 0.5975 0.7175
CACM 0.5676 0.7321 0.6858 0.6508 0.7051

together. We see that CRF and CACM achieve similar performance overall, while

CACM is better than CACM in RGCY@1. The performances of CRF and CACM

are much better than other three baselines which only focus on modeling clicks on

single ad. However, for the click yield prediction problem, because all these five

methods are two-step approaches and not designed to optimize click yields directly,

our method outperforms all these methods noticeably. Especially, on RGCY@1, our

methods can achieve 0.6882 which almost improves the click yields 10% absolutely,

comparing to 0.5975—the value of the best comparison method, CRF.

5.4 Summary

In this chapter, we have studied contextual factors of the problem of predicting

click-through rates for sponsored search. From our data analysis, we have found

that these factors play important roles in understanding and predicting user clicks

on ads and include factors such as ad depth and the interaction between the target

ad and its context. A novel Context Aware Click Model for sponsored search was

proposed, based on this analysis. We incorporated the context factors into the click

model and conducted extensive experiments on a large-scale real-world dataset.

Experiments in which different combinations of our model have been tested also

verified the findings and conjectures in our data analysis. By adopting the Depth
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Dependent Examination model and combining a latent bias model, feature model

and interaction model into an informational relevance model, we produced significant

improvement in CTR estimation. By comparing our methods with three strong

baseline methods in multiple metrics, we showed that our approaches can outperform

all three methods, which include two recent state-of-the-art methods in both the

Description Oriented Evaluation and the Prediction Oriented Evaluation tasks.

Subsequently, we further studied advertising click yield prediction which is also

a critical problem for modern search engines and provides a new perspective to mea-

sure group performance of ads displayed together. We then systematically explored

different aspects: bias model, features, interactive influence, depth, and correlation

across the position. Additionally, to best leverage the text features and solve the

sparseness issue in textual information and cold starts on ads, we incorporate a topic

coding model into our framework to learn the topic information of short texts for

ads in two ways—through features and through latent factors. Finally, various loss

functions are also studied. We find that ranking loss is preferred for this problem.

We collected a large-scale real world dataset from a commercial search engine to con-

duct experiments. Our experiments show that our methods which directly predict

the click yields achieve significant improvement, comparing with the existing two-

step approaches. Our methods noticeably outperform the existing state-of-the-art

approaches.

5.5 Bibliographic Notes

Related work is primarily in three topics: the users’ click model, sponsored search

and learning to rank techniques.

The bias in user click behavior during search was first studied through eye-

tracking [66]. After that, many click models have been proposed to correct the biases
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and thus better model the users’ click behaviors. There are two major assumptions

in click models: the Examination Hypothesis and the Cascade Model.

The examination hypothesis assumes that if a displayed URL is clicked, it must

be both examined and relevant [116]. Following the examination hypothesis, there

are three basic models: the click over expected clicks (COEC) model [166], the

examination model [24] and the logistic model [31]. They have been compared by

O’Chapelle [24] and experimentally found to be outperformed by the cascade model.

An important extension of the examination hypothesis is the user browsing model

proposed by Dupret et al. [38, 87, 86]. It assumes the examination depends not only

on the position, but also on the most recently clicked position in the same query

session. Following this idea, Srikant et al. [128] propose user browsing models which

attribute CTR changes to both changes in relevance and examination.

Another branch of the click model is the Cascade Model proposed by Craswell

et al. [31], which assumes that the user views search results from top to bottom

and decides whether to click each url. Once a click is issued, documents below the

clicked result are not examined regardless of the position. Then the dependent click

model [53] generalizes the cascade model to allow multiple clicks within a single

session. The click chain model [52] and dynamic Bayesian network [24] (which is

inferred through Infer.NET [97]) provide a further generalization by allowing the

user to abandon examination of more results. The general click model [173] treats

all relevance and examination effects in the model as random variables. In addition

to the above methods, there have been several click models following the above two

assumptions but apply them in different contexts, such as federated search [25], the

task centric click model [168], and the position normalized click model [26].

However, the above methods are mainly designed for understanding user click

behavior in organic search. They fail to explore the specific properties in sponsored

search as we discussed before. Moreover, they cannot handle the cold start problem.
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For modeling sponsored search and predicting ad click through rate, Graepel

et al. [50] describe a Bayesian model that is based on a probit regression model.

Richardson et al. [116] present a method based on logistic regression, where they

extract features in four aspects: term CTR, ad quality, order specificity and external

sources. In [166], Zhang et al. introduce the Clicks Over Expected Clicks (COEC)

model. Cheng et al. [27] develop user-specific and demographic-based features that

reflect the click behavior of individuals and groups to improve accuracy over the

baseline model. Menon et al. [95] view the CTR prediction problems as a problem

of matrix completion. Shen et al. [123] propose a personalized model, where they

extend the matrix factorization to tensor factorization by involving the user factor.

Although some of these methods adopt content-based features, they neglect the

context information, including examination bias on different depths and ad mutual

influence.

Recently, Xu et al. investigated the relational click behavior [150], but their

method can only be applied in cases with two ads. They fail to model the more

general cases (e.g., 3,4 ads) or handle new ads and queries. Xiong et al. [147]

showed the mutual exclusive influence between similar ads, but their model fails to

include positive effects between the ads. Also, they do not take examination bias

into account and are essentially two step-approaches and do not directly estimate

ad group performance.

Another area of related work is learning to rank techniques. In IR, a generic

task is to construct a ranked list of documents relevant to a query issued by a user.

Although ranking is a fundamental problem in IR and has been studied for decades,

it still remains challenging. Recent methods are summarized in [88]. In the stan-

dard Learning to Rank setting, a typical training set consists of queries with their

associated documents represented by feature vectors as well as corresponding rele-

vance judgements. A machine learning algorithm is employed to learn the ranking
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model, which can predict the ground truth label in the training set as accurately

as possible in terms of a loss function. In the test phase, when a new query comes

in, the learned model is applied to sort the documents according to their relevance

to the query, and return the corresponding ranked list to the user as the response

to the query. Depending on different hypotheses, input spaces, output spaces and

loss functions, approaches to LtoR can be loosely grouped into three categories [88]:

point-wise, pairwise, and list-wise [99].
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Chapter 6

Conclusion and Future Work

In this chapter, we summarize our research findings and contributions. We also

discuss future research directions.

6.1 Summary

Online media has gained popularity in recent years. People get deeply involved in

online media, and user behaviors in real life (e.g., reading news, sharing resources

and shopping) have been able to be performed through online services. It attracts a

great amount of research on understanding and predicting user behaviors in online

media. In this thesis, we mainly study the problem—understanding and prediction

of user online behaviors—in different contexts, such as social tagging prediction,

link prediction and online advertising.

In terms of methodologies, we have designed specific models for different appli-

cations. Our contributions are summarized as follow:

• We proposed a novel probabilistic model for personalized tag prediction, which

is a Bayesian approach, and integrates three factors—an ego-centric effect,
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environmental effects and web page content. Two methods—both intuitive

calculation and learning optimization—are provided for parameter estimation.

• To model temporal dynamics in social tagging system, we proposed a user-

tag-specific temporal interests model for tracking users’ interests over time.

The model stands on techniques introduced to address “concept drift” which

imposes a continuous smoothing scheme over the timeline. Our model can

benefit from the integration of topic switch detection and that temporal char-

acteristics of social tagging systems are different from traditional concept drift

problems.

• A novel personalized structure-based link prediction model is proposed in

Chapter 3, based on a latent factor model. With structural regularization,

it can incorporate structural information into the model.

• To make better predictions for a user in different contexts, we tackle these

tasks by using a generalized latent factor model and Bayesian treatment. This

model is able to predict users’ different behaviors in specific contexts simulta-

neously and capture mutual effects across different contexts while the Bayesian

treatment can handle the data sparsity which is a serious problem in social

media data.

• For click behavior prediction in sponsored search, we propose a novel prob-

abilistic model which adopts the Depth Dependent Examination model and

combines a latent bias model, feature model and interaction model into an

informational relevance model.

• In order to estimate ad group performance in sponsored search, we design

a novel framework that directly predicts group performance for lists of ads.

To best leverage the text features and solve the sparseness issue in textual
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information, we embed a topic coding model into our framework to learn the

topical information of short text for ads.

In this dissertation, besides the methodological contributions, we have also made

contributions in understanding behaviors in different contexts. Through data anal-

ysis, and experiments, we have the following contributions in four domains:

• Social Tagging System

We suggest that social tagging by nature is an incremental process, and per-

form a time-sensitive sampling on an existing public dataset. Our analysis

shows that in the real world, the problem of tag prediction is dominated by the

need to predict tags for existing users when they tag new items. We proposed

a novel probabilistic model for personalized tag prediction. Our online experi-

ments and 5-fold cross validation experiments indicate that our model achieves

over 30% improvement on F-measure compared to a leading method, in a

“real-world” test scenario. Moreover, we investigated the temporal dynamics

of user interests in tagging systems, and proposed a user-tag-specific temporal

interests model for tracking users’ interests. Using three public datasets we

showed the impact of personalization and user-tag specification. Based on our

experiments, we are able to conclude that our temporal user interests model,

generated only from the temporal tag sequence, can outperform the state-of-

the-art by more than 10% in F-measure for Bibsonomy data. Combining with

either our probabilistic personalized tag prediction model or LHKM, perfor-

mance further improved to 0.357 and 0.369, respectively. All three methods

incorporating TIM can outperform the state-of-the-art as well as a leading

algorithm addressing concept drift.

• Microblogging System
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We examined the link structure and link prediction task within the Twitter

microblogging network. In daily monitoring experiments, we analyzed prop-

erties of new links and saw from where in the network those links come and

compared three sampling methods for the link prediction task. We proposed

a novel personalized structure-based link prediction model and compared its

predictive performance against many fundamental and popular link predic-

tion methods on real-world data from the Twitter microblogging network.

Our experiments on both static and dynamic data sets show that our methods

noticeably outperform the state-of-the-art.

• Modeling Simultaneous Contexts in Online Social Media

We study social media relations involving high order interactions, sparsity and

coupling of data across contexts. Our experiments show that in social media,

there exist three problems and challenges: coupled high order interaction, data

sparsity, and cold start. To make better predictions for a user in different con-

texts, we tackle these problem by using a generalized latent factor model and

Bayesian treatment. For performance evaluation, we test on three real-world

data sets from two domains. In social tagging systems, the user-comment-item

and user-tag-item can be mutually inferred based on common latent factors

and thus improve prediction performance, which has not been explored pre-

viously. In traditional collaborative filtering, we investigate the combination

of temporal information, external information and user-item interaction. Our

novel latent factor model can handle multiple activities, such as comment-

ing within tagging systems and can do so simultaneously and demonstrate

superiority over state-of-the-art methods [119, 125, 148]. Our experiments

also show the advantage of employing a fully Bayesian treatment to boost the

performance of point estimation when modeling high order relations.
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• Sponsored Search and Online Advertising

We studied contextual factors of the problem—predicting click-through rates

for sponsored search. From our data analysis, we have found that these factors

(such as ad depth and the interaction between the target ad and its context)

play important roles in understanding and predicting user clicks on ads. A

novel Context Aware Click Model for sponsored search was proposed, based on

this analysis. Experiments in which different combinations of our model have

been tested also verified the findings and conjectures in our data analysis.

By comparing our methods with three strong baseline methods in multiple

metrics, we showed that our approaches can outperform all three methods,

which include two recent state-of-the-art methods in both the Description

Oriented Evaluation and the Prediction Oriented Evaluation tasks.

Moreover, we provide a new perspective to measure group performance of

ads displayed together. We then systematically explored different aspects:

bias model, features, interactive influence, depth, and correlation across the

position. Various loss functions are also studied. We find that ranking loss

is preferred for this problem. We collect a large-scale real world dataset from

a commercial search engine to conduct experiments. Our experiments show

that our methods which directly predict the click yields achieve significant

improvement, comparing with the existing two-step approaches. Our methods

noticeably outperform the existing state-of-the-art approaches.

Through this dissertation, readers learned characteristics, properties, challenges

in predictive online media, especially in social tagging system, micro-blogging system

and online advertising. We also expect that readers could acquire knowledge of most

popular methods such as probabilistic model and latent factor model. In addition,

some methodologies of modeling online media could be learned, which could handle
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some specific challenges in online media and may provide some hints of potential

solutions for new problems.

6.2 Future Work

From the micro-view, based on this thesis, there are many possible extensions of the

current approaches, either in terms of experiments or in terms of modeling in the

future:

For social tagging, although manually tuned parameters can achieve a high per-

formance, all the users share the same ego weight. We believe that different users

should have different user profiles—personalized weights of ego-centric effect and en-

vironmental effects. In the future, a probabilistic analysis on the effects of neighbor-

ing users may be needed to make further improvements. About temporal dynamics,

from the experiments, we also find that the personal topic switch is an important

problem. The experimental results imply that further research and analysis are

necessary on modeling personal topic switches.

In microblogging, while this work has focused on link prediction as a function

of link structure, we also expect that content analysis and user profiles are likely to

be important for link prediction in hybrid networks. Future work should investigate

the value of user attributes and capturing user interests in a hybrid network.

In modeling simultaneous relations across multiple contexts, while the proposed

algorithm can scale to hundreds of thousands of observations, it requires several

hours to converge. It is necessary to explore deterministic approximate inference

techniques such as variational Bayes to further improve the convergence speed and

enable the possibility of using gradient descent algorithms instead of Gibbs sampling.

Another possible extension to this work is also the use of more advanced factorization

techniques such as Tucker decomposition [133]. The model could also be modified
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to include non-negative latent features to improve the interpretability or the results;

our approach can be easily extended to this framework by using an exponential prior

on the latent dimension, as done in the case of matrices [122] and tensors [11].

For sponsored search, several interesting points remain to be explored in the

future: first, a more advanced query-dependent examination model would be helpful

for handling the data sparseness and cold start problems. Secondly, research beyond

the prediction of group performance in sponsored search would be valuable. A more

interesting problem is, given a query, finding the best depth and the ad list that can

generate the best click yields for search engines. This is a much harder problem,

similar to a combinatorial optimization problem. Finally, although we mainly study

top queries in this work, studying tail queries is also interesting and necessary as

future work.

From the macro-view, there are multiple potential directions for prediction and

recommendation in online media, based on the current research. Here, we present

three directions:

6.2.1 Additional Resources

Online media has been popular for a couple of years. In the early stage, user behav-

iors are mainly focused on desktop internet. More recently, more new characteristics

for online behaviors are shown in online media. The population of mobile internet

is dramatically growing: one may not have a desktop but must have a cellphone.

In mobile internet, users are involved into the online media in a much deeper level

than desktop internet. User’s geographical information, gesture, even call logs and

contacts, etc., can be easily collected and modeled for better prediction; meanwhile

these various information bring more challenges to recommender systems. Prelim-

inary study on this direction has shown its value [94], but more efforts should be
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made in this area. For instance, when a user walks into a store, one can analyze

users’ interests based on users’ past behaviors. In general, compared to traditional

recommender system, new online media allow us to collect and model more various

information such as time, location, store information to make better recommenda-

tion to users.

6.2.2 Privacy

On the other hand, the over exposure of user information may cause another problem—

a reduction in privacy. One can imagine that it is very dangerous that if a model

can predict users’ home addresses by analyzing user personal data (e.g., users’ past

geographical information). On this aspect, the fact that users may not be willing

to open their privacy related data will raise a problem—how to design a privacy-

preserving recommender system? This could be always a balance between benefits of

better prediction and user privacy [70]. Here, we would like to make a good predic-

tion and recommendation for users while using fewer data, especially user privacy

related data. The possible solutions could be in two directions: 1) by effectively

selecting a subset of training, a model even is able to achieve better performance,

such as in active learning. In this scheme, one can incorporate data privacy into

the selection procedure to balance performance and privacy. 2) combine local model

and central model. In this scheme, we can design a local model on user/client end,

which is light weight model, running on user end and will utilize users’ local pri-

vacy data. These data will be only kept in user end instead of uploading to server

end. Meanwhile, we can also have a central model, based on cloud/server data.

This model is more like traditional recommender system, however, it only model

non-privacy data. When user triggers a request of recommendation/prediction, the

central model and local will work together to achieve a better performance.
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6.2.3 Large Scale Data

Another research direction is scalable learning algorithms. As the data in online

media is dramatically growing today, scalable learning algorithms still remain a

tremendous challenge. Several possible directions may provide solutions to this

problem: 1) approximate methods could speed up the learning process without los-

ing too much performance. For example, some NP-hard problems could be solved

approximately in polynomial time. 2) parallel paradigm provides a potential di-

rection of research is to exploit large computing clusters of commodity machines,

adapting existing algorithms in such contexts [103, 126, 7]. However, most exist-

ing methods cannot directly fit into the current standard parallel paradigm such as

MapReduce.

6.3 Conclusion

In this dissertation, we provide a comprehensive study on understanding and pre-

dicting user behaviors in online media. Each online service has its specific character-

istics, and user behaviors are different across these online services. We analyze user

online behaviors—in different domains, such as social tagging system, microblogging

system, and online advertising system. Based on the analysis, we report our findings

on different online media and propose specific models for users online behaviors. We

conduct extensive experiments on large-scale real-world datasets. The experimental

results show that we advance the state-of-the-art and the prediction and recom-

mendation in online media can be tackled at a large scale. Future work may arise

from three directions: modeling more resources, taking privacy into account and

scalability of models.
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[62] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Information retrieval in

folksonomies: search and ranking. In Proceedings of the 3rd European con-

ference on The Semantic Web: research and applications, ESWC’06, pages

411–426, Berlin, Heidelberg, 2006. Springer-Verlag.

[63] M. Hu and B. Liu. Mining and summarizing customer reviews. In SIGKDD,

pages 168–177, 2004.
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